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1. RATE INDENPENDENT MODELS

The computation of how a material loses its stiffness due to a loading process is a well-studied field by the
Continuum Damage Mechanics. The models developed can simulate different materials (fragile and duc-
tile), which are characterized by the degradation of its properties. The first part of this work attempts to
simulate the behavior of materials whose degrades due to the presence of small cracks that propagate dur-
ing loading, where the load application velocity (strain rate influence) is not included into this first model,
which name is Rate Independent Models. Furthermore, the implementation of the other type of damage
named Rate Dependent Models can be found in section 2, where the strain rate is an indispensable variable
that defines the behavior of the material, like the maximum stress reached.

In order to assess the correctness of the Matlab1implementation of the damage models, some experiments
were carried out which denotes the imposition of critical loads in the stress space. Furthermore, to analyze
conveniently these states and obtain a physical and practical test, the material properties chosen corre-
spond to a well-known material in structural engineering which is the Steel A-36. Its material properties
are:

• Young Modulus E = 2.00(1011) N /m2

• Yield Stress σy = 250(106) N /m2

• Poisson Modulus ν= 0.26

The isotropic damage formulation considers the assumption of a detriment of the transversal area of the
structure. Then, an indispensable value to consider using this hypothesis is the amount of the original
transverse section which has been damaged, and can be represented as the dimensionless ratio d = sd /s,
also known as the damaged variable. The evolution of the damage can be affected by linear or exponential
laws, where the internal value r can be related to the damage variable. A representation of how the damage
can grow in a material during some loading time is shown in figure 1.1a. For this specific example carried
out, it can be seen that the growth of damage is almost the same at the beginning, but after some time steps,
there is a difference where the linear law seems that increases the damage faster than the exponential one.
This comparison is shown in the graph 1.1b2, where is clear how both models evolve respect to the internal
variable.

1The code implemented is written in the Appendix A.
2The load path used to compute these first examples corresponds to the uniaxial first verification experiment of table 1.1
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(a) Damage variable evolving in time.
(b) Relationship between the Internal variable r and the

hardening variable q .

Figure 1.1: Damage variable and linear/exponential evolution laws.

1.1. VERIFICATION EXPERIMENTS

Then, to consider experiments that represent in the best manner the implementation of the code, incre-
mental stresses were chosen to obtain almost every possible combination of the material behavior pre-
sented in the stress-strain relationship. Moreover, to maximize the understanding of the material behavior
by observing the graphs, some interesting points are localized and marked by colors. Therefore the loading
path includes the next steps:

1. Point A (PA) - Point B (PB) : Tensile Elastic Loading.

2. Point B (PB) - Point D (PD): Tensile Loading.

3. Point D (PD) - Point A (PA): Tensile Unloading.

4. Point A (PA) - Point C (PC): Compressive Loading.

5. Point C (PC) - Point A (PA): Compressive Unloading.

6. Point A (PA) - Point D (PD): Tensile Loading.

By considering the above, the stress increments chosen were parametrized by the next values:

• α= 375(106) N /m2

• β= 675(106) N /m2

• γ= 875(106) N /m2
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1.1.1. FIRST EXPERIMENT DESCRIPTION

Even though the steel is considered in the practice as a material with symmetric behavior in tension and
compression states, the first experiment proposes a Non-symmetric damage model more common in mate-
rials as concrete, where the compressive strength is considerably bigger. Moreover, this experiment presents
the difference between a zero softening modulus and a non-zero softening modulus3 that produces dam-
age in the material point, the table 1.1 enumerates the stress increments considered in the first experiment
and it includes the magnitude of each load path to use in the stress space.

ANALYSIS

In order to analyze this experiment, some interesting points are depicted in the stress-strain graphs of figure
1.2, and a concise description of the behavior is enumerated as:

• PA - PB: In both models, the starting PA represents the initial stress in the origin of the space, then
increasing the load they can reach the yield stress σY in the PB that indicates the elastic limit.

• PB - PD: Increasing the load out of the stress surface, the material point suffers damage and two
different behaviors appears, the zero softening modulus (fig 1.2a) continues constant while the test
with softening modulus (fig 1.2b) shows a clearly exponential trend that represents the damage of the
capability of support loads of this material point. Both models are tensed until PD.

• PD - PA - PC: Tensile unloading process starts passing to the origin at Point A again, it is noticeable
that the elastic unloading is damaged because the slope of the line that connects the points is different
from the original. Then it can be said that the constitutive tensor C is modified and in consequence
the Young Modulus E . Then, it is imposed a compressive loading trying to reach damage in PC but is
not occurring due to the model considered as non-symmetric with a compressive/tensile ratio n = 4.

• PC - PA - PD : After that, a tensile loading is imposed again until reaching the same stress in PD,
following the same slop because it is in the elastic region. Finally, a tensile loading is happening
again, where damage is happening as before. It is interesting to remark that in the stress space shown
in the softening test, it is indicated how the curves are getting smaller each time damage is reached,
which shows us how the material is losing its capabilities. In contrast with the zero softening, the σY

will remain as the maximum stress capable to reach.

3It is important to mention that as this work pretends to show the damage of materials, no hardening modulus is considered
(positive modulus), because physically speaking, it is not practical to analyze a material that is damaged by a stress state and
then its strength suddenly increases.
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n ∆σ̄1
i ∆σ̄i

2 σ̄i
1 σ̄i

2 Material
Path [N /m2] [N /m2] [N /m2] [N /m2] Behavior

1 α 0 375(106) 0 Tensile Loading
2 −β 0 −300(106) 0 Tensile Unloading / Compressive Loading
3 γ 0 575(106) 0 Compressive Unloading / Tensile Loading

Table 1.1: Incremental stresses for case 1.

(a) Zero softening modulus. (b) Softening modulus H =−1.5.

Figure 1.2: First experiment: Non-symmetric model with softening law comparison in an uniaxial test.
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1.1.2. SECOND EXPERIMENT DESCRIPTION

The experiment number two pretends to verify the behavior of a material point using the Tension only
damaged model, which is characterized in having infinite elastic properties in the compressive quadrant of
the stress space. Moreover, a softening exponential law is used when tensile effects are greater in order to
have damage. A comparison of the same stress state and exponential softening law is done with a symmetric
damage model, where the difference in the behavior is clear. The table 1.2 enumerates the stress increments
considered and it includes the magnitude of each load path used in the stress space. Differently, from the
first one, this test incorporates biaxial stresses, starting in the second increment as the table indicates.

ANALYSIS

As the first experiment, some interesting points are located in the stress-strain graphs, but as this experi-
ment is biaxial, the stress-strain graph shown is the one corresponding to the σ2 and ε2 (figure 1.2) and the
behavior of the paths graphed are explained next:

• PA - PB: The initial loading path corresponds to a uniaxial tensile load inσ1 direction with the value of
α= 375(106)N /m2, the strain-stress (2) starts at point PA and continue with a constant line reaching
negative values of ε2 due the influence of Poisson coefficient.

• PB - PC: After reaching PB the compressive load is applied in both stress directions, where both dam-
age models present an elastic loading with a very distinct limit located in PC. In this latter point is
where the great difference between only tension model and symmetric models appears.

• PC - PB - PD (Only Tension): The path in between these points is where the only tension model can
be really differentiated from the symmetric model. Due to the load presented at this step is fully
compressive, there is no damage to the tension model (figure 1.3a). As the elastic region include the
stress suffered, it means that the material governed by this model can be compressed infinitely and
do not present damage. After that, the tensile loading is presented and the path returns to the origin
in PB and finally reach PD where tensile loading presents damage.

• PC - PD- PB (Symmetric): In contrast, symmetric model can not include this compressive stress im-
posed in its surface, and consequently there is a great compressive damage with exponential behavior
(figure 1.3b). Then, during tensile loading the σ2 stress returns to zero in PB, and the Young Modulus
is also affected, noticeable by its modified slope. Finally a tensile loading is imposed until reach PE.
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n ∆σ̄1
i ∆σ̄i

2 σ̄i
1 σ̄i

2 Material
Path [N /m2] [N /m2] [N /m2] [N /m2] Behavior

1 α 0 375(106) 0 Uniaxial Tensile Loading
2 −β −β −300(106) −675(106) Biaxial Tensile Unloading
3 γ γ 575(106) 200(106) Biaxial Compressive Unloading / Tensile Loading

Table 1.2: Incremental stresses for case 2.

(a) Only tension model. (b) Symmetric model.

Figure 1.3: Second experiment: Only tension and symmetric biaxial test comparison.
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1.1.3. THIRD EXPERIMENT DESCRIPTION

The third experiment shows a biaxial loading path equal in magnitude in each step, then in the stress space,
it is shown as a 45 degrees line starting from the origin. The Non-symmetric damage surface is tested with
critical tensile and compressive stresses. Then, a comparison of the stress-strain graph of 1 and 2 directions,
is considered in the figure 1.4a and a comparison between linear and exponential hardening can be done
by analyzing figure 1.4b. The table 1.3 presents the stress increments used in this experiment.

ANALYSIS

A very similar analysis can be done for this last verification experiment where the first graph correspond
for both stresses σ1 and σ2 and can be observed that as the loads are exactly the same for both directions,
the strain-stress graph is equal in the two directions. Now, as this experiment is similar to the first one
presented above, only some interesting points are going to be discussed next.

• PB - PD: Comparing both evolution laws between these points, it is interesting to observe how the
figure 1.4a presents damage with a clearly exponential behavior, meanwhile figure 1.4b the material
point suffers damage linearly.

• PD - PA - PC: This step of tensile unloading - compressive loading is relatively similar, even the value
reached at PC is quite similar, so the elastic linear behavior following the path of these points are
homologous.

• PC - PA - PD : The returning path from compressive loading to tensile loading, again is very similar
between the two models, because both are using non-symmetric damage models. The main differ-
ence inside the elastic surface is only the damaged Young Modulus that corresponds to the slope of
the linear path connecting the points mentioned. Then after reaching again PD the tensile damage
continues by using the corresponding law (linear and exponential). And the last stress value has a
visible difference between both models.
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n ∆σ̄1
i ∆σ̄i

2 σ̄i
1 σ̄i

2 Material
Path [N /m2] [N /m2] [N /m2] [N /m2] Behavior

1 α α 375(106) 375(106) Biaxial Tensile Loading
2 −β −β −300(106) −300(106) Biaxial Tensile Unloading
3 γ γ 575(106) 575(106) Compressive Unloading / Tensile Loading

Table 1.3: Incremental stresses for case 3.

(a) Non-symmetric model - σ1−2

Exponential softening H =−0.6.
(b) Non-symmetric model - σ1−2

Linear softening H =−0.6..

Figure 1.4: Third experiment: Biaxial stresses comparison.
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2. RATE DEPENDENT MODELS

2.1. VERIFICATION EXPERIMENTS

The verification of visco-damage models can be obtained correctly by modifying some interesting param-
eters as the viscosity η, the strain rate ε̇ or even the integration algorithm used by considering different
time-stepping values α. A symmetric surface is considered in all the experiments with linear softening vari-
able H = −0.5, with the intention of have reliable comparisons. The material properties chosen are the
same that the ones used by the rate independent models, which corresponds to the A-36 Steel. But now,
a unique loading path is imposed (for viscosity and strain rate tests), the stress values are indicated in the
table 2.1. Meanwhile for the constitutive operator a different loading path was chosen to illustrate better
the degrading of this parameter.

n ∆σ̄1
i ∆σ̄i

2 σ̄i
1 σ̄i

2 Material
Path [N /m2] [N /m2] [N /m2] [N /m2] Behavior

1 α 0 350(106) 0 Tensile Loading
2 −β 0 150(106) 0 Tensile Unloading
3 γ 0 575(106) 0 Tensile Loading

Table 2.1: Incremental stresses for rate dependent experiments.

2.1.1. VISCOSITY INFLUENCE EXPERIMENT

This test shows how different stress-strain graphs can behave by choosing different viscosity parameters.
The problem is modeled starting with a very viscous parameter η and then reducing it until it is tending
to zero. Moreover, the same time-integration method is considered with an implicit scheme, which means
having an α= 1. The viscosity values considered are:

1. η= 2

2. η= 1

3. η= 0.5

4. η= 0.0001

ANALYSIS

The first comparison corresponds to the inviscid case of figure 2.1a where it is easy to find that for the
inviscid case (fig 2.1a) the elastic limit corresponds to the same magnitude than the yield stress σY of the
material, which is steel A-36. Then after having reached that point a linear law damage is considered where
the material loses its capabilities of support stresses. But then considering a highly viscous parameter η= 2
(fig 2.1b) the behavior is completely different, the viscous term increases the stress and the linear hardening
imposed is not preserved. Moreover, a viscous comparison using different values of the viscosity parameter
η is presented in figure 2.1. It can be seen how the maximum values of strength in the material point are
reduced when the value of η is getting smaller. Then, the viscosity helps to reach greater values compared
with the inviscid case. And also the damaged surface presented in the figures 2.1a and 2.1b are different too,
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it can be seen more damaged material properties in the inviscid case as well by observing how the surface
is getting smaller each step.

2.1.2. STRAIN RATE INFLUENCE EXPERIMENT

In order to have a comparison between the rate of applying loads in the viscous model, the implementation
requires a modification in the final time in each experiment. Then, for shorter final times, the strain rate
ε̇ is bigger which means that the load is applied fast and this can perturbate the results due the viscous
phenomena. The final times considered are presented in the table 2.2, also it is shown the ∆t for a division
of 10 strain steps, and the result of the biggest stress presented in the stress-strain graph.

ANALYSIS

The graph 2.2 includes four series of stress-strain behaviors but by changing the strain rate ε̇, represented
in the graph with different colors. The experiment employs the same material, loads, viscosity and also the
time integration method which correspond with α = 1. Then, the difference between each graph can be
explained by looking first the values of the maximum stress reached in the table 2.2 and its corresponding
strain rate ε̇. If the strain rate is bigger, it means that the load is applied faster and due to the viscosity model
the maximum stress is greater. If the load is applied slower as can be seen in the graph, the ε̇ is decreasing
and the stresses have smaller magnitude. An interesting result is that using a very small value of strain rate,
in other words ε̇→ 0, the graph is closer to the inviscid case. Then, it can be said that the modification of
the strain rate ε̇ is similar to the viscosity parameter η.

2.1.3. TIME INTEGRATION EXPERIMENT

A better understanding of the results given by the α method can be done by changing the value of the pa-
rameter α from zero, which corresponds to the explicit formulation, to one that corresponds to the implicit
scheme. Moreover, the changes experienced by the tangent constitutive elastic tensor along the time, which
is considered equal to t = 150, is compared using both formulations, the tangent Cvd

t an and the algorithmic
Cvd

al g expression. Both of them are related, but as the time integration scheme is proved with different α
values, an interesting behavior is observed. Table 2.3 shows the loading path chosen to illustrate this exper-
iment.

ANALYSIS

The experiment carried out starts with the comparison of the time integration parameter α and plotting
the tangent constitutive operator Cvd

t an . It can be seen how even though there is no α implied directly in the
formula, the evolution of the damage is related to this parameter and it can be observed some changes in
the result by using different time schemes (figure 2.3a).

The figure 2.3b corresponds with the algorithmic constitutive operator Cvd
al g which for the black line (–) the

time scheme is the explicit and it corresponds to the Ct an , then for α values between 0 ≤ 0.5, there can
appear instabilities as shown in the orange line (–) that corresponds to α = 0.25. For the next lines in the
plot, there is a similar behavior due to the implicit scheme that are stable, specifically to α= 0.5 (named as
Crank-Nicolson), which is stable and accurate.
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(a) Inviscid symmetric uniaxial test. (b) Viscous symmetric uniaxial test.

(c) Viscous symmetric uniaxial test Comparison.
Viscosity η1 = 2, η2 = 1, η3 = 0.5, η4 = 0.001.

Figure 2.1: Influence of the viscosity in damage models.
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n Final Time ∆t ε̇ Max σ
Test [s] [s] [s−1] [N /m2]

1 1 0.0333 490(10−5) 365(106)
2 2 0.0667 245(10−5) 307(106)
3 10 3.3333 490(10−7) 237(106)
4 1000 33.333 490(10−8) 207(106)

Table 2.2: Strain rate experiments.

Figure 2.2: Influence of the strain rate ε̇ in a symmetric uniaxial test.

n σ̄i
1 σ̄i

2 Material
Path [N /m2] [N /m2] Behavior

1 250(106) 0 Tensile Loading
2 300(106) 0 Tensile Loading
3 350(106) 0 Tensile Loading

Table 2.3: Incremental stresses for the computation of Ct an and Cal g .
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(a) Ct an

(b) Cal g

Figure 2.3: Different time integration parameter α in the computation of Ct an and Cal g using a symmetric
uniaxial test.
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A. APPENDIX: MATLAB IMPLEMENTATION

A.1. RATE INDEPENDENT MODELS

Code 1: Damage Surface Plot - dibujar_criterio_dano1.m

1 % This code allows to draw the s t r e s s space
surface depending on the choice

2 % of the user , the av a i l a b l e options are :
3 % − MDtype==1 Symmetric Model
4 % − MDtype==2 Only Tension Model
5 % − MDtype==3 Non−Symmetric Model
6

7 tetha = [ 0 : 0 . 0 1 : 2 * pi ] ; % Polar Coordinates
8 D= s i z e ( tetha ) ;
9 m1=cos ( tetha ) ;

10 m2=sin ( tetha ) ;
11 Contador=D( 1 , 2 ) ;
12 radio = zeros ( 1 , Contador ) ;
13 s1 = zeros ( 1 , Contador ) ;
14 s2 = zeros ( 1 , Contador ) ;
15

16 i f MDtype==1 %Symmetric Model
17 for i =1: Contador
18 radio ( i ) = q/ sqrt ( [m1( i ) m2( i ) 0 nu* (m1

( i ) +m2( i ) ) ] * ce_inv * [m1( i ) m2( i ) 0 nu* (m1( i
) +m2( i ) ) ] ’ ) ;

19 s1 ( i ) =radio ( i ) *m1( i ) ;
20 s2 ( i ) =radio ( i ) *m2( i ) ;
21 end
22 hplot =plot ( s1 , s2 , t ipo_l inea ) ;
23 e l s e i f MDtype==2 % Only Tension Model
24 m1_p = zeros ( 1 , Contador ) ;
25 m2_p = zeros ( 1 , Contador ) ;
26 for i =1: Contador
27 m1_p( i ) =m1( i ) ;
28 m2_p( i ) =m2( i ) ;
29 i f m1( i ) <0
30 m1_p( i ) =0;
31 end
32 i f m2( i ) <0
33 m2_p( i ) =0;
34 end

35 radio ( i ) = q/ sqrt ( [m1_p( i ) m2_p( i ) 0 nu

* (m1_p( i ) +m2_p( i ) ) ] * ce_inv * [m1( i ) m2( i ) 0
nu* (m1( i ) +m2( i ) ) ] ’ ) ;

36 s1 ( i ) =radio ( i ) *m1( i ) ;
37 s2 ( i ) =radio ( i ) *m2( i ) ;
38 end
39 hplot =plot ( s1 , s2 , t ipo_l inea ) ;
40 e l s e i f MDtype==3 %Non−Symmetric Model
41 radio = zeros ( 1 , Contador ) ;
42 s1 = zeros ( 1 , Contador ) ;
43 s2 = zeros ( 1 , Contador ) ;
44 for i =1: Contador
45 sum_stress =0;
46 vec_stress =[m1( i ) m2( i ) nu* (m1( i ) +m2( i

) ) ] ;
47 sum_stress_abs=sum( abs ( vec_stress ) ) ;
48 for j =1:3
49 i f vec_stress ( j ) <0
50 vec_stress ( j ) =0;
51 end
52 sum_stress=sum_stress+vec_stress ( j

) ;
53 end
54 t h e t a _ s t r e s s =sum_stress / sum_stress_abs

;
55 coeft= t h e t a _ s t r e s s +(1− t h e t a _ s t r e s s ) /n ;
56 radio ( i ) = q/( coeft * ( sqrt ( [m1( i ) m2( i )

0 nu* (m1( i ) +m2( i ) ) ] * ce_inv * [m1( i ) m2( i ) 0
nu* (m1( i ) +m2( i ) ) ] ’ ) ) ) ;

57 s1 ( i ) =radio ( i ) *m1( i ) ;
58 s2 ( i ) =radio ( i ) *m2( i ) ;
59 end
60 hplot =plot ( s1 , s2 , t ipo_l inea ) ;
61 end
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Code 2: Damage Criterion Surface - Modelos_de_dano1.m

1 %This code s e l e c t s the computes the r t r i a l
used to compute the equivalent s t r a i n
required for the integrat ion algorithm

2

3 i f (MDtype==1) % Symmetric
4 r t r i a l = sqrt ( eps_n1 * ce *eps_n1 ’ )

;
5

6 e l s e i f (MDtype==2) % Only tension
7

8 sigma_n1=ce *eps_n1 ’ ;
9 sigma_n1m=(sigma_n1+abs ( sigma_n1 ) ) * 0 . 5 ;

10 cei=inv ( ce ) ;
11 eps_n1m=( cei *sigma_n1m) ’ ;
12 r t r i a l = sqrt (eps_n1m* ce *eps_n1m ’ )

;
13

14 e l s e i f (MDtype==3) %Non−symmetric

15

16 sigma_n1=eps_n1 * ce ;
17 sum_stress_abs=sum( abs ( sigma_n1 ) ) ;
18 sum_stress =0;
19 for j =1:4
20 i f sigma_n1 ( j ) <0
21 sigma_n1 ( j ) =0;
22 end
23 sum_stress=sum_stress+sigma_n1 ( j ) ;
24 end
25 t h e t a _ s t r e s s =sum_stress / sum_stress_abs ;
26 coeft= t h e t a _ s t r e s s +(1− t h e t a _ s t r e s s ) /n ;
27 r t r i a l = coeft * sqrt ( eps_n1 * ce *eps_n1 ’ ) ;
28

29 end

Code 3: Exponential Hardening/Softening Law - rmap_dano1.m

1 % This code computes the hardening/ softening
law depending of the user choice , the
options are :

2 % − hard_type == 0 Linear
3 % − hard_type ! = 0 Exponential
4

5 r0 = sigma_u/ sqrt (E) ; %I n i t i a l variable r0
6 zero_q =1.d−6*r0 ;
7 A=abs (H) ; % Hardening/ Softening Parameter

given by the user
8 q_inf=r0+sign (H) *0.99* r0 ;
9

10 i f ( r t r i a l > r_n )
11 f load =1;
12 r_n1= r t r i a l ;
13 delta_r=r_n1−r_n ;
14 i f hard_type == 0
15 % Linear

16 q_n1= q_n+ H* delta_r ;
17 else
18 % Exponential
19 q_n1= q_inf −(q_inf−r0 ) *exp (A*(1−r_n1/

r0 ) ) ;
20 end
21 i f ( q_n1<zero_q )
22 q_n1=zero_q ;
23 end
24 else
25 % E l a s t i c load /unload
26 f load =0;
27 r_n1= r_n ;
28 q_n1= q_n ;
29 end
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A.2. RATE DEPENDENT MODELS

Code 4: Integration Algorithm - rmap_dano1.m

1 %This code s e l e c t s the computes the r t r i a l
used to compute the equivalent s t r a i n
required for the integrat ion algorithm .
This i s a modification for Rate Dependent
Models where i t i s included the equivalent

s t r a i n at step n and n+1 , the alpha
method and the v i s c o s i t y eta

2

3 %Equivalent Strain
4 [ tau_eps_n ]=Modelos_de_dano1 (MDtype, ce , eps_n ,

n) ;
5 [ tau_eps_n1 ]=Modelos_de_dano1 (MDtype, ce ,

eps_n1 , n) ;
6 [ r t r i a l ]=(1−alpha ) * tau_eps_n+alpha * tau_eps_n1 ;
7

8 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 % Ver e l Estado de Carga

10 % −−−−−−−−−> fload=0 : e l a s t i c unload
11 % −−−−−−−−−> fload=1 : damage (compute

algorithmic c o n s t i t u t i v e tensor )
12 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 f load =0;
14 i f ( r t r i a l > r_n )
15 % Loading
16 f load =1;
17 % V i s c o s i t y included in the new rn1
18 r_n1= ( ( eta−d e l t a _ t *(1−alpha ) ) / ( eta+alpha *

d e l t a _ t ) ) * r_n +( d e l t a _ t / ( eta+alpha * d e l t a _ t )
) * r t r i a l ;

19 delta_r=r_n1−r_n ;
20 i f hard_type == 0
21 % Linear
22 q_n1= q_n+ H* delta_r ;
23 else
24 % Exponential
25 q_n1= q_inf −(q_inf−r0 ) *exp (A*(1−r_n1/

r0 ) ) ;
26 end
27 i f ( q_n1<zero_q )
28 q_n1=zero_q ;
29 end
30 else
31 % E l a s t i c load /unload
32 f load =0;
33 r_n1= r_n ;
34 q_n1= q_n ;
35 end
36 % Damage variable
37 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 dano_n1 = 1 . d0−(q_n1/r_n1 ) ;
39 % Computing s t r e s s
40 sigma_n1 = ( 1 . d0−dano_n1 ) * ce *eps_n1 ’ ;
41 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 % Updating h i s t o r i c var iables
43 hvar_n1 ( 5 ) = r_n1 ;
44 hvar_n1 ( 6 ) = q_n1 ;

Code 5: Constitutive Elastic Tensor (Tangent and Algoritmic) - rmap_dano1.m

1 % A u x i l i a r var iables
2 aux_var ( 1 ) = fload ; % Depends on damage (=1) or e l a s t i c unload (=0)
3 aux_var ( 2 ) = q_n1/r_n1 ;
4 aux_var ( 3 ) = ( q_n1−H* r_n1 ) /r_n1 ^3;
5 % Viscous Constitutive Tangent
6 Ce_tan=(1−dano_n1 ) * ce ;
7 % Viscous Constitutive Algoritmic
8 Ce_alg=Ce_tan−aux_var ( 1 ) * ( ( alpha * d e l t a _ t ) / ( eta+alpha * d e l t a _ t ) * aux_var ( 3 ) * r_n1 /( sqrt ( sigma_n1

’ * ( inv ( ce ) ) *sigma_n1 ) /(1−dano_n1 ) ) * ( ( ce *eps_n1 ’ ) * ( ce *eps_n1 ’ ) ’ ) ) ;
9 aux_var ( 4 ) =Ce_tan ( 1 , 1 ) ; %Ce_tan^vd

10 aux_var ( 5 ) =Ce_alg ( 1 , 1 ) ; %Ce_alg^vd
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