
 
 
 
 
 
 
 
 
 

COMPUTATIONAL SOLID MECHANICS  
ASSIGNMENT 1 

Constitutive Damage Models  
 
 
 
 
 
 

Author: Cristina García Albela 
MsC in Computational Mechanics



Index 
 

1. Introduction. Isotropic damage model 
2. Rate independent model  

2.1 Introduction to the case 
2.2 Results and conclusions 

1) Only tension model - Uniaxial tensile loading/unloading  
2) Only tension model - Uniaxial tensile loading, biaxial tensile loading/unloading 
3) Only tension model – Biaxial tensile loading/unloading 
4) Non symmetric model - Uniaxial tensile loading/unloading  
5) Non symmetric model - Uniaxial tensile loading, biaxial tensile loading/unloading 
6) Non tension model – Biaxial tensile loading/unloading 

3. Rate dependent model  
3.1 Introduction to the case 
3.2 Results and conclusions 

1) Stress space path – Biaxial tensile loading/unloading 
2) Viscosity effects – Uniaxial tensile loading/unloading  
3) Time effect – Uniaxial tensile loading/unloading  
4) Alpha effects – Constitutive operators 
 

 

 



 

1 

1. Introduction. Isotropic Damage Model 
 

Along the years, Continuum Damage Mechanics has been used to model materials 
characterized by loss of stiffness and also to simulate materials which are characterized by 
having irreversible material degradation. This mentioned degradation of the mechanical 
material properties can be described as processes in which the initiation and propagation of 
micro defects take place. Since the later introduction of effective stress and other successful 
theories, CDM theory has become an important tool to solve different kinds of problems, based 
on irreversible thermodynamic processes. One of the typical examples in which CDM is 
implemented for simulation are materials whose mechanical properties are degrading because 
of small cracks that propagate along the material during loading.  
This kind of materials are going to be studied under different stress conditions and simulated, 
taking into account the isotropic characteristic, meaning that mechanical and thermal properties 
are the same in all directions. 
 
Main variables 
 

Given a material point under a stress state in which micro cracks appear and taking into account 
the force balance on it, the following main variables must be defined in order to work with 
Damage model.  
- Apparent (𝜎) and effective stress (𝜎"). Once a micro crack appears, effective stress can be 

defined as the stress acting on the remaining material section, whereas the apparent stress 
would be the total stress applied by the user.  

-  Damage variable (𝑑). Denoted as the damaged section with respect to the total section. 
Having in mind the constitutive equation for stress in damage model, it is verified that once 
the material has suffered damage, it will be permanent, characterizing an irreversible 
process.  

- Internal variable (𝑟). In its undamaged state the material is characterized by the initial 𝑟%. 
Remark that internal variables are those non-observables by the user.  

- Hardening/Softening variable (𝑞). It is a function of r, considering that the relationship 
between both can be linear or exponential.  

- Stress/Strain tensor energy norm (𝜏(, 𝜏*). They are surface equations that characterize the 
stress state at the current point. Different norms will be defined to describe materials 
different behaviours. Each material starts to fail when the norm exceeds the value. 

 
Continuum damage model algorithm 
 

From a computational point of view continuum damage models are very attractive. They 
present simple algorithms that can be generally summarized in the following steps. 
Having for a time 𝑡 the variables 𝜀-, 𝑟-	and 𝜀-/0 
1) Computation of effective stress (𝜎"-/0) and strain energy norm (𝜏*123) at current time. 

2) Comparison between current strain norm (𝜏*123) and previous internal variable (𝑟-) in 

order to identify the current state. 
3) Compute the current internal variable (𝑟-/0), damage variable (𝑑-/0), stress state (𝜎-/0) 

and tangent/algorithmic constitutive tangent/algorithmic operator (ℂ56-78,-/0, ℂ5679:,-/0	).  
4) Plot the new results.  
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2. Rate independent model 
 

2.1 Introduction to the case  
 

Defining the damage surface as the elastic material limit, the damage criterium for inviscid 
materials required that the current stress state must be always inside or on the damage surface. 
If the stress state is inside the damage surface, the material shows elastic behaviour (elastic 
loading or unloading). On the other hand, if it lies on the surface, inelastic damage state is 
defined with or without evolution of internal variable (pure loading and neutral 
loading/unloading respectably). 
 

Different rate independent, plane strain case models are going to studied and compared, in 
order to understand and check the correct behaviour of each of them.  Starting at point 
(𝜎0, 𝜎<) = (0, 0), each example is going to be defined in terms of its corresponding effective 
stress increments.  
 
Problem data and material properties  

Material properties will be constant along each case @
𝐸 = 20000	𝑁/𝑚<

𝜈 = 0.3
𝜎I = 200	𝑁/𝑚<

 

Initial internal variable 𝑟% =
(J
√L
= 1.414 

Total time & Time steps/load state  𝑡 = 10; 𝑛𝑠𝑡𝑒𝑝𝑠 = 10 
 
2.2 Results and conclusions 

 

1) Only tension model - Uniaxial tensile loading/unloading  
 

Linear hardening variable 𝑞 → 𝐻 = 0.1 
 

Initial stress points, Case 1 V
W𝜎0(0), 𝜎<(0)X = (150, 0) → 	∆𝜎0(0) = 15	;	∆𝜎<(0) = 0	
W𝜎0(<), 𝜎<(<)X = (50, 0) → 	∆𝜎0(<) = −10	;	∆𝜎<(<) = 0
W𝜎0(\), 𝜎<(\)X = (400, 0) → 	∆𝜎0(\) = 35	;	∆𝜎<(\) = 0

 

 

Initial stress points, Case 2 V
W𝜎0(0), 𝜎<(0)X = (250, 0) → 	∆𝜎0(0) = 25	;	∆𝜎<(0) = 0	
W𝜎0(<), 𝜎<(<)X = (50, 0) → 	∆𝜎0(<) = −20	;	∆𝜎<(<) = 0
W𝜎0(\), 𝜎<(\)X = (400, 0) → 	∆𝜎0(\) = 35	;	∆𝜎<(\) = 0

 

Figure 1. Stress space path – Case 1 
Figure 2. Stress space path – Case 2 
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At first look, both stress paths could be thought to be the same. Working with uniaxial tensile 
loading/unloading (just stress in first principal direction) it becomes difficult to appreciate each 
state point. Damage appears in both situations, meaning that at some point the strain norm will 

overcome the initial internal variable 𝑟% =
𝜎I

√𝐸]  . For case 1 𝑟% is not reached until 𝜎(\) is applied, 

whereas for case 2 damage will appear under both stresses 𝜎(0) and 𝜎(\). 
In front such a confused result, a tool to guaranteed, as theory states, that material behaviour is 
not the same will be damage variable/time graphic. For case 1 (Figure 3, black line), damage 

variable remains zero until step 25 whereas at case two (Figure 3, blue line), where 𝜎0(0) > 𝜎I 
a first increment on 𝑑 appears between steps 9 and 10.  

 

2) Only tension model - Uniaxial tensile loading, biaxial tensile loading/unloading  
 

Linear hardening variable 𝑞 → 𝐻 = 0.1 
 

Initial stress points, Case 1 V
W𝜎0(0), 𝜎<(0)X = (250, 0) → 	∆𝜎0(0) = 25	;	∆𝜎<(0) = 0	

W𝜎0(<), 𝜎<(<)X = (−200,−100) →	∆𝜎0(<) = −45	;	∆𝜎<(<) = −10
W𝜎0(\), 𝜎<(\)X = (−100, 300) →	∆𝜎0(\) = 10	;	∆𝜎<(\) = 40

 

 

Initial stress points, Case 2 V
W𝜎0(0), 𝜎<(0)X = (350, 0) → 	∆𝜎0(0) = 35	;	∆𝜎<(0) = 0	

W𝜎0(<), 𝜎<(<)X = (−200,−100) →	∆𝜎0(<) = −55	;	∆𝜎<(<) = −10
W𝜎0(\), 𝜎<(\)X = (−100, 300) →	∆𝜎0(\) = 10	;	∆𝜎<(\) = 40

 

 
Here two similar loading paths, whose only difference appears in 𝜎(0) value, are compared in order 
to better understand the fact that once damage appears in the material it is permanent and affects 
the following steps. 

Figure 3. Damage variable vs Time graphic - Case 1  

Figure 4. Stresses space path – Case 1 
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In both cases under 𝜎(0) uniaxial tensile loading		W𝜎1(1) > 𝜎𝑢X, the initial damage surface evolves 
(Figure 4, stress space path for Case 1 represented). Then, looking to 𝑟 evolution (Figure 5) it 

is found that identical following  𝜎(<)	and 𝜎(\) stresses do not produce the same effects on the 
material.  

The highest 𝜎0(0) value at Case 2, affects to 𝑟, 𝑑 and 𝜎 along the iterative process obtaining a 
larger damage surface at step 11. Once 𝜎(\) is applied the strain norm never reaches the 𝑟00	value, 
remaining it constant until the end. At Case 1, damage appears at final time steps under the 
same applied 𝜎(\) stress, due to the lower 𝜎(0) and 𝑟00 values, so the strain norm reaches the 
internal variable once again.  

 
3) Only tension model – Biaxial tensile loading/unloading 
 

Case 1 - Linear hardening variable 𝑞 → 𝐻 = 0.1 
Case 2 – Exponential hardening variable 𝑞	 → 	𝑞`8a = 𝑟% + (𝑟% − 𝑞cdefg)	; 		𝐴 = 1  
 

Initial stress points V
W𝜎0(0), 𝜎<(0)X = (150, 150) →	∆𝜎0(0) = 15	;	∆𝜎<(0) = 15
W𝜎0(<), 𝜎<(<)X = (100, 50) → 	∆𝜎0(<) = −5	;	∆𝜎<(<) = −10
W𝜎0(\), 𝜎<(\)X = (350, 100) →	∆𝜎0(\) = 25;	∆𝜎<(\) = 5

 

 

For same initial stress paths, exponential and linear hardening variable results are obtained.  
Obtaining stress space path (Figure 6) without the stress point evolution, the larger step increase 
on damage surface stands out compared with linear hardening case. Under inelastic loading, 
for 𝑞 exponential relationship, 𝑑∆-/0 decreases and 𝜎∆-/0 increases compared with the linear 
case, affecting next strain norm and so that next internal variable value.  
 

Figure 5. Internal variable evolution – Case 1 (black) and Case 2 (blue) 

Figure 6. Stress space path – Linear q (blue) vs Exponential q (green) 
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The stress evolution plot for linear (black) and exponential (blue) cases, proved that he differences 
between the models just appear when inelastic loading starts, introducing the different formulation 
of 𝑞 that affect next variables values under the iterative process.  

 
4) Non symmetric model - Uniaxial tensile loading/unloading  

 

Ratio tension strength 𝑛 = 3 
Case 1 - Linear hardening variable 𝑞 → 𝐻 = 0.1 
Case 2 – Linear softening variable 𝑞 → 𝐻 = −0.1 
 

Initial stress points V
W𝜎0(0), 𝜎<(0)X = (150, 0) → 	∆𝜎0(0) = 15	;	∆𝜎<(0) = 0	
W𝜎0(<), 𝜎<(<)X = (100, 0) → 	∆𝜎0(<) = −5	;	∆𝜎<(<) = 0
W𝜎0(\), 𝜎<(\)X = (350, 0) → 	∆𝜎0(\) = 25	;	∆𝜎<(\) = 0

 

 
Until now just hardening behaviour has been studied. Once the strain norm reached r value 
the current damage surface evolved to a larger one, due to hardening condition.  Now, for non-
symmetric material model, linear hardening and softening will be implement under uniaxial 
tensile loading/unloading.  

 

Looking to the hole damage surface (Figure 8) and putting emphasis in the surface evolution, 
hardening and softening model can be easily differentiated. Softening modulus (𝐻 < 0) results 
in a compression of damage surface and the consequent decreasing stress results (Figure 9). 

Once damage appears, the ∆𝜎 turns negative as  𝑞∆-/0 𝑟∆-/0]  relationship gets smaller and 𝑑 

increases compared with the hardening case at same time step.  

Figure 8. Stress space path – Linear hardening (blue) and linear softening (green) 

Figure 7. Stress norm evolution – Linear (black) and exponential (blue) hardening variable  
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Verifying hardening vs softening for the same |𝐻| modulus, 𝑞 behaviour is completely symmetric 
with respect to the horizontal line  𝑞 = 𝑞% (Figure 10) as expected, being 𝐻 the lines slope.  

 
5) Non symmetric model - Uniaxial tensile loading, biaxial tensile loading/unloading  

 

Case 1 – Ratio compression strength 𝑛 = 3 
Case 2 – Ratio compression strength 𝑛 = 2 
Linear hardening variable 𝑞 → 𝐻 = 0.1 
 

Initial stress points V
W𝜎0(0), 𝜎<(0)X = (150, 0) → 	∆𝜎0(0) = 15	;	∆𝜎<(0) = 0	

W𝜎0(<), 𝜎<(<)X = (−800,−600) →	∆𝜎0(<) = −95	;	∆𝜎<(<) = −60
W𝜎0(\), 𝜎<(\)X = (0, 0) → 	∆𝜎0(\) = 80	;	∆𝜎<(\) = 60

 

 
Work with non – symmetric damage model is useful for simulating materials whose tension 
domain differs with respect to compression. Two different 𝑛 are implemented under a larger 
𝜎(<) stress, in order to better understand how this parameter affects.  
Having the same tension domain, failure by compression appears on Case 2 (Figure 12), while at Case 1 
(Figure 11) damage surface remains constant, conserving the material its initial state working just under 
elastic conditions (loading/unloading) during the test. This leads us to see, the importance of understand 

Figure 9. Stress norm evolution – Hardening (blue) and softening (green) models.  

Figure 10. Hardening (blue) and softening (green) linear variable  
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correctly the material response under any condition before use it, since two materials with equal 
behaviour at tension region could be completely different under compression regime. 

 
6) Non tension model – Biaxial tensile loading/unloading 
 

Ratio tension strength 𝑛 = 2 
Case 1 - Exponential hardening variable 𝑞	 → 	𝑞`8a = 𝑟% + (𝑟% − 𝑞cdefg)	; 		𝐴 = 1	 
Case 2 – Exponential softening variable 𝑞	 → 	𝑞`8a = 𝑞cdefg	; 		𝐴 = 1  
 

Initial stress points V
W𝜎0(0), 𝜎<(0)X = (150, 100) →	∆𝜎0(0) = 15	;	∆𝜎<(0) = 0	

W𝜎0(<), 𝜎<(<)X = (−800,−600) →	∆𝜎0(<) = −95	;	∆𝜎<(<) = −60
W𝜎0(\), 𝜎<(\)X = (0, 0) → 	∆𝜎0(\) = 80	;	∆𝜎<(\) = 60

 

 
For the last case of independent rate models, the effects of exponential hardening vs exponential 
softening will be compared. With a similar stress path as previous example, it is easier to check as 
in Example 3, that under inelastic loading the exponential 𝑞 expands or compress much more the 
surface at each step (Figure 13).  Once again,  𝑞	vs 𝑡 plot is symmetric with respect to the horizontal 
line 𝑞 = 𝑟%,	 being the slop 𝐻 no longer a constant, since it depens on 𝑞 value at each iteration 
(Figure 14).  

Figure 11. Stress space path – Case 1, n=3 

Figure 12. Stress space path – Case 2, n=2 
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3. Rate dependent model  
 

3.1 Introduction to the case  
 

The rate dependent model is derived from the rate independent simply by introducing some 
changes in the damage evolution equation. Working with the alpha method, at the interval 
[𝑡8/0, 𝑡8] the strain norm will be identified at 𝑡8/p and compared with the previous 𝑟8 to 
decide which is the current state. Finally,  𝑟8/0	is computed applying the appropriated new rate 
dependent formulation. To choose 𝛼 value, pros and cons should be taken into account. 
Being time 𝑡 an independent variable and not just a parameter (rate independent formulation), 
two main differences will be found between the rate dependent and independent models: stress 
points can be outside the elastic domain and having a constant strain along the time the does 
not mean that stress is constant too.  
 

Different rate dependent, plane strain case models are going to studied and compared, in order 
to understand and check their correctly behaviour.  Starting at point (𝜎0, 𝜎<) = (0, 0), each 
example is going to be defined in terms of its corresponding effective stress increments.  
 
 
 
 

Figure 13. Stress space path – Hardening variable case (blue) vs Softening variable case (green) 

Figure 14. Hardening (blue) vs Softening (green) variable evolution  
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Problem data and material properties  

Material properties will be constant along each case @
𝐸 = 20000	𝑁/𝑚<

𝜈 = 0.3
𝜎I = 200	𝑁/𝑚<

 

Initial internal variable 𝑟% =
(J
√L
= 1.414 

Total time & Time steps/load state  𝑡 = 10; 𝑛𝑠𝑡𝑒𝑝𝑠 = 10 
Symmetric model  

 
3.2 Results and conclusions 

 

1) Stress space path – Biaxial tensile loading/unloading 
 

Linear hardening variable, Case 1 𝑞 → 𝐻 = 0.1 
Linear softening variable, Case 1 𝑞 → 𝐻 = −0.1 
Viscosity 	𝜂 = 0.5 
Alpha coefficient 𝛼 = 0.5 
 

Initial stress points V
W𝜎0(0), 𝜎<(0)X = (150, 100) →	∆𝜎0(0) = 15	;	∆𝜎<(0) = 10	
W𝜎0(<), 𝜎<(<)X = (400, 0) → 	∆𝜎0(<) = 25	;	∆𝜎<(<) = −10
W𝜎0(\), 𝜎<(\)X = (0, 0) → 	∆𝜎0(\) = −40	;	∆𝜎<(\) = 0

 

 

The possibility to have stress state points outside the damage surface is one of the main 
differences that viscosity introduces to the model. Now obtaining a  𝜏*s23 > 𝑟8 will no longer 

mean 𝑟8/0 = 𝜏*s23.  

Figure 15. Stress space path – Case 1, hardening q 

Figure 16. Stress space path – Case 2, softening q 
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Figures 15 and 16 show how phenomenon for hardening and softening variable respectively. 
Like in independent rate, the effect of the positive/negative H modulus is clearly verified at 
stress/strain plot (Figure 17). Once damage appears, the same strain corresponds to a lower 
stress in softening behaviour. Look that as the stress goes back to zero the strain also does, since 
an elastic material formulation is applied.  

 
2) Viscosity effects – Uniaxial tensile loading/unloading  

 

Linear hardening variable 𝑞 → 𝐻 = 0.1 
Alpha coefficient 𝛼 = 0.5 
Viscosity →	𝜂0 = 0.3	(𝑔𝑟𝑒𝑒𝑛);	𝜂< = 0.6	(𝑟𝑒𝑑);	𝜂\ = 0.9	(𝑏𝑙𝑢𝑒)	 
 

Initial stress points V
W𝜎0(0), 𝜎<(0)X = (150, 0) → 	∆𝜎0(0) = 15	;	∆𝜎<(0) = 0	
W𝜎0(<), 𝜎<(<)X = (300, 0) → 	∆𝜎0(<) = 15	;	∆𝜎<(<) = 0
W𝜎0(\), 𝜎<(\)X = (200, 0) → 	∆𝜎0(\) = −10	;	∆𝜎<(\) = 0

 

 

Under uniaxial tensile loading/unloading path, the effect of viscosity is studied. Before looking 
the results, it is worth noting that they will be exactly the same until 𝑟% is reached, as in the 
independent rate model. Once 𝜏*s23 > 𝑟%, the new variables as viscosity or alpha come into 

play along inelastic loading state.  

 
The figure above shows the principal stress vs principal strain results for different viscosities. Until the 

initial damage surface is reached (𝜎(<) stress), stress/strain points have the same values for all the cases. 
Then, high stress for same strain is obtained as viscosity grows (See Figure 19 for more detail). 

Figure 18. Principal Stress vs Principal strain plot for different viscosities  

Figure 17. Principal stress vs principal strain – Case 1 (blue), Case 2 (red) 

__ 𝜂 = 0.3 
__	𝜂 = 0.6 
__	𝜂 = 0.9 
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Knowing the dependency between parameters  𝑞, 𝑟, 𝑑 and 𝜎 under rate dependent conditions, for a 
same alpha and time step, as viscosity increases the relationship 𝑞/𝑟 decreases obtaining higher values 
of 𝑑 (Figure 20). Then, the current stress state will be smaller.  

 
3) Time effect – Uniaxial tensile loading/unloading  

 

Linear hardening variable 𝑞 → 𝐻 = 0.1 
Alpha coefficient 𝛼 = 0.5 
Viscosity 	𝜂 = 0.5 
Total time →	𝑡0 = 10	(𝑔𝑟𝑒𝑒𝑛);	𝑡< = 5	(𝑟𝑒𝑑);	𝑡\ = 1	(𝑏𝑙𝑢𝑒)	 
 

Initial stress points V
W𝜎0(0), 𝜎<(0)X = (150, 0) → 	∆𝜎0(0) = 15	;	∆𝜎<(0) = 0	
W𝜎0(<), 𝜎<(<)X = (300, 0) → 	∆𝜎0(<) = 15	;	∆𝜎<(<) = 0
W𝜎0(\), 𝜎<(\)X = (200, 0) → 	∆𝜎0(\) = −10	;	∆𝜎<(\) = 0

 

 

Fixing now the viscosity total time will change now, affecting directly to strain rate 𝜀 ̇ and, 
consequently, to the stress/strain relationship. The results (Figure 21) reveal that material 
stress/strain relationship shows the same behaviour under 𝜀̇ variation as viscosity variation as 
expected. 
A shorter time (higher 𝜀)̇ means that the same stress has to be applied more abruptly over the 
material. Achieving same principal strain values regardless time, once again the difference 
appears around the stress field. As higher the 𝜀̇, higher the principal stress for a same strain. 
Moreover, that difference is more pronounced as shorter the time.  

Figure 20. Damage variable evolution for each viscosity case  

__ 𝜂 = 0.3 
__	𝜂 = 0.6 
__	𝜂 = 0.9 

Figure 19.. Principal Stress vs Principal strain plot for different viscosities (DETAIL) 

__ 𝜂 = 0.3 
__	𝜂 = 0.6 
__	𝜂 = 0.9 
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4) Alpha effects – Constitutive operators 
 

Linear hardening variable 𝑞 → 𝐻 = 0.1 
Alpha coefficient 𝛼 = 0 − 0.25 − 0.5 − 0.75 − 1 
Viscosity 	𝜂 = 0.5 
Total time 𝑡 = 10	𝑠 
 

Initial stress points V
W𝜎0(0), 𝜎<(0)X = (150, 0) → 	∆𝜎0(0) = 15	;	∆𝜎<(0) = 0	
W𝜎0(<), 𝜎<(<)X = (300, 0) → 	∆𝜎0(<) = 15	;	∆𝜎<(<) = 0
W𝜎0(\), 𝜎<(\)X = (200, 0) → 	∆𝜎0(\) = −10	;	∆𝜎<(\) = 0

 

 
Keeping in mind the algorithmic and analytical tangent operators’ definitions, following results are 
obtained working from different alpha parameters. Further attention will be in analyse the effect 
that alpha has over both operators, taking as reference 𝐶00 element.  

Starting with the tangent operator, only under inelastic loading differences between the 5 
problems appears. Same values are obtained until damage stars (step 15), having impact on 𝑑, 
and hence, over ℂ-78 too.  
𝐶00 values decrease (Figure 22), getting larger initial values to lower 𝛼, This trend change as the 
applied stress goes higher, and, since unloading starts (Figure 23) 𝐶00 remains constant again 
but, affected by the previous generated damage. 
 
 

Figure 22. Tangent operator evolution - Inelastic loading region 

__  𝛼 = 0 
__ 𝛼 = 0.25 
__	𝛼 = 0.5 
__	𝛼 = 0.75 
__	𝛼 = 1 
 

Figure 21. Principal Stress vs Principal strain plot for different strain rates 

__ 𝑡 = 10 
__	𝑡 = 5 
__	𝑡 = 1 
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Looking algorithmic operator results (Figure 24), once again damage introduces alpha effects. 
Same evolution tendency is obtained being smaller the values and clearer the 𝐶00differences. 
Finally, after step 23 same results as in Figure 23 are obtained, verifying that 𝐶-78,00 = 𝐶79:,00 

unless under inelastic loading state.  
 

 

As final comment remarks the fact that for 𝛼 = 0 the same plots are obtained for tangent and 
algorithmic operators. Dividing ℂ79:	equation as the sum of ℂ-78	and a function of alpha 𝑓	that 

depends directly on alpha, this case computation will be reduced to ℂ79: = ℂ-78 (Figure 25). 

Figure 23. Tangent operator evolution – Unloading reagion 

__  𝛼 = 0 
__ 𝛼 = 0.25 
__	𝛼 = 0.5 
__	𝛼 = 0.75 
__	𝛼 = 1 
 

Figure 24. Algorithmic operator evolution – Inelastic loading and unloading regions 

__  𝛼 = 0 
__ 𝛼 = 0.25 
__	𝛼 = 0.5 
__	𝛼 = 0.75 
__	𝛼 = 1 
 

Figure 25. Ctan vs Calg for 𝛼 = 0 
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APPENDIX  
Listing of modified routines 

 
A.1 Function “dibujar_criterio_dano1.m” 
 
function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n) 
 
%*        Inverse ce                                                                
%* 
ce_inv=inv(ce); 
c11=ce_inv(1,1); 
c22=ce_inv(2,2); 
c12=ce_inv(1,2); 
c21=c12; 
c14=ce_inv(1,4); 
c24=ce_inv(2,4); 
rat = n; 
cont = 1; 
cont2 = 1; 
 
% POLAR COORDINATES 
%SYMMETRIC CASE 
  
if MDtype==1 
    tetha=[0:0.01:2*pi]; 
    
%*********************************************************************
***************** 
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 
     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 
     
    for i=1:Contador 
        radio(i)= q/sqrt([m1(i) m2(i) 0 
nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ... 
            nu*(m1(i)+m2(i))]'); 
         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);   
    end 
    
    hplot =plot(s1,s2,tipo_linea); 
    
  
% ONLY TENSION CASE 
  
elseif MDtype==2  
     
    tetha=[0:0.01:2*pi]; 
     
    %* RADIUS 
    D=size(tetha);                       %*  Range 
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    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 
     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 
     
    for i=1:Contador 
         
        %Define positive stress vector  
        s_pos = [max(m1(i),0) max(m2(i),0) 0 max(nu*(m1(i)+m2(i)),0)]; 
         
        radio(i)= q/sqrt(s_pos*ce_inv*[m1(i) m2(i) 0 ... 
            nu*(m1(i)+m2(i))]'); 
        
         s1(i)=radio(i)*m1(i); 
         s2(i)=radio(i)*m2(i);             
    end 
     
    hplot =plot(s1,s2,tipo_linea); 
  
 
%NON-SYMMETRIC CASE 
  
elseif MDtype==3 
     
    tetha=[0:0.01:2*pi]; 
     
    %* RADIUS 
    D=size(tetha);                       %*  Range 
    m1=cos(tetha);                       %* 
    m2=sin(tetha);                       %* 
    Contador=D(1,2);                     %* 
     
    radio = zeros(1,Contador) ; 
    s1    = zeros(1,Contador) ; 
    s2    = zeros(1,Contador) ; 
     
    for i=1:Contador 
         
        %Compute tetha as function of stresses 
        s_pos = sum([max(m1(i),0) max(m2(i),0) 0 
max(nu*(m1(i)+m2(i)),0)]); 
        s_abs = sum(abs([m1(i) m2(i) 0 nu*(m1(i)+m2(i))])); 
        tta = s_pos/s_abs; 
         
        radio(i)= q/((tta+(1-tta)/n)*sqrt([m1(i) m2(i) 0 
nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ... 
            nu*(m1(i)+m2(i))]')); 
         
        s1(i)=radio(i)*m1(i); 
        s2(i)=radio(i)*m2(i);   
    end 
   
    hplot =plot(s1,s2,tipo_linea); 
     
end 
return
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A.2 Function “damage_main.m” 
 
function[sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]= 
damage_main(Eprop,ntype,istep,strain,MDtype,n,TimeTotal,ce) 
global hplotSURF  
 
% SET LABEL OF "vartoplot" variables  (it may be defined also outside 
this function) 
% ---------------------------------- 
 LABELPLOT = {'hardening variable (q)','internal variable'}; 
  
E      = Eprop(1) ; nu = Eprop(2) ;  
viscpr = Eprop(6) ; 
sigma_u = Eprop(4); 
eta = Eprop(7); 
ALPHA_COEFF = Eprop(8); 
 
if ntype == 1 
    menu('PLANE STRESS has not been implemented yet','STOP'); 
    error('OPTION NOT AVAILABLE') 
elseif ntype == 3 
    menu('3-DIMENSIONAL PROBLEM has not been implemented yet','STOP'); 
    error('OPTION NOT AVAILABLE') 
else 
    mstrain = 4    ; 
    mhist   = 6    ; 
end 
  
totalstep = sum(istep) ; 
  
% INITIALIZING GLOBAL CELL ARRAYS 
% ------------------------------- 
sigma_v = cell(totalstep+1,1) ; 
TIMEVECTOR = zeros(totalstep+1,1) ; 
delta_t = TimeTotal./istep/length(istep) ; 
  
% Elastic constitutive tensor 
% ---------------------------- 
[ce]    = tensor_elastico1 (Eprop, ntype); 
% Initz. 
% ----- 
% Strain vector 
% ------------- 
eps_n1  = zeros(mstrain,1); 
hvar_n  = zeros(mhist,1)  ; 
  
% INITIALIZING  (i = 1) !!!! 
% ***********i* 
i = 1 ; 
r0 = sigma_u/sqrt(E); 
hvar_n(5) = r0; % r_n  
hvar_n(6) = r0; % q_n  
eps_n1 = strain(i,:) ; 
sigma_n1 =ce*eps_n1'; % Elastic  
sigma_v{i} = [sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 
0  sigma_n1(4)];  
 
nplot = 5 ;  
vartoplot = cell(1,totalstep+1) ;  
vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
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vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 
vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 
 
for  iload = 1:length(istep) 
    % Load states 
    for iloc = 1:istep(iload) 
        i = i + 1 ; 
        TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ; 
        % Total strain at step "i" 
        % ------------------------ 
         
        eps_n = eps_n1; %Strain step n (needed for viscous case) 
         
        eps_n1 = strain(i,:) ; %strain step n+1 
        
%*********************************************************************
***************** 
        %*      DAMAGE MODEL 
        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
        [sigma_n1,hvar_n,aux_var,C_tan,C_alg] = 
rmap_dano1(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,viscpr,delta_t); 
        % PLOTTING DAMAGE SURFACE 
        if(aux_var(1)>0) 
            hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 
'r:',MDtype,n ); 
            set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1)                         
; 
        end 
        C11tan = C_tan(1,1); 
        C11alg = C_alg(1,1); 
        vartoplot{i}(4) = C11tan; %C11 tangent constitutive tensor 
        vartoplot{i}(5) = C11alg; %C11 algorith constitutive tensor 
        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
        
%*********************************************************************
* 
        % GLOBAL VARIABLES 
        % *************** 
        % Stress 
        % ------ 
        m_sigma=[sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 
; 0 0  sigma_n1(4)]; 
        sigma_v{i} =  m_sigma ; 
  
        % VARIABLES TO PLOT (set label on cell array LABELPLOT) 
        % ---------------- 
        vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 
        vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r)         
        vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable 
(d) 
    end 
end 
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A.3 Function “rmap_dano1.m” 
 
function [sigma_n1,hvar_n1,aux_var,C_tan,C_alg] = rmap_dano1 
(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,viscpr,delta_t) 
 
hvar_n1 = hvar_n; 
r_n     = hvar_n(5); 
q_n     = hvar_n(6); 
E       = Eprop(1); 
nu      = Eprop(2); 
H       = Eprop(3); 
sigma_u = Eprop(4); 
hard_type = Eprop(5) ; 
eta = Eprop(7); 
ALPHA_COEFF = Eprop(8); 
%*********************************************************************
**************** 
  
%*       initializing                                                
%* 
 r0 = sigma_u/sqrt(E); 
 zero_q=1.d-6*r0; 
  
 A = 1; %For exponential hard_case 
  
% if(r_n<=0.d0) 
%     r_n=r0; 
%     q_n=r0; 
% end 
%*********************************************************************
**************** 
 
%*       Damage surface   %* 
if viscpr == 0 
[rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n); 
elseif viscpr ==1  
    rtrial_n = sqrt(eps_n*ce*eps_n');  
    rtrial_n1 = sqrt(eps_n1*ce*eps_n1'); 
    rtrial = (1 - ALPHA_COEFF)*rtrial_n + ALPHA_COEFF*rtrial_n1; 
end 
 
%*********************************************************************
**************** 
%*   Ver el Estado de Carga                                                           
%* 
%*   --------->    fload=0 : elastic unload                                           
%* 
%*   --------->    fload=1 : damage (compute algorithmic constitutive 
tensor)         %* 
fload=0; 
  
if(rtrial > r_n) % INELASTIC LOADING 
     
    %FOR VISCOUS CASE 
    if viscpr ==1 
        fload=1; 
       
        r_n1 = ((eta - delta_t*(1-ALPHA_COEFF))/(eta + 
ALPHA_COEFF*delta_t))*r_n + ... 
            (delta_t/(eta+ALPHA_COEFF*delta_t))*rtrial; 
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        delta_r=r_n1-r_n; 
         
    %FOR NON VISCOUS CASE 
    elseif viscpr == 0 
       fload=1; 
       delta_r=rtrial-r_n; 
       r_n1= rtrial  ; 
    end 
     
    if hard_type == 0 
        %  Linear 
        q_n1= q_n+ H*delta_r; 
    else 
      %Exponential  
      if H > 0 
          q_inf = r0 + (r0 - zero_q); %Limit 
      else 
          q_inf = zero_q; %Limit 
      end 
      q_n1 = q_inf - (q_inf - q_n)*exp(A*(1-r_n1/r_n)); 
    end 
     
   %Limit to the hardening variable. It can be lower than that.  
    if(q_n1<zero_q) 
        q_n1=zero_q; 
    end 
  
else 
  
    %*     Elastic load/unload 
    fload=0; 
    r_n1= r_n  ; 
    q_n1= q_n  ; 
  
end 
% Damage variable 
% --------------- 
dano_n1   = 1.d0-(q_n1/r_n1); 
%  Computing stress 
%  **************** 
sigma_n1  =(1.d0-dano_n1)*ce*eps_n1'; 
sigma_ef = ce*eps_n1'; 
%hold on  
%plot(sigma_n1(1),sigma_n1(2),'bx') 
  
%*********************************************************************
**************** 
%CONSTITUTIVE OPERATORS 
  
if viscpr ==1 
         
    if (rtrial > r_n) 
      C_tan = (1-dano_n1)*ce; 
      C_alg = (C_tan) + 
(((ALPHA_COEFF*delta_t)/(eta+ALPHA_COEFF*delta_t))*(inv(rtrial_n1))*..
. 
      (H*r_n1-q_n1)/(r_n1)^2)*(sigma_ef*sigma_ef');  
    else 
      C_tan = (1-dano_n1)*ce 
      C_alg = C_tan; 
end 



 

7 

else  
    if (rtrial > r_n) 
       C_tan = (1-dano_n1)*ce 
       C_alg = C_tan-(q_n1-H*r_n1)/r_n1^3*(sigma_ef*sigma_ef'); 
    else 
       C_tan = (1-dano_n1)*ce  
    end 
end 
%*********************************************************************
**************** 
%* Updating historic variables                                            
%* 
%  hvar_n1(1:4)  = eps_n1p; 
hvar_n1(5)= r_n1 ; 
hvar_n1(6)= q_n1 ; 
%*********************************************************************
**************** 
%* Auxiliar variables                                                               
%* 
aux_var(1) = fload; 
aux_var(2) = q_n1/r_n1; 
%*aux_var(3) = (q_n1-H*r_n1)/r_n1^3; 
%*********************************************************************
**************** 
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A.3 Function “Modelos_de_dano1.m” 
 
function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n) 
 
%************************************************************************
************** 
if (MDtype==1)      %* Symmetric 
rtrial= sqrt(eps_n1*ce*eps_n1');               
  
elseif (MDtype==2)  %* Only tension  
  
s_n1 = ce*eps_n1'; 
s_n1p = [max(s_n1(1),0) max(s_n1(2),0) max(s_n1(3),0) max(s_n1(4),0)]; 
rtrial =sqrt(eps_n1*s_n1p'); 
     
elseif (MDtype==3)  %*Non-symmetric 
  
s_n1 = ce*eps_n1'; 
s_n1abs = abs(s_n1); 
s_n1p = [max(s_n1(1),0) max(s_n1(2),0) max(s_n1(3),0) max(s_n1(4),0)]; 
  
tta = (sum(s_n1p))/(sum(s_n1abs)); 
  
rtrial= (tta + (1 - tta)/n) * sqrt(eps_n1*ce*eps_n1');  
end 
%************************************************************************
************** 
return 
 
 
 


