
MSc in Computational Mechanics

Computational Solid Mechanics

Assignment 1 - Damage modelling

Submitted By:
Mario Alberto Mendez Soto

Submitted To:
Prof. Joaquin A. Hernandez

Prof. Xavier Oliver

Spring Semester, 2019

1. Introduction

Damage models are used to simulate different materials that undergo degradation of
their mechanical properties due to micro-defects and cracks that appear as a consequence
of loading. These mathematical models allow engineers to predict damage-related phe-
nomena without the need of a microscopic description that becomes impractical for many
engineering applications [1].

A MATLAB implementation for rate-independent damage model at Gauss-point level
was originally provided with the symmetric model fully operational under a plane strain
hypothesis. This implementation allows the user to input the loading path and compute
several properties such as stress-strain (σ − ε) curves, stress norm curves and evolution
over time of damage(d), hardening variable (q), and internal variable (r).

Firstly, the code was modified to include the tension-only and non-symmetric models.
Moreover, both linear and exponential laws of softening/hardening were implemented
within the code. Subsequently, rate-dependent computations (alpha-integration method)
were considered to study the viscous effects of a given material. The new implementa-
tion also includes computations for the algorithmic and tangent tensorial modulii. The
modified routines can be found in the appendices of this report.

Please note that within the framework of the present report, a material with Young’s
modulus E = 20, 000 Pa and Poisson ratio ν = 0.3 was considered. The yield strength
for this material was set equal to 200 Pa. In general, three load states were studied with
50 automatically-computed sub-steps (if not indicated otherwise).

2

2. Rate-independent damage model

After implementation of the tension-only model (refer to Appendix A), the following
sample separate load paths were analysed:

Biaxial tension loading

σ1 = [150 ; 150]

σ2 = [300 ; 300]

σ3 = [450 ; 450]

Biaxial compression loading

σ∗1 = [−150 ; −150]

σ∗2 = [−300 ; −300]

σ∗3 = [−450 ; −450]

For a perfect damage model with no hardening/softening, Figure (2.1) depicts the
stress-strain and stress surface curves computed for the tension-only model. As expected,
the material yields when the stress equals 200 Pa in tension, whereas, the behavior of
the material in compression is perfectly elastic.

Fig. 2.1. – Damage surface and stress-strain curves for biaxial tension() and
compression() loading for the tension-only model

3

To better illustrate the differences between the tension-only and symmetric model a
comparison between the evolution of the damage variable can be considered (see Figure
(2.2)). For this case, the material exhibits a linear softening law with H = −0.2 and the
loading path is the following:

σ1 = [250 ; 250]

σ2 = [−300 ; −300]

σ3 = [0 ; 0]

Fig. 2.2. – Comparison between symmetric () and only-tension () models

As described above, Figure (2.2) shows that during compression the model does not
yield if the the tension-only model is used, therefore damage remains constant and does
not change. Contrarily, for the symmetric model, damage starts under compression after
the yield limit is reached causing an increase in the damage variable.

4

Similarly, after coding the non-symmetric model within the program (refer to Ap-
pendix A), the following two separate load states were input:

Biaxial tension loading

σ1 = [100 ; 100]

σ2 = [200 ; 200]

σ3 = [300 ; 300]

Biaxial compression loading

σ∗1 = [−200 ; −200]

σ∗2 = [−400 ; −400]

σ∗3 = [−600 ; −600]

For the previously indicated load states and a linear softening law (H = −0.8), Figure
(2.3) depicts the stress-strain and stress surface curves computed for the non-symmetric
model (n = 2).

Fig. 2.3. – Damage surface and stress-strain curves for biaxial tension() and
compression() loading for the non-symmetric model

Figure (2.3) shows how the material behaves differently depending on the type of
loading: compression or tension. For positive axial loading, softening starts when σ =
200 Pa while if the sample is loaded in compression the material yields only after σ = 400
Pa is reached.

5

Hardening/softening linear and exponential laws were implemented by means of the
modification of the original code. For the linear law, the parameter H mathematically
defines the phenomenon while, in the exponential case, user-defined parameters q∞ and
A are used. The latter parameters describe the value q reached as r increases and the
rate at which this value is approached, respectively. The MATLAB code can be seen in
Appendix B.

Figure (2.4) shows the change in the damage surface for both laws and dependency
between the hardening variable q and internal variable r. For this figure, an equal biaxial
loading was considered with P1 = P ∗1 = 150 Pa, P2 = P ∗2 = 200, P3 = P ∗3 = 300. The
model used was a non-symmetric one with n = 2 and the linear law has a parameter H
equal to ±0.8. For the exponential law, A = 2 and the hardening variable q approaches
2r0 and 0 in the hardening and softening cases, respectively.

(a) (b)

Fig. 2.4. – Hardening ()/softening () linear (a) and exponential(b) laws for a non-
symmetric material with n = 2

In order to asses the correctness of the implementation, the code was additionally
tested for several loading states starting at σ

(0)
1 = σ

(0)
2 = 0. For the cases to be presented

below, it was considered that α = 300 Pa, β = 350 Pa and γ = 400 Pa.

1. Non-symmetric model (n = 3) and exponential softening law (A = 1 and q∞ = 0)
∆σ

(1)
1 = α ; ∆σ

(1)
2 = 0

∆σ
(2)
1 = −β ; ∆σ

(2)
2 = 0

∆σ
(3)
1 = γ ; ∆σ

(3)
2 = 0

6

2. Tension-only model and linear softening law (H = −0.8)
∆σ

(1)
1 = α ; ∆σ

(1)
2 = 0

∆σ
(2)
1 = −β ; ∆σ

(2)
2 = −β

∆σ
(3)
1 = γ ; ∆σ

(3)
2 = γ

3. Non-symmetric model (n = 3) and exponential softening law (A = 1 and q∞ = 0)
∆σ

(1)
1 = α ; ∆σ

(1)
2 = α

∆σ
(2)
1 = −β ; ∆σ

(2)
2 = −β

∆σ
(3)
1 = γ ; ∆σ

(3)
2 = γ

Results of case 1 are plotted in Figure (2.5). It can be noticed that the stress-strain
curve passes through point (0, 0) since no plastic damage should be remaining after
unloading the sample completely. Moreover, since the model is non-symmetric, during
compression the material behaves elastically for the given load states analyzed (yield
limit is not reached during the compression loading).

Fig. 2.5. – Damage surface and stress-strain curve for case 1

7

Figure (2.6) depicts the results computed for case 2. Stress-strain (σ1−ε1) and (σ2−ε2)
curves for this case are shown. It is important to mention that even though for the first
load stage σ2 remains equal to zero, a strain is present due to the effects of the Poisson
ratio. This transverse strain also explains why the σ1 − ε1 curves does not go through
(0, 0) since this would be satisfied only if σ1 = σ2 = 0 at the same time and not because
a plastic deformation is produced as it might be erroneously understood. As expected,
the sample behaves as a perfectly elastic material in compression.

Fig. 2.6. – Damage surface and stress-strain curve for case 2

8

Figure (2.7) presents the stress surface and σ1 − ε1 curve for case 3 (curve σ2 − ε2 is
omitted since it perfectly coincides with σ1−ε1, due to the orthotropic assumed property
of the material and the loading applied). For this case, it is important to point out that
the curve does go through point (0, 0) since the condition σ1 = σ2 = 0 is satisfied during
the unloading/compression stage. Also, as it was observed in the two previous cases, it
is worth noticing that during traction re-loading the stress-strain curve goes back to its
initial softening curve and continues its behavior prior to unloading.

Fig. 2.7. – Damage surface and stress-strain curve for case 3

9

3. Rate-dependent damage model

Using the supplied MATLAB code, the alpha-method integration algorithm (plane
strain case) was implemented for the isotropic visco-damage model (refer to Appendix
C).

For all the tests carried out in this chapter, the following biaxial loading path is
considered:

σ(1) = [120 , 120]

σ(2) = [240 , 240]

σ(3) = [360 , 360]

The model analysed is symmetric in tension and compression with linear softening
(H = −0.5).

Viscoelastic effects on damage were studied, firstly, by varying the value of the viscosity
parameter η. For these tests, the total time T equals 10 s and the integration is computed
using α = 0.5. Stress-strain curves and the evolution of the damage variable are plotted
in Figure (3.1) for different viscosity parameters.

(a) (b)

Fig. 3.1. – Stress-strain curves (a) and damage evolution (b) for different viscosity pa-
rameters η

Figure (3.1) shows that an increase in the viscosity parameter causes a rise in the
resistance of the material to yield, therefore, originating a delayed yield (softening in
the case studied). Moreover, it can be noticed that for a very small viscosity value the
rate-independent case is recovered.

10

To give an illustration of the effect of strain rate on the behavior of a viscous material
during damage, the final total time was varied. For these computations, the viscosity
parameter η was set to 0.1 and the integration was carried out for α = 0.5. Figure
(3.2) summarises the stress-strain curve variation and the evolution of the damage vari-
able as the total time T is modified, i.e. the strain rate. For the plotted curves, the
corresponding total times are: 10, 5, 1, 0.5, 0.1 seconds.

(a) (b)

Fig. 3.2. – Stress-strain curves (a) and damage evolution (b) for different strain rates ε̇

A significant aspect to understand from Figure (3.2) is that for very low strain rates,
the rate-independent case seems to be recovered, which coincides with the case of a
small viscosity parameter. In other words, decreasing the viscosity is equivalent to
slowing down the process of deformation, hence an equivalence between a limit of zero
viscosity and an infinitely slow process is demonstrated [2].

For the final set of tests, the effect of the integration parameter α was analysed. For
these computations, the final time T was set to be 10 s and the viscosity parameter η
equals 0.1.

Figures (3.3) and (3.4) depict the results of the computations of element C11 of the
tangent and algorithmic tensorial modulii. Firstly, it becomes evident that, for α = 0,
Cn

alg = Cn
tan. Furthermore, during the elastic part of the loading, both modulii are

constant and equal to element C11 of the constitutive elastic matrix C, since no damage
is present. Finally, it is worth mentioning that the “jump” exhibited in the Calg

11 curves
is reduced as the number of time steps increases (see Figure (3.5)).

11

Fig. 3.3. – Evolution of Ctan
11 using different α values (T = 10 s and 50 time steps)

Fig. 3.4. – Evolution of Calg
11 using different α values (T = 10 s and 50 time steps)

12

Fig. 3.5. – Variation in the computations of Calg
11 (α = 0.5) using different time dis-

cretizations

It is important however not to assume the stability of the computations of Calg and
Ctan in all cases. Theory in [2] suggests that the integration algorithm is conditionally
stable for values α < 0.5 . This stability range can be noticed if the discretization and
total time is changed in order to enter into a potentially unstable zone. Figures (3.6)
and (3.7) show the results obtained for element C11 of Calg and Ctan analysing the same
loading path, but using 20 time steps and T = 50 s.

For this particular case, the integration becomes unstable for α < 0.5 as oscillations
are present. Conversely, for α ≥ 0.5 the integration is stable and no spurious results are
obtained.

13

Fig. 3.6. – Evolution of Ctan
11 using different α values (T = 50 s and 20 time steps)

Fig. 3.7. – Evolution of Calg
11 using different α values (T = 50 s and 20 time steps)

14

Bibliography

[1] Eduardo Chaves. Notes on continuum mechanics. Lecture Notes on Numerical
Methods in Engineering and Sciences. CINME, Springer, 2013. isbn: 978-94-007-
5985-5 (HB).

[2] Jacob Lubliner. Plasticity theory. Courier Corporation, 2008. isbn: 9780486462905.

15

Appendix A.Tension-only and non-symmetric model

Listing A.1 – Lines added/modified in subroutine Modelos de dano1.m

1 if (MDtype ==1) % Symmetric model
2 rtrial= sqrt(eps_n1*ce*eps_n1 ’);

3

4 elseif (MDtype ==2) % Only−tension model
5 sigma_n1 =ce*eps_n1 ’;

6 for j=1:4

7 if sigma_n1(j)<0

8 sigma_n1(j)=0;

9 end

10 end

11 cei=inv(ce);

12 eps_n1m =(cei*sigma_n1)’;

13

14 rtrial= sqrt(eps_n1m*ce*eps_n1m ’);

15

16 elseif (MDtype ==3) % Non−symmetric model
17 sigma_n1 =ce*eps_n1 ’;

18 sigma_vec=sigma_n1;

19 sum_eps_abs=sum(abs(sigma_n1));

20 sum_eps =0;

21 for j=1:4

22 if sigma_vec(j)<0

23 sigma_vec(j)=0;

24 end

25 sum_eps=sum_eps+sigma_vec(j);

26 end

27

28 if sum_eps_abs ==0

29 coeft =0;

30 else

31 theta_sigma=sum_eps/sum_eps_abs;

32 coeft=theta_sigma +(1- theta_sigma)/n;

33 end

34

35 rtrial= coeft*sqrt(eps_n1*ce*eps_n1 ’);

36 end

16

Listing A.2 – Lines added/modified in subroutine dibujar criterio dano1.m

1 elseif MDtype ==2 %Tension−only model
2 tetha =[0:0.05:2* pi];% Range of angles
3 D=size(tetha);

4 m1=cos(tetha);

5 m2=sin(tetha);

6 Contador=D(1 ,2);

7

8 %Stress and Macaulay bracket initialization
9 radio = zeros(1,Contador) ;

10 s1 = zeros(1,Contador) ;

11 s2 = zeros(1,Contador) ;

12 m1_p = zeros(1,Contador) ;

13 m2_p = zeros(1,Contador) ;

14

15 %Macaulay bracket
16 for i=1: Contador

17 m1_p(i)=m1(i);

18 m2_p(i)=m2(i);

19 if m1(i)<0

20 m1_p(i)=0;

21 end

22 if m2(i)<0

23 m2_p(i)=0;

24 end

25

26 %Computation of radius
27 radio(i)= q/sqrt([m1_p(i) m2_p(i) 0 ...

28 nu*(m1_p(i)+m2_p(i))]* ce_inv *[m1(i) m2(i) 0 ...

29 nu*(m1(i)+m2(i))] ’);

30

31 %Computation of the stresses
32 s1(i)= radio(i)*m1(i);

33 s2(i)= radio(i)*m2(i);

34 end

35 hplot =plot(s1,s2,tipo_linea);

36

37 elseif MDtype ==3 %Non−symmetric model
38 s0 = q/sqrt ([1 0 0 nu]* ce_inv *[1 0 0 nu]’); %Base stress value
39 tetha =[0:0.01:2* pi];% Range of angles
40

41 D=size(tetha);

42 m1=cos(tetha);

43 m2=sin(tetha);

44 Contador=D(1 ,2);

45

17

46 %Radius and Stress initialization
47 radio = zeros(1,Contador) ;

48 s1 = zeros(1,Contador) ;

49 s2 = zeros(1,Contador) ;

50

51 %Computation of coefficient theta
52 for i=1: Contador

53 sum_stress =0;

54 vec_stress =[m1(i) m2(i) nu*(m1(i)+m2(i))];

55 sum_stress_abs=sum(abs(vec_stress));

56 for j=1:3

57 if vec_stress(j)<0

58 vec_stress(j)=0;

59 end

60 sum_stress=sum_stress+vec_stress(j);

61 end

62

63 theta_stress=sum_stress/sum_stress_abs;

64 coeft=theta_stress +(1- theta_stress)/n;

65

66 %Computation of the radius
67 radio(i)= q/(coeft *(sqrt([m1(i) m2(i) 0 ...

68 nu*(m1(i)+m2(i))]* ce_inv *[m1(i) m2(i) 0 ...

69 nu*(m1(i)+m2(i))] ’)));

70

71 %Computation of the stresses
72 s1(i)= radio(i)*m1(i);

73 s2(i)= radio(i)*m2(i);

74 end

75 hplot =plot(s1 ,s2 ,tipo_linea);

76 end

18

Appendix B.Linear and exponential hardening

Listing B.1 – Lines added/modified in subroutine rmap dano1.m

1 H = Eprop (3); % Parameter for linear law (user−defined)
2 q_inf =0.0005; % Parameter for exponential law (user−defined)
3 A=1; % Parameter for exponential law (user defined)
4 if hard_type == 0 % Linear law
5 q_n1= q_n+ H*delta_r;

6 else %Exponential law
7 q_n1= q_inf -(q_inf -r0)*exp(A*(1-r_n1/r0));

8 end

19

Appendix C.Rate-dependent model

Listing C.1 – Lines added/modified in subroutine rmap dano1.m

1 fload =0;

2 if viscpr == 1 %viscous case
3

4 % Strain norm at time n
5 [tau_eps_n] = Modelos_de_dano1 (MDtype ,ce,eps_n ,n);

6 % Strain norm at time n+1
7 [tau_eps_n1] = Modelos_de_dano1 (MDtype ,ce,eps_n1 ,n);

8 %Srain norm at time n+alpha
9 [tau_eps_na] = (1-alpha)* tau_eps_n+alpha*tau_eps_n1;

10

11 if tau_eps_na > r_n %loading
12 fload =1;

13 r_n1 = (eta -t*(1- alpha))/(eta+alpha*t)*r_n +...

14 t/(eta+alpha*t)* tau_eps_na;

15 delta_r=r_n1 -r_n;

16 if hard_type == 0

17 q_n1= q_n+ H*delta_r;

18 else

19 q_n1= q_inf -(q_inf -r0)*exp(A*(1-r_n1/r0));

20 end

21 if(q_n1 <zero_q)

22 q_n1=zero_q;

23 end

24 else %elastic/unloading
25 r_n1= r_n ;

26 q_n1= q_n ;

27 end

28

29 else %inviscid case
30 %strain norm at n+1
31 [rtrial] = Modelos_de_dano1 (MDtype ,ce,eps_n1 ,n);

32

33 fload =0;

34 if(rtrial > r_n) %loading
35 fload =1;

36 delta_r=rtrial -r_n;

37 r_n1= rtrial;

38 if hard_type == 0

39 q_n1= q_n+ H*delta_r;

40 else

41 q_n1= q_inf -(q_inf -r0)*exp(A*(1-r_n1/r0));

42 end

20

43 if(q_n1 <zero_q)

44 q_n1=zero_q;

45 end

46

47 else %Elastic unloading/elastic loading
48 fload =0;

49 r_n1= r_n ;

50 q_n1= q_n ;

51 end

52 end

53

54 % Damage variable
55 dano_n1 = 1.d0 -(q_n1/r_n1);

56 % Computing stress
57 sigma_n1 =(1.d0-dano_n1)*ce*eps_n1 ’;

58 %∗ Updating historic variables
59 hvar_n1 (5)= r_n1 ;

60 hvar_n1 (6)= q_n1 ;

61

62 %Auxiliar variables for C_tan and C_alg modulii
63

64 if viscpr ==1 %viscous case
65

66 C_alg = (1.d0-dano_n1)*ce - fload*Eprop (8)*...

67 t/(Eprop (7)+ Eprop (8)*t)*...

68 1/ tau_eps_n1 *(q_n1 -H*r_n1)/r_n1 ^2*(sigma_n1)*...

69 (sigma_n1 ’)/((1.d0-dano_n1)^2);

70

71 C_tan = (1.d0-dano_n1)*ce;

72

73 else %inviscid case
74 C_alg = (1.d0-dano_n1)*ce - fload*Eprop (8)*...

75 t/(Eprop (7)+ Eprop (8)*t)*1/ r_n1 *...

76 ((q_n1 -H*r_n1)/r_n1 ^2)*(sigma_n1)*...

77 (sigma_n1 ’)/((1.d0-dano_n1)^2);

78

79 C_tan = (1.d0-dano_n1)*ce -fload *...

80 ((q_n1 -H*r_n1)/r_n1 ^3)*(sigma_n1)*...

81 (sigma_n1 ’)/((1.d0-dano_n1)^2);

82

83 end

84

85 aux_var (2) = C_tan (1,1);

86 aux_var (3) = C_alg (1,1);

21

Listing C.2 – Lines added/modified in subroutine damage main.m

1 eps_n1 = strain(i,:) ; %Input of strain at time n+1
2 eps_n = strain(i-1,:) ; %Input of strain at time n
3

4 %Changes in the variables of function rmap_dano1
5 [sigma_n1 ,hvar_n ,aux_var] =

6 rmap_dano1(eps_n ,eps_n1 ,hvar_n ,Eprop ,ce,MDtype ,n,delta_t(iload));

7

8 %Addition of new variables to be plotted
9 vartoplot{i}(4) = aux_var (2); %Tangent constitutive tensor C11

10 vartoplot{i}(5) = aux_var (3); %Algorithmic tangent tensor C11

22

	Introduction
	Rate-independent damage model
	Rate-dependent damage model
	Tension-only and non-symmetric model
	Linear and exponential hardening
	Rate-dependent model

