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Part I- Rate Independent Model

1-a) The supplied MATLAB code has been modified to include the Continuum- Isotropic damage "non-
symmetric tension-compression damage" and the "tension only" damage models. The plots have been
obtained for the following material properties-

Young Modulus, E= 20000 MPa

Yield Stress, oy= 200 MPa

Poisson Ratio, v=0.3

Hardness, H= 0.5

Ratio of compression strength to tension strength, n=3

The following plots were obtained using the above properties-
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Fig-1a: Symmetric model
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Fig-1b: Tension only model
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Fig-1c: Non-symmetric Tension-Compression Damage model

1-b) Linear and exponential models have been implemented for different cases considering
hardening/softening (H>0 and H<0). The codes have been modified accordingly and the plots have been
studied in the next section for various models.

1-c) The following cases have been considered for the analysis of different models-

Case-1

Ac' ;=100 MPa ; Ac® ;=0
Ac';=-500 MPa ; Ac® ;=0
Acl (3) = 900 MPa ; AGZ 3= 0
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Fig-2a: 0, vs o, for Tension only model (H=0.5)
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Fig- 2b: Linear Hardening for Tension only model

Black-crossed line shows uniaxial tensile loading, blue-circled line represents uniaxial tensile
unloading/ compressive loading and the green-starred line represents uniaxial compressive
unloading/tensile loading.

As can be seen from the plot, the loading stresses do not go beyond the yield stress, so the
loading falls in the elastic regime which is reflected in the plot as all the points lie in a straight line with
slope E. The tension only model does not take into account the yield stresses in the compression region
so tensile unloading/ compressive loading is always elastic in this region (third quadrant of Fig- 2a),
which also means that the material can only fail in tension.

We also note that during the next stage of uniaxial loading, as the stresses cross the yield stress
the material undergoes hardening (H=0.5) and the stresses continue to increase with increasing strain.
In case of linear hardening the curve increases in a linear fashion.

Next we take the case of linear softening for non-symmetric tension-compression damage model for the
same values as the earlier model.
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Fig-2c: 0, vs 0, for Non-symmetric tension-compression damage model (H=-0.5)
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Fig- 2d: Linear Softening for Non-symmetric tension-compression model

As in the previous case, the plot is consistent for the first stage of elastic loading and then
tensile unloading/ compressive loading. Next during the subsequent loading we observe that as the
stresses cross the material yield stress, with increasing strain the stresses decrease which is the result of
softening (H<0) and this behavior is as expected.

Case-2

Ac' ;=100 MPa ;Ac® ;=0
Ac';=-300 MPa ; A’ (5 = -300 MPa
Ac' 5;=600 MPa ; Ac® 3= 600 MPa

Linear hardening and softening have been analyzed for this case for various models.
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Fig-3a: 0, vs o, for Tension only model (H=0.5)

Just as in the previous case we observe in the above plot that the initial uniaxial tensile loading
gives an elastic response as the stresses do not cross the yield stress. Also in the case of biaxial tensile
unloading/ compressive loading, the response is still elastic irrespective of the value of the loads as the
tension only model do not account for the yield stresses in the compressive regime. Next during biaxial
loading the domain expands as the stresses cross the yield stress boundary.

This is evident from figure 3b, that as the stresses cross the yield boundary during the last
loading step, the stresses increase with the strain causing a hardening effect on the material and the
internal variable (q) evolves accordingly.
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Fig- 3b: Linear Hardening for Tension only model

Now we consider the case of non-symmetric tension-compression model to represent the case of linear
softening.
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Fig-3c: 0, vs 0, for Non-symmetric tension-compression damage model (H=-0.5)

For this case also we observe that the initial loading and unloading fall within the elastic limits

and hence, we get purely elastic response. However as the stresses exceed the yield limit, the stresses

begin to drop with the evolution of internal variable as the strain increases, as can be seen from the

following stress strain curve highlighting the linear softening for H=-0.5.
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Fig- 3d: Linear Softening for Non-symmetric tension-compression model

Case-3

Ac' ;=100 MPa ; Ac® ;) = 100 MPa

Ac'5=-300 MPa ; Ac” (5 = -300 MPa
Ac' 5;=600 MPa ; Ac® 3= 600 MPa

Exponential hardening and softening have been analyzed for this case for various models.
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Fig-4a: 0, vs 0, for Non-symmetric tension-compression damage model (H=0.5)

Here we analyze exponential hardening for non-symmetric tension-compression model. We can
see from the plot that the biaxial tensile loading falls within the elastic region and therefore exhibits
elastic response, straight line with slope E. The biaxial tensile unloading/ compressive loading also does
not exceed the elastic threshold and therefore shows elastic behavior. However, during the subsequent
stage of biaxial compressive unloading/ tensile loading, hardening effect is observed as the stresses
begin to grow with the increase in strains. This physical significance of this behavior can be interpreted
as the material trying to increase it's yield stress limit to try and account for this hardening effect.
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Fig- 4b: Exponential Softening for Non-symmetric tension-compression model

Now we observe the effect of exponential softening for Tension only model. It behaves in a
similar fashion for the initial biaxial tensile loading and biaxial tensile unloading/compressive loading.
However during the stage of biaxial compressive unloading/tensile loading we find that the stresses
decrease with the increasing strain which results due to the softening property of the material as can be



seen from the figure 4d. However the stresses outside the yield limit follows an exponential profile

because of considering exponential nature of softening.
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Fig-4c: 0, vs 0, for Tension only model (H=-0.5)

The exponential nature of the softening is even more evident from the stress-strain plot given below.
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Fig- 4d: Exponential softening for Tension only model

Part lI- Rate Dependent Model

In this section we consider time as an independent variable which means that the stress tensor

can still change even when the strain tensor remains constant because of its dependence on time.

In the subsequent sections we have

implemented the MATLAB code to account for Rate-

dependent model for plane strain case of isotropic visco-damage "symmetric tension-compression"

model.



2-a) Here we check the correctness of the implementation by considering dependency on various
parameters. We consider an uniaxial loading/unloading and the following parameters for the
subsequent simulations.

Ac' ;=100 MPa ; Ac® ;=0

Ac';)=-200 MPa ; Ac® ;=0

Ac' 5=600 MPa ; Ac® 3=0

Young Modulus, E= 20000 MPa

Yield Stress, oy= 200 MPa

Poisson Ratio, v=0.3

Hardness, H= 0.5

Ratio of compression strength to tension strength, n=3

Case-1: Different viscosity parameters n
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Fig-5a: Dependency of stress-strain curve on the variation of n

For uniaxial loading /unloading cycle, the above plot is obtained. It is evident from the stress-
strain curve that the stresses outside the elastic region increase with the increase in viscosity which is
consistent with the damper model which requires a high value of force for higher values of viscosity.
And in accordance with the theory we find the elastic region remains unaffected by the effects of
viscosity.

Case-2: Different strain rate values

For this case we chose to vary the strain rate by assigning different values of total time to carry
out the simulation and then analyzing the effect on the resulting stress with the variation of time. It is
clear from the figure obtained in 5b, that there is no variation in stress within the elastic limit as was the
observation in the earlier case of variation of viscosity. However we observe that once the stresses cross



the yield stress for the material, it starts deforming non-elastically and the stresses show variation with
strain rates. Higher values of strain rates yield higher values of stresses.

This could probably be attributed to the fact that a slow strain rate or in other words allowing
the strains to slowly increase over time produces a softening effect on the material and as a result the
stresses begin to decrease.
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Fig-5b: Dependency of stress-strain curve on the variation of total time

Case-3: Different a values

The a time integration method gives different numerical methods for different values of a. The
following figure-5c illustrates how the stress-strain relationship varies for different numerical methods
or for different values of a.

It is evident from the plot that stresses obtained are different for different values of a. a=0
a=0.25, a=0.5, 0=0.75 and a=1. These deviations result from the different discretization schemes
employed by these methods. Although explicit schemes have low computational costs but they are not
unconditionally stable which can give rise to unreliable solutions. While all the other methods here are
first order accurate, Crank-Nicholson (a=0.5) has second order accuracy and is unconditionally stable. So
this method for a=0.5 is expected to give most reliable results in most situations compared to the other
methods.
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Fig-5c: Dependency of stress-strain curve on the variation of total time

2-b) Effects of variation of a on the evolution of C;; component of the tangent and
algorithmic constitutive operators

In this section we analyze how the Cy; components vary with the variation of a. The following
values were considered in this analysis-

Ac' ;)=150 MPa ;Ac® ;=0
Ac'i =150 MPa ;Ac’ =0
Ac' 5=150 MPa ;Ac” (3=0
Young Modulus, E= 20000 MPa
Yield Stress, oy= 200 MPa
Poisson Ratio, v=0.8

Hardness, H=- 0.5

Figure 6a shows the variation of C;; tangent component with alpha for the time of simulation.
We can see that it varies with different methods. The plot also highlights the presence of instabilities for
0<0.5 which is to be expected as these methods are explicit and are conditionally stable leading to
fluctuations in the result which is not the case for the implicit methods. We also find that the values of
C,, tangent component is gradually falling with time which can be attributed to the fact that C,,=(1-d)C.
So with the increase in damage, which increases with time, the value of Tangent operator falls.

Similarly, the C;; component of algorithmic operator also follows a gradual fall in its values with
the increase in time just as the case with Tangent operator. This can be clearly seen from figure 6b. We
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also find huge oscillations in the result which is to be expected for a<0.5 as the methods are explicit and
conditionally stable. The solutions are however stable for methods with a>0.5.
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Fig-6a: Variation of C11 tangent Component with o

One interesting aspect to note is that both the curves for tangent operator and algorithmic
operator coincide for a=0 which is in accordance with the theory. This can also be viewed as a
verification for the correctness of the code implemented.
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Part llI- Appendix

APPENDIX I: Changes in codes for tension only damage model(dibujar_criterio_danol.m)

72
73
74
75
76
77
78
79
g0
81
82

8
=}

g4
85
g6
87
a8
g9
90
91
92
93
94
95
96
97
98
99
100
101

elseif MDtype==2 %$Tension only damage model

tetha=[0:0.01:2*%pi];

$* RADIUS

D=size (tetha); £* Range
ml=cos (tetha) £+
m2=sin(tetha) . g
Contador=D(1,2); £=*

radio = zeros(1l,Contador) ;
sl zeros (1,Contador)
s2 zeros (1,Contador) ;

for i=1l:Contador

$Defining the macaulay variables for Sigma (+)
ml plus=ml(i)*(ml(1i)>0);
m2_plus=m2 (1) * (m2 (1)>0);

$Defining Tau(Epsalon) for Tension only model
nu* (ml(i)+m2(1))]"):
radio(i)= q/Tau_eps_plus;
$ Sigma(i)= r(thera)*cos (theta)
$ Sigma(2)= xr({theta)*sin(theta)

sl (i)=radio(i)*mi(1i):
82 (i)=radio(i)*m2 (i):

end
hplot =plot(sl,s2,tipo linea):
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APPENDIX Il: Changes in codes for Non-symmetric Tension-Compression damage
model(dibujar_criterio_danol.m)

106 — elseif MDtype==3 $Non-symmetric Tension-Compression damage model
FOF = tetha=[0:0.01:2*pi];

108 $* RADIUS

109 - D=size (tetha):; $* Range

110 — mi=cos (tetha); £*

R == m2=sin(tetha):; g*

LF2ii= Contador=D(1,2); g*

113

114 - radio = zeros(l,Contador) ;

22 557 sl = zeros (1,Contador) :

116 — s2 = zeros (1,Contador) ;

117

118 — [ for i=1:Contador

119 $Defining the macaulay variables for Sigma(+)

120 - ml plus=ml(i)*(ml(1i)>0);

121 — m2_plus=m2 (i) * (m2(1)>0);

122

123 $Defining theta for Non-symmetric tension-compression model
124 - A= ml plus+m2 plus;

120 = B=abs (ml(i))+abs(m2 (1))

126 — thetaa= A&/B;

127 $Defining Tau(sigma) for Tension only model

128 - Tau sigma= sqgrt((ml(i) m2(i) O nu*(ml(i)+m2(i))]J*ce inv*[ml(i) m2(i) O ...
129 nu* (ml(i)+m2(i))]1"'):

130 — radio(i)= g/ (thetaa+(l-thetaa)/n) *Tau_sigma;

131 $ Sigma(l)= r(thera)*cos(theta)

132 % Sigma(2)= r(theta)*sin(theta)

133

134 - sl (i)=radio(i)*ml (i)

35 e s2 (i)=radio(i)*m2 (i)

14



APPENDIX Ill: Changes in codes for Tension only and Non-Symmetric Tension-Compression damage
models (Modelos_de_danol.m)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

elseif MDtype== $Tension only model

$Defining sigma (plus) and sigma required to find out r(trial)
51 plus=zeros(1,2);
51 = ce*eps_nl';

$Macaulay functions for sigma(plus) matrix

S1_plus(l) = S1(1)*(51(1)>0);
S1_plus(2) = S1(2)*(51(2)>0);

rtrial= sqgrt(S1_plus*eps nl'):;

elseif MDtype==3 $Non-symmetric tension-compression model

end

$Introducing theta for non-symmetric tension-compression model
A=0;
B=0;

$For theta formulation

51 plus=zeros(1,2):

51 = ce*eps_nl';

for i=l:length(S1_plus)
S1 plus(i) = S51(i)*(S1(i)>0),;%macaulay function for sigma (plus)
A=A + 51 plus(i);*Numerator for theta
B B + abs(S1(1i));%Denominator for theta

end

thetaa = A/B;

rtrial= (thetaa+(1—thetaa)/n)*sqrt(eps_nl*ce*eps_nl');
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APPENDIX IV: Changes in codes for including hardening and softening for viscous
models(rmap_danol.m)

&0

el Checking whether the model is viscous or not

62— if viscpr == 0 %variable defined in darr.age_rr.ai:‘;l

€3 — if (rtrial > r n)

64 — fload=1;

(T delta r=rtrial-r n;

66 — r nl= rtrial ;

67 — if hard type == 0 3%Linear Hardening

a8 — g nl= g n+ H*delta r;

69 — elseif hard type == 1 %Exponential Hardenin

70 $Exponential Softening

Y= if H<O

72 £q(infinitcy)

T3 = q_in=r0+(r0-qo0):;

74 — H n = H¥((q_in-r0)/(r_n))*exp (H* (1-(r_nl/r n))):
75 $Exponential Hardening

76 — elseif H>0 %same calculations as above

77 — q_in=r0+(r0-qo0):;

78 — H n = H¥((q_in-r0)/(r_n))*exp (H* (1-(r_nl/r n))):
T = end

80 — g nl= g n+ H n*delta r; %q(n+l) obtained from earlier nth step
g1 — end

82 - if(g_ni<q0)

83 — g _nl=qg0;

84 — end

85 = else

g6 T* Elastic load/unload

87 — fload=0;
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APPENDIX V: Changes in codes for including continuum isotropic visco-damage models for symmetric
model(rmap_danol.m)

94 $For wviscous regime

95 = else

96 — if (rtrialn alpha > r_n)3%Cutside elastic limits
7| = fload=1;

98 = delta r=rtrialn alpha-r n;

99 $Defining the r for (n+l)th step
100 — r nl = (eta - delta_t*(1-ALPHA) )/ (eta + ALPHA*delta_t)*r n + (delta_t/(eta + ALPHA*delta_t))*rtrialn alpha;
0 = if hard type == O%Linear

102 - Hn =H;

103 = q nl= g n+ H n*delta_r;

104 - else if hard type==1 $Exponential
105 — q inf = r0 + (r0-q0):

106 — if H > 0 %Harden

107 - ¢

108 - else

109 -

110 — end

111 $Defin a )

112 - qnl = gn + H n*delta_r;

I3l = end

114 — if (q_nl<q0)

VES! (= q_nl=q0;

116 — end

LT = else

118 $¥* Elastic load/unload

119 = fload=0:

120 - r nil= r n;

2T = q nl= q n;

122 - end

123 = end

17



APPENDIX VI: Changes in codes to determine C;; components of Tangent and Algorithmic Constitutive
Operators(rmap_danol.m)

139

140 $For viscous region, symmetric

141 - if viscpr = 1

142 ~ if rtrialn alpha > r n

143

144 $From the definition of Consistent algorithmic operator for loading
145 - Algorithmic = (1.d0-dano_nl)*ce+( (ALPHA*delta_t)/ (eta+ALPHA*delta_t))*...
146 (1/rtrialn alpha)*((H n*r nl-q nl)/(r_nl"2))*((ce*eps nl')'*(ce*eps nl')); ¥Slide 14, lecture-15
147

148 $Now that we have the algorithmic matrix, we identify the (1,1

149 $element

1501 C algll = Algorithmic(l,1);

151

152 $Computing the tangent operator

15355 Tangent=(1.d0-dano_nl)*ce; %(1-d)*C

154

155 %$(1,1) element for tangent matrix

156 — C_tanll = Tangent(1,1);

157

158 —

159

160 $It lies in the elastic regime

161 — Algorithmic = (1.d0-dano_nl)*ce; 3%(1-d)*C- elastic/unloading

162

163 — C_algll = Algorithmic(l,1);

164 $Tangent matrix

165 - Tangent=(1.d0-dano_nl)*ce; $Same as Algorithmic for this case

166 — C_tanll = Tangent(1,1):;

167 - end|

168 — end
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