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Introduction:

Continuum Damage Mechanics is used to model material which are characterized by loss of
stiffness. It proposes the continuum mechanics theory to identify or represent defects at microscopic
level.

Solution:

A) Rate Independent Model

1. The Continuum Isotropic Damage Models:
a) Non-symmetric Damage Model -

In this damage model (Granular materials), tensile and compressive elastic limits are
different. For this model, algorithm is defined, for the ratio of uniaxial elastic limit compression
to tensile strength. Figure 1, justifies that the elastic limit of the elastic domain is different for
tensile and compression.
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Fig 1: Damage Surface for Non-Symmetric Damage Model

b) Tensile Damage Model-

This damage model fails only to tension. Compressive can’t be reached as it is infinity
because when principal stresses are negative elastic limit is beyond imagination. For this model,
algorithm is defined and Figure 2, justifies that when all the principal stresses are positive.
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Fig: Damage Surface for Tensile Damage Model



2. Exponential Hardening/Softening -
An exponential hardening/softening model has been implemented choosing
qoo=10—6*r0. It can never be negative. It is implemented, when r—oo, q—goo. In the case of
hardening the goo> r0, and for the case of softening goo< 0.

hardening v ariable (q)

internal variable (7)

Fig 3: Variation between Internal Variable & Hardening Variable

3. Implementing the models.
Casel. (AcT (1) =a,Ac2=0),(AcI (1) =—B,A0Z=0),(AcT (1) =y,AcZ=0)
1.1 Non-Symmetric Damage Model:

(AcT (1) =400,A0Z=0), (AcT (1) =—1200,A0Z=0), (AcT (1) =300,A0Z = 0)

Initially, the effective and actual stresses are same till it reaches elastic domain. The
uniaxial elastic tensile load occurs; the actual stress path becomes straight line till it reaches
origin. Fig 4 shows evolution of damage surface and physical occurrence of loading &
unloading.
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Fig 4: Stress Space & Stress-Strain Curve for the Non-Symmetric model



1.2 Tensile only Damage Model
(AoT (1) =400,A0Z =0), (AcT (1) =—1200,A02Z = 0), (AcT (1) =300,AcZ = 0)

Initially, the effective and actual stresses are same till it reaches elastic domain. The elastic
limit in the compression can’t be reached. The uniaxial elastic tensile load occurs; the actual stress

path becomes straight line till it reaches origin. Fig 5 shows evolution of damage surface and physical
occurrence of loading & unloading.
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Fig 5: Stress Space & Stress-Strain Curve for the Tensile Damage model

Case2. (AcT (1) =a,A02=0),(AcT(1)=—B,AcZ=—L),(AcT (1) =y,AcZ =)

2.1 Non-Symmetric Damage Model
(AcT (1) = 150, A0Z = 0), (AcT (1) = —1200, AcZ = —1200), (AcT (1) =700, AcZ = 700)

Initially, the effective and actual stresses are same till it reaches elastic domain for uniaxial.
When the stress path leaves the elastic domain for tension, loading appears (d>0). After that when
biaxial tensile unloading/compressive loading occurs. After which, when the stress path leaves the

elastic limit of compression, loading occurs. Fig 6 shows evolution of damage surface and physical
occurrence of loading & unloading.
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Fig 6: Stress Space & Stress-Strain Curve for the Non Symmetric model

2.2 Tensile only Damage Model
(AcT (1) =200,A0Z=0), (AcT (1) =—1700,AcZ = —1700), (AcT (1) =300, AcZ = 300)

Initially, the effective and actual stresses are same till it reaches elastic domain for uniaxial. In
this biaxial tensile unloading/ compressive loading occurs but compressive never occurs. Fig 7. shows
evolution of damage surface and physical occurrence of loading & unloading.
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Fig 7: Stress Space & Stress-Strain Curve for the Tensile Damage model




Case3. (AcT (1) =a,AcZ=a), (AcT (1) =—B,AcZ=—L), (AcT (1) =y,AcZ =)

3.1 Non-Symmetric Damage Model:
(AoT (1) =1200,A0Z=1200), (AcT (1) = —1800, AcZ = —1800), (AcT (1) =600, AcZ = 600)

Initially, the effective and actual stresses are same till it reaches elastic domain for biaxial. In
this biaxial tensile unloading/ compressive loading occurs. Fig 8. shows evolution of damage
surface and physical occurrence of loading & unloading.
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Fig 8: Stress Space & Stress-Strain Curve for the Non Symmetric model

3.2 Tensile only Damage Model: -
(AcT (1) = 900, AcZ =900), (AcT (1) = —2000, AcZ = —2000), (AcT (1) =500, AcZ = 500)

Initially, the effective and actual stresses are same till it reaches elastic domain for uniaxial. In this
biaxial tensile unloading/ compressive loading occurs but compressive never occurs. Fig 9. shows
evolution of damage surface and physical occurrence of loading & unloading.
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Fig 9: Stress Space & Stress-Strain Curve for the Tensile Damage model



B) Rate Dependent Model

1. Viscous Damage Model
The integration algorithm for viscous damage model for symmetric is implemented.
The rate effects are taken into consideration that means evolution of stress depends on strain
as well as rate of the strain. The effective stress path is chosen such that (AcT (1) = 300, AcZ
=0), (AcT (1) = 600, AcZ =0), (AcT (1) =50, AcZ =0) and other parameters « = 0.5 & n =
0.3. Fig 10 shows the evolution of actual stresses (stress path) and stress-strain curve for
viscous damage model.
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Fig 10: Evolution of actual stresses & Stress-Strain Curve

1.1.  Viscosity Variation (ETA)

Outside the elastic region with increase in viscosity, the stress value increase at a definite
strain value. Inside the elastic region, stress is independent of viscosity. The stress behaviour is
plotted in stress-strain curve for different values of viscosity (n-eta) such as 0, 0.3, 0.5, 0.8 and 1. The
effective stress path is (AcgT (1) =300, AcgZ =0), (AcT (1) =400,A02 =0), (AcT (1) =600, AcZ =0).
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Fig 11: Stress-Strain Curve for Different n




1.2.  Strain Rate

Outside the elastic region, increase in the strain rate at particular strain, the value of stress
increases. Inside the elastic region, stresses are independent of strain rates. The behaviour of
strain rate is plotted in stress-strain curve for different values of strain rate such as 5, 10, 25,

40 and 50. The effective stress path is (AoT (1) = 300, AcZ =0), (AcT (1) = 400, AcZ = 0),
(AcT (1) =600, AcZ =0).
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Fig 12: Stress-Strain Curve for Different Strain rates



1.3.

Integration Constant (Alpha a)

The effective stress path is (AgT (1) = 300, AcZ =0), (AcT (1) = 400, AcZ = 0), (AcT (1) =600,
AcZ =0). It is observed that for alpha=0 the numerical integration scheme is conditionally stable,
and this explicit method gives first order accuracy. With the bigger time step size, this scheme
becomes unstable. The similar effects are also observed for a = 0.25. It is an explicit scheme and gives
first order accuracy and it is conditionally stable. For a= 0.5, the numerical scheme becomes
unconditionally stable and it gives second order accuracy. For a= 0.75, the numerical scheme is
unconditionally stable and it gives first order accuracy. For a= 1, the numerical scheme is
unconditionally stable and it gives first order accuracy. It is an implicit scheme.
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2. Effect of a on the evolution of the along time of the C11 component of the tangent and algorithmic
constitutive operators:

The evolution of the C11 component of the tangent and algorithmic constitutive operators along
the time has been studied for the different values of the ‘a’. The considered effective stress path, (AcT
(1) =300,A02 =0), (AcT (1) =400,A0Z = 0), (AcT (1) =600, AcZ =0). It is investigated that in the
elastic domain no evolution takes place for the C11 component of both the tangent and algorithmic
constitutive operators along the time. Outside the elastic domain it is found that for higher alpha
values at a particular time, the values of the C11 component of the tangent and algorithmic
constitutive operators’ decreases.
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Fig 14: Variation of C11 component of CTang with Time
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Annex (Modified Matlab Codes)

A) Non-Symmetric & Tensile Only Damage Model:

%********************************>I<>I<*>I<**>I<*>I<>I<*>I<>I<*>I<>|<>I<>I<>I<***********************************

if (MDtype==1) %™ Symmetric
rtrial= sqrt(eps_nl*ce*eps_nl');
elseif (MDtype==2) %* Only tension

sigmak=(eps_nl*ce);
sigmakplus=sigmak.*(sigmak>0);

rtrial=sqrt(sigmakplus*eps_n1');

elseif (MDtype==3) %* Non-symmetric
sigmak=(eps_n1l*ce);
sigmaplus=sigmak.*(sigmak>0);
sigmakabs=abs(sigmak);
teta=sum(sigmaplus)/sum(sigmakabs);
C=(teta+(1-teta)/n);

rtrial= C*sqrt(eps_nl*ce*eps_nl');
end
% POLAR COORDINATES
if MDtype==1 %SYMMETRIC

elseif MDtype==2  %Tensile
tetha=[(-pi/2)*0.9999:0.01:pi*0.9999];

D=size(tetha); %™ Range

m1l=cos(tetha); %*

m2=sin(tetha); %*

Contador=D(1,2); %*

radio = zeros(1,Contador) ;
s1 = zeros(1,Contador) ;
s2 = zeros(1,Contador) ;

for i=1:Contador

sigma= [m1(i) m2(i) 0 nu*(m1(i)+m2(i))];
sigmaplus=sigma.*(sigma>0);

radio(i)= q/sqrt(sigmaplus*ce_inv*sigma');

s1(i)=radio(i)*m1(i);
s2(i)=radio(i)*m2(i);
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end
hplot =plot(s1,s2,tipo_linea);

elseif MDtype==3 %Non-Symmetric

tetha=[0:0.01:2*pi];
96**************************************************************************************
%* RADIUS

D=size(tetha); %* Range

m1l=cos(tetha); %*

m2=sin(tetha); %*

Contador=D(1,2); %*

radio = zeros(1,Contador) ;
s1 = zeros(1,Contador) ;
s2 = zeros(1,Contador) ;

for i=1:Contador

sigma=[m1(i) m2(i) 0 nu*(m1(i)+m2(i))];
sigmaplus=sigma.*(sigma>0);
teta=sum(sigmaplus)/sum(abs(sigma));

radio(i)= (q/sqrt(sigma*ce_inv*sigma"))/(teta+(1-teta) /n);
s1(i)=radio(i)*m1(i);
s2(i)=radio(i)*m2(i);

end

hplot =plot(s1,s2,tipo_linea);
end

96**************************************************************************************

B) Exponential Hardening Equation:

96**************************************************************************************

if hard_type == %Linear
g_nl= gq_n+ H*delta_r;

elseif hard_type == 1 %exponential
%q_inf=r0+r0-zero_q;

g_inf=2;

%gq_inf=1e-6*zero_q;

A=1;

H_n= A*(q_inf-r0) /r0*exp(A*(1-r_n/r0));
g_nl= g_n+ H_n*delta_r;
end

end
96**************************************************************************************
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C) Viscous Model:

96**************************************************************************************

%VISCOUS

else

if (rtrial_n_alpha > r_n)

%* Loading

fload=1;

delta_r=rtrial_n_alpha-r_n;

% computation of r at the step n+1

rnl = (eta - delta_t*(1l-alpha))/(eta + alpha*delta_t)*rn + (delta_t/(eta +
alpha*delta_t))*rtrial_n_alpha;

if hard_type ==

% Linear

H_nl=H;

g_nl= q_n+ H_nl*delta_r;

else

H_n= A*(qg_inf-r0) /r0*exp(A*(1-r_n/r0));
g_.nl=q_n+ H_n*delta_r;

end

if(g_nl<zero_q)

g_nl=zero_qg;

end

else

%* Elastic load/unload
fload=0;

rnl=rn ;

g.nl=q.n ;

end

end

96**************************************************************************************
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