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Part I- Rate Independent Model 

1-a) The supplied MATLAB code has been modified to include the Continuum- Isotropic damage "non-
symmetric tension-compression damage" and the "tension only" damage models. The plots have been 
obtained for the following material properties- 

Young Modulus, E= 20000 MPa 
Yield Stress, σy= 200 MPa 
Poisson Ratio, ν= 0.3 
Hardness, H= 0.5 
Ratio of compression strength to tension strength, n=3 
 
The following plots were obtained using the above properties- 
 

 
Fig-1a: Symmetric model 
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Fig-1b: Tension only model 
 

 
Fig-1c: Non-symmetric Tension-Compression Damage model 

 
 

1-b) Linear and exponential models have been implemented for different cases considering 

hardening/softening (H>0 and H<0). The codes have been modified accordingly and the plots have been 

studied in the next section for various models. 

 

1-c) The following cases have been considered for the analysis of different models- 

 

Case-1 

Δσ1 (1) = 100 MPa    ; Δσ2 (1) = 0 

Δσ1
(2) = −500 MPa   ; Δσ2 (2) = 0 

Δσ1 (3) = 900 MPa    ; Δσ2 (3) = 0 

 

 
Fig-2a: σ1 vs σ2 for Tension only model (H=0.5) 
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Fig- 2b: Linear Hardening for Tension only model 

 

 Black-crossed line shows uniaxial tensile loading, blue-circled line represents uniaxial tensile 

unloading/ compressive loading and the green-starred line represents uniaxial compressive 

unloading/tensile loading. 

  

 As can be seen from the plot, the loading stresses do not go beyond the yield stress, so the 

loading falls in the elastic regime which is reflected in the plot as all the points lie in a straight line with 

slope E. The tension only model does not take into account the yield stresses in the compression region 

so tensile unloading/ compressive loading is always elastic in this region (third quadrant of Fig- 2a), 

which also means that the material can only fail in tension. 

 

 We also note that during the next stage of uniaxial loading, as the stresses cross the yield stress 

the material undergoes hardening (H=0.5) and the stresses continue to increase with increasing strain. 

In case of linear hardening the curve increases in a linear fashion. 

 

Next we take the case of linear softening for non-symmetric tension-compression damage model for the 

same values as the earlier model. 

 



4 
 

 
Fig-2c: σ1 vs σ2 for Non-symmetric tension-compression damage model (H=-0.5) 

 

 

Fig- 2d: Linear Softening for Non-symmetric tension-compression model 

 

 As in the previous case, the plot is consistent for the first stage of elastic loading and then 

tensile unloading/ compressive loading. Next during the subsequent loading we observe that as the 

stresses cross the material yield stress, with increasing strain the stresses decrease which is the result of 

softening (H<0) and this behavior is as expected.  

 

Case-2 

Δσ1 (1) = 100 MPa    ; Δσ2 (1) = 0 

Δσ1
(2) = −300 MPa   ; Δσ2 (2) = -300 MPa 

Δσ1 (3) = 600 MPa    ; Δσ2 (3) = 600 MPa 

 

 Linear hardening and softening have been analyzed for this case for various models. 
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Fig-3a: σ1 vs σ2 for Tension only model (H=0.5) 

 

 Just as in the previous case we observe in the above plot that the initial uniaxial tensile loading 

gives an elastic response as the stresses do not cross the yield stress. Also in the case of biaxial tensile 

unloading/ compressive loading, the response is still elastic irrespective of the value of the loads as the 

tension only model do not account for the yield stresses in the compressive regime. Next during biaxial 

loading the domain expands as the stresses cross the yield stress boundary. 

 

 This is evident from figure 3b, that as the stresses cross the yield boundary during the last 

loading step, the stresses increase with the strain causing a hardening effect on the material and the 

internal variable (q) evolves accordingly. 

 

Fig- 3b: Linear Hardening for Tension only model 

 

 

Now we consider the case of non-symmetric tension-compression model to represent the case of linear 

softening.  
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Fig-3c: σ1 vs σ2 for Non-symmetric tension-compression damage model (H=-0.5) 

 

 For this case also we observe that the initial loading and unloading fall within the elastic limits 

and hence, we get purely elastic response. However as the stresses exceed the yield limit, the stresses 

begin to drop with the evolution of internal variable as the strain increases, as can be seen from the 

following stress strain curve highlighting the linear softening for H=-0.5. 

 
Fig- 3d: Linear Softening for Non-symmetric tension-compression model 

 

 

Case-3 

Δσ1 (1) = 100 MPa    ; Δσ2 (1) = 100 MPa 

Δσ1
(2) = −300 MPa   ; Δσ2 (2) = -300 MPa 

Δσ1 (3) = 600 MPa    ; Δσ2 (3) = 600 MPa 
 

Exponential hardening and softening have been analyzed for this case for various models. 
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Fig-4a: σ1 vs σ2 for Non-symmetric tension-compression damage model (H=0.5) 

 

 Here we analyze exponential hardening for non-symmetric tension-compression model. We can 

see from the plot that the biaxial tensile loading falls within the elastic region and therefore exhibits 

elastic response, straight line with slope E. The biaxial tensile unloading/ compressive loading also does 

not exceed the elastic threshold and therefore shows elastic behavior. However, during the subsequent 

stage of biaxial compressive unloading/ tensile loading, hardening effect is observed as the stresses 

begin to grow with the increase in strains. This physical significance of this behavior can be interpreted 

as the material trying to increase it's yield stress limit to try and account for this hardening effect. 

 

 
Fig- 4b: Exponential Softening for Non-symmetric tension-compression model 

 

 Now we observe the effect of exponential softening for Tension only model. It behaves in a 

similar fashion for the initial biaxial tensile loading and biaxial tensile unloading/compressive loading. 

However during the stage of biaxial compressive unloading/tensile loading we find that the stresses 

decrease with the increasing strain which results due to the softening property of the material as can be 
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seen from the figure 4d. However the stresses outside the yield limit follows an exponential profile 

because of considering exponential nature of softening. 

 
Fig-4c: σ1 vs σ2 for Tension only model (H=-0.5) 

 

The exponential nature of the softening is even more evident from the stress-strain plot given below. 

 
Fig- 4d: Exponential softening for Tension only model 

  

Part II- Rate Dependent Model 

 In this section we consider time as an independent variable which means that the stress tensor 

can still change even when the strain tensor remains constant because of its dependence on time. 

 In the subsequent sections we have  implemented the MATLAB code to account for Rate-

dependent model for plane strain case of isotropic visco-damage "symmetric tension-compression" 

model.  
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2-a) Here we check the correctness of the implementation by considering dependency on various 

parameters. We consider an uniaxial loading/unloading and the following parameters for the 

subsequent simulations. 

Δσ1 (1) = 100 MPa    ; Δσ2 (1) = 0 

Δσ1
(2) = −200 MPa   ; Δσ2 (2) = 0 

Δσ1 (3) = 600 MPa    ; Δσ2 (3) = 0 

Young Modulus, E= 20000 MPa 
Yield Stress, σy= 200 MPa 
Poisson Ratio, ν= 0.3 
Hardness, H= 0.5 
Ratio of compression strength to tension strength, n=3 
 
Case-1: Different viscosity parameters η 

 
Fig-5a: Dependency of stress-strain curve on the variation of η 

 

 For uniaxial loading /unloading cycle, the above plot is obtained. It is evident from the stress-

strain curve that the stresses outside the elastic region increase with the increase in viscosity which is 

consistent with the damper model which requires a high value of force for higher values of viscosity. 

And in accordance with the theory we find the elastic region remains unaffected by the effects of 

viscosity. 

 

Case-2: Different strain rate values 

 For this case we chose to vary the strain rate by assigning different values of total time to carry 

out the simulation and then analyzing the effect on the resulting stress with the variation of time. It is 

clear from the figure obtained in 5b, that there is no variation in stress within the elastic limit as was the 

observation in the earlier case of variation of viscosity. However we observe that once the stresses cross 



10 
 

the yield stress for the material, it starts deforming non-elastically and the stresses show variation with 

strain rates. Higher values of strain rates yield higher values of stresses.  

 This could probably be attributed to the fact that a slow strain rate or in other words allowing 

the strains to slowly increase over time produces a softening effect on the material and as a result the 

stresses begin to decrease. 

 
Fig-5b: Dependency of stress-strain curve on the variation of total time 

 

Case-3: Different α values 
 
 The α time integration method gives different numerical methods for different values of α. The 

following figure-5c illustrates how the stress-strain relationship varies for different numerical methods 

or for different values of α.  

 It is evident from the plot that stresses obtained are different for different values of α. α=0 

α=0.25, α=0.5, α=0.75 and α=1. These deviations result from the different discretization schemes 

employed by these methods. Although explicit schemes have low computational costs but they are not 

unconditionally stable which can give rise to unreliable solutions. While all the other methods here are 

first order accurate, Crank-Nicholson (α=0.5) has second order accuracy and is unconditionally stable. So 

this method for α=0.5 is expected to give most reliable results in most situations compared to the other 

methods. 
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Fig-5c: Dependency of stress-strain curve on the variation of total time 

 

 

2-b) Effects of variation of α  on the evolution of C11 component of the tangent and 

algorithmic constitutive operators 

 In this section we analyze how the C11 components vary with the variation of α. The following 

values were considered in this analysis- 

Δσ1 (1) = 150 MPa    ; Δσ2 (1) = 0 

Δσ1
(2) = 150 MPa   ; Δσ2 (2) = 0 

Δσ1 (3) = 150 MPa    ; Δσ2 (3) = 0 

Young Modulus, E= 20000 MPa 

Yield Stress, σy= 200 MPa 

Poisson Ratio, ν= 0.8 

Hardness, H=- 0.5 

 
 Figure 6a shows the variation of C11 tangent component with alpha for the time of simulation. 

We can see that it varies with different methods. The plot also highlights the presence of instabilities for 

α<0.5 which is to be expected as these methods are explicit and are conditionally stable leading to 

fluctuations in the result which is not the case for the implicit methods. We also find that the values of 

C11 tangent component is gradually falling with time which can be attributed to the fact that Ctan=(1-d)C. 

So with the increase in damage, which increases with time, the value of Tangent operator falls. 

 

 Similarly, the C11 component of algorithmic operator also follows a gradual fall in its values with 

the increase in time just as the case with Tangent operator. This can be clearly seen from figure 6b. We 
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also find huge oscillations in the result which is to be expected for α<0.5 as the methods are explicit and 

conditionally stable. The solutions are however stable for methods with α>0.5. 

 
Fig-6a: Variation of C11 tangent Component with α 

 

 One interesting aspect to note is that both the curves for tangent operator and algorithmic 

operator coincide for α=0 which is in accordance with the theory. This can also be viewed as a 

verification for the correctness of the code implemented.  

 

Fig-6b: Variation of C11 Algorithmic Constitutive Operator with α 
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Part III- Appendix 

 

APPENDIX I: Changes in codes for tension only damage model(dibujar_criterio_dano1.m) 
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APPENDIX II: Changes in codes for Non-symmetric Tension-Compression damage 

model(dibujar_criterio_dano1.m) 
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APPENDIX III: Changes in codes for Tension only and Non-Symmetric Tension-Compression damage 

models (Modelos_de_dano1.m) 
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APPENDIX IV: Changes in codes for including hardening and softening for viscous 

models(rmap_dano1.m) 
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APPENDIX V: Changes in codes for including continuum isotropic visco-damage models for symmetric 

model(rmap_dano1.m) 
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APPENDIX VI: Changes in codes to determine C11 components of Tangent and Algorithmic  Constitutive 

Operators(rmap_dano1.m) 

 

 

 


