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1. PART I. RATE INDEPENDENT MODELS 

1.2. Continuum damage models. Introduction. 
 

Figures shown below depict the continuum damage models used for the current report-

cases by means of stress-strain curves. Particularly, Fig 1. lights up the symmetric 

damage model in which both the elastic tension area and the elastic compression region 

are equivalent in terms of absolute values. On the other hand and with regard to the 

Fig.2, the only-tension damage model remarks an infinite elastic compression region and 

a comparatively smaller elastic traction region.  

On the last point, Fig. 3, in which a non-symmetric damage model is shown, it can be 

observed how the elastic compression area is larger than the elastic traction region. This 

fact is driven by a parameter “n” which specifically relates the ratio of compression elastic 

limit to the tension elastic limit.  

 

 

 

1.2.1. Linear and exponential Hardening/Softening. 
 

By means of Fig. 4 and Fig. 5, it is meant to be shown how the linear and the exponential 

hardening law behave in a simple case-scenario on purpose of the upcoming results. As 

it is described, hardening modulus of H = 2 is taken to describe a hardening behaviour 

and H = -2 to depict a softening behaviour. 

 

Figure 1. Symmetric damage model. 

 

 

Figure 2. Only-tension damage model. 

 

 

Figure 3. Non-symmetric damage model. 
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1.3. Methodology and results. Loading paths. 
 

On purpose of assessing the correctness of the implementation of the method and 

considering different material parameters and also several different load paths defining 

the symmetric, only-tension and non-symmetric damage models in the strain space, they 

will be tested under 3 cases-scenarios.  

 Purely uniaxial loading/unloading. 

 Uniaxial and biaxial loading/unloading. 

 Purely biaxial loading/unloading. 

 

Also note that these loading paths are consciously chosen so as to remark the properties 

of each one of the implemented methods. 

1.3.1. Purely uniaxial loading/unloading. 

1.3.1.1. Symmetric model. 
 

It is considered then, in the next table, the following case-studio for all the 

aforementioned damage models. 

 

Uniaxial 
tensile loading 

Uniaxial tensile 
unloading/compressive 

loading 

Uniaxial 
compressive 

unloading/tensile 
loading 

Material parameters 

∆�̅�𝟏 ∆�̅�𝟐 ∆�̅�𝟏 ∆�̅�𝟐 ∆�̅�𝟏 ∆�̅�𝟐 E 𝝈𝒚𝒊𝒆𝒍𝒅 ν H 

300 0 -700 0 400 0 2000 200 0.3 -0.1 
Table 1. Loading/Unloading parameters to assess correctness on implementation of purely uniaxial loading/unloading. 

 

If symmetric model is assessed first, it is observed in Fig. 6 how the model behaves when 

it is subjected to uniaxial stress loading and unloading and under the assumption of 

damage with exponential softening. It is also seen the model showing when the material 

behave the same both when in compression and in tension. 

 

Figure 4. Linear and exponential Hardening Law H = -2. 

 

 

Figure 5. Linear and exponential Hardening Law H = 2. 
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Figure 7 comments on how the processes of loading and unloading are carried out. If 

enlighten first the load path 1 (black line), it is understood how the applied elastic loading 

generates a process of damage loading when it reaches and overcomes the yield stress. 

Following, within the load path 2 (blue line) there is an elastic unloading preceding a 

compressive loading. And finally, the material shows a process of unloading (green line) 

until it reaches the first initial state. Showing purely elastic behaviour.  

If referring to Figure 9, but also Fig. 7, it might be appreciated how the process on  

load paths 2 and 3 are reduced due to a possible material degradation.  

Generally, damage evolution in time gives information about loading/unloading stages of 

the material, whereas, particularly, its horizontal lines on Fig.9 depict a constant 

behaviour of the damage in the material. 

 

 
 

Figure 8 may be of help to understand that little change in the behaviour of the material 

is occurring due to the applied assumption of the exponential softening.  

1.3.1.2. Only-tension model 
 

Next it is shown how an only-tension damage model behaves when it is applied a loading 

path such as the one described above.  

 

Figure 6. Symmetric model damage surface. 

 

Figure 7. Stress-strain load paths. Symmetric model. 

 

 

Figure 8. Hardening Law, Exponential vs Linear. 

 

 

Figure 9. Evolution of damage variable in time. Symmetric m. 
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In Figure 11, it is described the different applied elastic loading paths. For the first one 

there is a uniaxial tensile loading until it reaches the yield stress. And, whilst along the 

second path it is found a tensile unloading/compressive loading, the last path relates to 

a compressive unloading.   

 

Throughout the Fig 12, one can observe not just the applied exponential hardening 

commented before but also the material degradation during the first stage of the loading 

cycle. As it is shown, this model only accounts for tensile forces, this is, the model does 

not take into account failure by compression and that is mainly the reason why in the 

second and third loading paths there is no degradation of the material obtained. 

1.3.1.3. Non-symmetric model 
 

This damage model, as illustrated in Fig. 13, differs from only-tension in the sense that 

the latter one have an infinite elastic region.  

 

Figure 10. Only-tension model damage surface. 

 

Figure 11. Stress-strain load paths. Only-tension model. 

 

 

Figure 12. Evolution of damage variable in time. Only-t. model. 
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The behaviour of the material for the chosen path behaves similarly to the only-tension 

damage model. It is, certainly, a damage model in which one knows that the testing 

material will work fine under compression forces but might go into failure when applying 

tensile forces. 

 

1.3.2. Uniaxial and biaxial loading/unloading. 
 

To carry out this loading case, the considered parameters are listed below. Here it is 

also considered exponential hardening. 

Uniaxial 
tensile loading 

Biaxial tensile 
unloading/compressive 

loading 

Biaxial 
compressive 

unloading/tensile 
loading 

Material parameters 

∆�̅�𝟏 ∆�̅�𝟐 ∆�̅�𝟏 ∆�̅�𝟐 ∆�̅�𝟏 ∆�̅�𝟐 E 𝝈𝒚𝒊𝒆𝒍𝒅 ν H 

300 0 -300 -300 100 100 2000 200 0.3 -0.1 
Table 2. Loading/Unloading parameters to assess correctness on implementation of uniaxial/biaxial loading/unloading. 

1.3.2.1. Symmetric model. 
 

For the load path of uniaxial and biaxial loading/unloading, it is considered a first 

uniaxial tensile loading so as it crosses the damage surface. (see Fig. 16) 

 

Figure 13. Non-symmetric model damage surface. 

 

Figure 14. Stress-strain load paths. Non-symm. model 

 

 

Figure 15. Evolution of damage variable in time. N-S model. 
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Then, when it is applied a biaxial tensile unloading/compressive loading (load path 2) it 

is remarked that this current state remains inside the damage surface. This behaviour 

may also be observed in terms of the stress-strain curve where it is first produced an 

elastic loading preceding a process of damage loading. This is then followed by an elastic 

tensile unloading/compressive loading and at last, the compressive unloading/tensile 

reloading.  

 

1.3.2.2. Only-tension model 

 

From the only-tension model it might also be observed that the model shows damage 

when the first load path applied tries to go out of the damage surface. This is when 

overcomes the yield stress. 

 

 

Figure 16. Symmetric model damage surface. Symmetric model. 

 

Figure 17. Stress-strain load paths. Symmetric model. 

 

 

Figure 18. Evolution of damage variable in time. Symm. model. 

 

Figure 19. Only-tension model damage surface. Only-tension model. 

 

Figure 20. Stress-strain load paths. Only-tension model. 
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As it is clearly seen, D regions in Fig. 20 and Fig. 21, are coincident since they 

represent the process of damage. 

 

1.3.2.3. Non-symmetric model 
 

Differences between these three models are not found for the case of uniaxial and biaxial 

loading/unloading. But as a remark, it can be affirmed that non-symmetric and only-

tension damage models behave in a more conservative manner than the symmetric 

model when a biaxial compressive is applied. Figure 23, shows a partially elastic 

behaviour with 2 differentiated regions. Residual strain (corresponding to first bracketed 

area) and elastic recovery (related to the second one). This behaviour is also seen in 

figures presented above. 

 

 

 

 

Figure 21. Evolution of damage variable in time. O-t model. 

 

Figure 22. Non-symmetric model damage surface. 

 

Figure 23. Stress-strain load paths. N-S model. 

 

 

Figure 24. Evolution of damage variable in time. N-S model. 
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1.3.3. Purely biaxial loading/unloading. 
 

And the case of biaxial loading/unloading the following parameters are used. 

Biaxial tensile 
loading 

Biaxial tensile 
unloading/compressive 

loading 

Biaxial 
compressive 

unloading/tensile 
loading 

Material parameters 

∆�̅�𝟏 ∆�̅�𝟐 ∆�̅�𝟏 ∆�̅�𝟐 ∆�̅�𝟏 ∆�̅�𝟐 E 𝝈𝒚𝒊𝒆𝒍𝒅 ν H 

300 300 -700 -700 400 400 2000 200 0.3 -0.1 
Table 3. Loading/Unloading parameters to assess correctness on implementation of purely biaxial loading/unloading. 

1.3.3.1. Symmetric model 
 

In the context of the symmetric model, it is observable how the model behaves when 

facing a purely biaxial loading/unloading. From Fig. 25, one sees that both tensile and 

compressive loadings cross the damage surface yielding to a process of material 

degradation. 

 

So as to have a better insight of what is happening in Fig. 26, it is explained the 

loading/unloading/loading cycle path-by-path. Within the load path 1, the elastic loading 

overcomes the stress limit of the material leading to a subsequent process of damage in 

such material. This is then followed by the load path 2 which, at its turn, applies an elastic 

tensile unloading/compressive loading that, since it also exceeds yield stress, and gives, 

consequently, a second process of damage. Finally, an elastic compressive unloading 

is applied. 

 

Figure 25. Symmetric model damage surface. 

 

Figure 26. Stress-strain load paths. Symmetric model. 
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Through Fig.27 it is depicted the two levels of damage commented before. First one 

corresponds to a tensile loading while the second one it properly does by means of a 

compressive loading.    

 

1.3.3.2. Only-tension model 
 

Only-tension model only illustrates the behaviour of tensile effects on the material. 

Therefore, as it is observed from Fig. 29 and Fig. 30, after overcoming the yield stress 

and generating a process of damage (load path 1), material submitted under 

compressive loading (load path 2) does not represent a damage surface crossing when 

overcoming such stress limit. This is mainly due to be, the only-tension model, 

representing an infinite compressive elastic region.    

 

Because of the commented above, Fig. 30, only displays a level of damage.  

 

Figure 27. Evolution of damage variable in time. Symm. model. 

  

Figure 28. Only-tension model damage surface. 

  

Figure 29. Stress-strain load paths. Only-tension model. 
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1.3.3.3. Non-symmetric model 
 

Similar observations to those from only-tension damage model can be applied to non-

symmetric model. In this case, compressive reloading does not cross the damage 

surface leading, this way, into a no damage process. 

 

 

 

 

 

 

  

Figure 30. Evolution of damage variable in time. O-t m. 

  

Figure 31. Non-symmetric model damage surface. 

  

Figure 32. Stress-strain load paths. N-S model. 

  

Figure 33. Evolution of damage variable in time. N-S m. 
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2. PART 2. RATE DEPENDENT MODELS 
 

For reasons of clearance, the model assessed within this part is a symmetric tension-

compression model but under uniaxial stress state. Linear hardening/softening 

parameter will be used, as well. In the table shown below there is detailed the loading 

path for the current case-scenario. Moreover, it is thought to be important that the loading 

path crosses the damage surface to better understand the variation of the material 

damage model when some of the tested parameters change. 

Loading path (1) Loading path (2) Loading path (3) 

∆�̅�𝟏 ∆�̅�𝟐 ∆�̅�𝟏 ∆�̅�𝟐 ∆�̅�𝟏 ∆�̅�𝟐 

100 0 100 0 300 0 
Table 4. Loading/Unloading parameters to assess correctness on implementation of symmetric tension-compression model. 

2.2. Variability in the viscosity parameter. 
 

Also, so as to clearly show how the viscosity parameter behaves, perfect damage with 

𝐻𝑑(𝑟) = 0 will be first chosen as a first sight and then linear hardening 𝐻𝑑(𝑟) > 0. 

Cases 
Material Parameters 

Integration 
Parameters 

Viscosity Parameter η 

E 𝝈𝒚𝒊𝒆𝒍𝒅 ν H T. int. 𝛼 1 2 3 4 

Case 1 
2000 200 0.3 

0 
10 1 0 0.5 1 10 

Case 2 0.1 
Table 5. Material, integration and viscosity parameters for perfect and linear hardening cases. 

 

From Case 1, it is better observed that as long as the viscous parameter increases, the 

initial damage threshold for yield stress (𝜎𝑦𝑖𝑒𝑙𝑑) and initial strain (𝜀0) also increase. On 

the other hand, if Case 2 is pointed out, one observes that for higher values of viscosity, 

the straight line that represents a material with a η = 0 becomes an exponential curve for 

these larger 𝜂 values. This way, the material behaves as if it was either a “rubber” or an 

elastic tissue. 

 

 

 

 

Figure 34. Case 1. Stress-strain curve for different η values.  

 

Figure 35. Case 2. Stress-strain curve for different η values.  
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2.3. Variability in the strain rate. 
 

In order to check how the variability in the strain rate is affecting the implementation of 

the method, different values for the time integration parameters will be recalled as long 

as the strain rate is time dependent, 
𝑑𝜀

𝑑𝑡
. 

Cases 
Material Parameters 

Viscosity 
Parameter 

Integration Parameters 

E 𝝈𝒚𝒊𝒆𝒍𝒅 ν H η 𝛼 1 2 3 4 

Case 1 
2000 200 0.3 

0 
1 1 0.1 5 10 100 

Case 2 0.1 
Table 6. Material, integration and viscosity parameters for perfect and linear hardening cases. 

 

 

As it is checked out from Fig. 36 and Fig. 37, and in terms of stress-strain, the variability 

in the strain rate behaves similar as if it was by means of varying the viscous parameter. 

Another remarkable point is that if the strain rate is very low, the system can be 

considered quasi-static. Meaning that, the load is applied so slowly that the material 

deforms also very slowly and the inertia force exerted might be neglected and it is, the 

material, in equilibrium the whole time. On the contrary, if the strain rate is highly 

increased, that material could not dissipate the energy applied and consequently it would 

appear a process of damage.  

2.4. Variability of alpha 
 

To emphasize the effect of the time integration scheme on the stress-strain curve, 

different alpha values ranging from 0 ≤ 𝛼 ≤ 1 are selected. Moreover, to be noted that, 

as long as the viscosity parameter is increased or decreased, it starts playing a role in 

terms of the stability of the method.  

Material Parameters 
Viscosity 
Parameter 

Integration Parameters 

E 𝝈𝒚𝒊𝒆𝒍𝒅 ν H η 
Time 
int. 

𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜶𝟓 

2000 200 0.3 0.1 0.1 100 0 0.25 0.5 0.75 1 

Table 7. Material, integration and viscosity parameters for perfect and linear hardening cases. 

 

Figure 36. Case 1. Stress-strain curve for different time 

integration values.  

 

Figure 37. Case 2. Stress-strain curve for different time 

integration values.  
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As it is seen in Fig. 38, the stability of the time integration method ranges from 

  
1

2
≤ 𝛼 ≤ 1. It is perceptible that, in this range, the method is also accurate. On the other 

side, for values of 𝛼 = 0, 0.25 the method becomes unstable. 

For 𝛼 =
1

2
 method is second order accurate.  

2.5. Effects of alpha on the evolution of 𝐶𝑡𝑔11and 𝐶𝐴𝑙𝑔11 
 

In this section it is studied the behaviour of the algorithm and tangential constitutive 

matrices with the influence of the variability of alpha. 𝐶11 component of both matrices in 

particular it is presented here. 

2.5.1. Evolution of 𝐶𝑡𝑔11in time. 

 

Throughout Figure 40 and Figure 42, it is observed the lack of stability for alpha values 
lower than 0.5. For these values accuracy is preserved. The method is conditionally 

stable for the range of 
1

2
≤ 𝛼 ≤ 1. Although, the method is consistent and stable, it is 

therefore, by the Lax Theorem, also convergent for values of 0 ≤ 𝛼 ≤ 1.  
In the figure shown below, it is understood where the material is undamaged, this is the 
continuous line, and where the process of damage starts, this is where discontinuities 
start to show up. 
 

 

Figure 38. Stress-strain curve for different 𝜶 values.  

Figure 39. Zoom of Stress-strain curve for different 𝜶.   
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2.5.2. Evolution of 𝐶𝐴𝑙𝑔11 in time. 

The algorithm constitutive matrix shows a discontinuity in its behaviour. This is indeed 

due to the fact that the expression of the algorithm constitutive matrix is a piecewise 

function in which 𝐶𝐴𝑙𝑔 = 𝐶𝑡𝑔 where the elastic region is in and 𝐶𝐴𝑙𝑔 ≠ 𝐶𝑡𝑔 in the damage 

region.  

Moreover, stability for different alpha values behave similarly as it does for the 

constitutive tangent matrix.  

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Evolution of 𝑪𝒕𝒈𝟏𝟏 in time for different 𝜶 values. 

 

Figure 42. Evolution of 𝑪𝒂𝒍𝒈𝟏𝟏 in time for different 𝜶 values. 

Figure 41. Zoom of Figure 40.  

 

Figure 43. Zoom of Figure 42. 

 



16 

 

3. APPENDIX 
Here are listed the modified routines. Parts of the routines which are not changed were 

removed so as to optimize space in the report. These erased parts are identified as […] 

within the function. 

3.2. dibujar_criterio_dano1 

function hplot = dibujar_criterio_dano1(ce,nu,q,tipo_linea,MDtype,n) 

 

%***********************************************************************************

** 

%*        Inverse ce                                                                

%* 

ce_inv=inv(ce); 

c11=ce_inv(1,1); 

c22=ce_inv(2,2); 

c12=ce_inv(1,2); 

c21=c12; 

c14=ce_inv(1,4); 

c24=ce_inv(2,4); 

%***********************************************************************************

*** 

[...] 

elseif MDtype==2 

    

%***********************************************************************************

*** 

    %* RADIUS 

    tetha=[-pi/2+0.01:0.01:pi-0.01]; 

    D=size(tetha);                       %* Range 

    m1=cos(tetha);                       %* 

    m2=sin(tetha);                       %* 

    Contador=D(1,2);                     %* 

    radio = zeros(1,Contador) ; 

    s1 = zeros(1,Contador) ; 

    s2 = zeros(1,Contador) ; 

    for i=1:Contador 

        %Implementation of Macaulay brackets in "mx(i)*(mx(i)>0)" -> If mx(i)>0 get 

1, otherwise get 0 

        cos_part = m1(i)*(m1(i)>0); 

        sin_part = m2(i)*(m2(i)>0); 

        radio(i)= q/sqrt([cos_part sin_part 0 nu*(cos_part+sin_part)]*ce_inv*[m1(i) 

m2(i) 0 ... 

            nu*(m1(i)+m2(i))]'); 

        s1(i)=radio(i)*m1(i); 

        s2(i)=radio(i)*m2(i); 

    end 

    hplot =plot(s1,s2,tipo_linea); 

 

elseif MDtype==3 

    

%***********************************************************************************

*** 

    %* RADIUS 

    tetha=[0:0.01:2*pi]; 

    D=size(tetha);                       %* Range 

    m1=cos(tetha);                       %* 
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    m2=sin(tetha);                       %* 

    Contador=D(1,2);                     %* 

    radio = zeros(1,Contador) ; 

    s1 = zeros(1,Contador) ; 

    s2 = zeros(1,Contador) ; 

    alpha_Num=0; 

    alpha_Den=0; 

    for i=1:Contador 

        %Implementation of Macaulay brackets in "mx(i)*(mx(i)>0)" -> If mx(i)>0 get 

1, otherwise get 0 

        cos_part = m1(i)*(m1(i)>0); 

        sin_part = m2(i)*(m2(i)>0); 

        alpha_Num =cos_part+sin_part; 

        alpha_Den =abs(m1(i))+abs(m2(i)); 

        alpha = alpha_Num/alpha_Den; 

        radio(i)= q/((alpha+(1-alpha)/n)*(sqrt([m1(i) m2(i) 0  

nu*(m1(i)+m2(i))]*ce_inv*[m1(i) m2(i) 0 ... 

            nu*(m1(i)+m2(i))]'))); 

        s1(i)=radio(i)*m1(i); 

        s2(i)=radio(i)*m2(i); 

    end 

    hplot =plot(s1,s2,tipo_linea); 

end 

%***********************************************************************************

*** 

 

%***********************************************************************************

*** 

return 
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3.3. rmap_dano1 

function [sigma_n1,hvar_n1,aux_var] = rmap_dano1 

(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,delta_t) 

 

hvar_n1 = hvar_n; 

r_n     = hvar_n(5); 

q_n     = hvar_n(6); 

E       = Eprop(1); 

nu      = Eprop(2); 

H       = Eprop(3); 

sigma_u = Eprop(4); 

hard_type = Eprop(5) ; 

viscpr = Eprop(6); 

eta = Eprop(7); 

alpha = Eprop(8); 

[...] 

 

%***********************************************************************************

** 

%*       Damage surface                                                              

%* 

[rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n); 

[rtrial_prev] = Modelos_de_dano1 (MDtype,ce,eps_n,n); %It is computed rtial at 

previous time step. 

rtrial_n_alpha = rtrial_prev*(1-alpha)+rtrial*alpha; 

%***********************************************************************************

** 

 

 

%***********************************************************************************

** 

%*   Ver el Estado de Carga                                                           

%* 

%*   --------->    fload=0 : elastic unload                                           

%* 

%*   --------->    fload=1 : damage (compute algorithmic constitutive tensor)         

%* 

fload=0; 

 

%* Check if model is viscous or inviscid 

if viscpr == 0 

    eta = 0; 

    alpha = 1; 

    if (rtrial > r_n) 

        %*   Loading 

        fload=1; 

        delta_r = rtrial-r_n; 

        r_n1 = rtrial; 

        if hard_type == 0 

            %  Linear Hardening Law 

            H_n1 = H; 

            q_n1= q_n+ H*delta_r; 

        else 

            % Exponential Hardening Law 

            q_inf = r0 + (r0-zero_q); %First it is computed q infinity 

            if H > 0 

                H_n1 = H*((q_inf-r0)/r0)*exp(H*(1-rtrial_n_alpha/r0)); 
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%calculation... 

                ...of tangent hardening modulus 

            else 

            H_n1 = H*((q_inf-r0)/r0)*1/(exp(H*(1-rtrial_n_alpha/r0))); 

%calculation... 

            ...of tangent softening modulus 

            end 

        q_n1=q_n+H_n1*(delta_r); 

        end 

 

        if(q_n1<zero_q) 

            q_n1=zero_q; 

        end 

    else 

        % Elastic load/unload 

        fload=0; 

        r_n1= r_n  ; 

        q_n1= q_n  ; 

    end 

 

else %viscpr == 1 --> viscous model 

    if (rtrial_n_alpha > r_n) 

        %*   Loading 

        fload = 1; 

        delta_r=rtrial_n_alpha-r_n; 

        r_n1 = (eta - delta_t*(1-alpha))/(eta + alpha*delta_t)*r_n + (delta_t/(eta + 

... 

            alpha*delta_t))*rtrial_n_alpha; 

        if hard_type == 0 

            % Linear Hardening Law 

            H_n1 = H; 

            q_n1= q_n+ H_n1*delta_r; 

        else 

            % Exponential Hardening Law 

            q_inf = r0 + (r0-zero_q); %First q inf is computed 

            if H > 0 

                H_n1 = H*((q_inf-r0)/r0)*exp(H*(1-rtrial_n_alpha/r0)); 

%calculation... 

                ...of the tangent hardening modulus 

            else 

            H_n1 = H*((q_inf-r0)/r0)*1/(exp(H*(1-rtrial_n_alpha/r0))); 

%calculation... 

            ...of the tangent softening modulus 

            end 

        q_n1 = q_n + H_n1*delta_r; 

        end 

        if(q_n1<zero_q) 

            q_n1=zero_q; 

        end 

    else 

        % Elastic load/unload 

        fload=0; 

        r_n1= r_n; 

        q_n1= q_n; 

    end 

end 

 

% Damage variable 
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% --------------- 

dano_n1   = 1.d0-(q_n1/r_n1); 

%  Computing stress 

%  **************** 

sigma_n1  =(1.d0-dano_n1)*ce*eps_n1'; 

%hold on 

%plot(sigma_n1(1),sigma_n1(2),'bx') 

 

%***********************************************************************************

** 

% calculation of the Ce_tang_n1 

if viscpr == 1 

    if rtrial_n_alpha > r_n 

        %Algorithm Constitutive Tangent Matrix 

        Ce_alg_n1 = (1.d0-dano_n1)*ce+((alpha*delta_t)/(eta+alpha*delta_t))*... 

            (1/rtrial_n_alpha)*((H_n1*r_n1-

q_n1)/(r_n1^2))*((ce*eps_n1')'*(ce*eps_n1')); 

        C_alg = Ce_alg_n1(1,1); 

        %Constitutive Tangent Matrix Operator 

        Ce_tan_n1=(1.d0-dano_n1)*ce; 

        C_tan = Ce_tan_n1(1,1); 

    else 

        %Algorithm Constitutive Tangent Matrix 

        Ce_alg_n1 = (1.d0-dano_n1)*ce; 

        C_alg = Ce_alg_n1(1,1); 

        %Constitutive Tangent Matrix Operator 

        Ce_tan_n1 = Ce_alg_n1; 

        C_tan = C_alg; 

    end 

end 

 

 

%***********************************************************************************

** 

%* Updating historic variables                                            %* 

% hvar_n1(1:4)  = eps_n1p; 

hvar_n1(5)= r_n1 ; 

hvar_n1(6)= q_n1 ; 

hvar_n1(7)= dano_n1; 

%If viscous update variables 

if viscpr == 1 

    hvar_n1(8)= C_alg; 

    hvar_n1(9)= C_tan; 

end 

%***********************************************************************************

** 

 

%***********************************************************************************

** 

%* Auxiliar variables                                                               

%* 

aux_var(1) = fload; 

aux_var(2) = q_n1/r_n1; 

%*aux_var(3) = (q_n1-H*r_n1)/r_n1^3; 

%***********************************************************************************

** 
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3.4. Modelos_de_dano1 

function [rtrial] = Modelos_de_dano1 (MDtype,ce,eps_n1,n) 

 

%***********************************************************************************

*** 

if (MDtype==1)      %* Symmetric damage model 

 

rtrial= sqrt(eps_n1*ce*eps_n1')                          ; 

 

elseif (MDtype==2)  %* Only tension damage model 

 

sigma_e = ce*eps_n1'; 

 

for i=1:length(sigma_e) 

    sigma_e_pos(i) = sigma_e(i)*(sigma_e(i)>0); 

end 

rtrial= sqrt(sigma_e_pos*eps_n1'); 

 

elseif (MDtype==3)  %*Non-symmetric damage model 

 

theta_Num=0; %Preallocation 

theta_Den=0; 

sigma_e = ce*eps_n1'; %Taking stresses from strains. 

 

for i=1:length(sigma_e) 

    sigma_e_pos(i) = sigma_e(i)*(sigma_e(i)>0); %Taking positive part of sigma. 

    theta_Num = theta_Num + sigma_e_pos(i); 

    theta_Den = theta_Den + abs(sigma_e(i)); 

end 

 

theta = theta_Num/theta_Den; 

rtrial= (theta+(1-theta)/n)*sqrt(eps_n1*ce*eps_n1'); 

end 

 

%***********************************************************************************

*** 

return 
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3.5. damage_main 

function 

[sigma_v,vartoplot,LABELPLOT,TIMEVECTOR]=damage_main(Eprop,ntype,istep,strain,MDtype

,n,TimeTotal) 

global hplotSURF 

 

% SET LABEL OF "vartoplot" variables  (it may be defined also outside this function) 

% ---------------------------------- 

 LABELPLOT = {'hardening variable (q)','internal variable','damage variable (d)', 

'C_a_l_g_1_1', 'C_t_g_1_1'}; 

 

E      = Eprop(1) ; 

nu = Eprop(2) ; 

viscpr = Eprop(6) ; 

sigma_u = Eprop(4); 

eta = Eprop(7); 

alpha = Eprop(8); 

 

[...] 

 

% INITIALIZING  (i = 1) !!!! 

% ***********i* 

i = 1 ; 

r0 = sigma_u/sqrt(E); 

hvar_n(5) = r0; % r_n 

hvar_n(6) = r0; % q_n 

% hvar_n(6)/hvar_n(5) = 0; % --> damage at t=0 

hvar_n(7) = 0; 

hvar_n(8) = ce(1,1); %C_alg11 

hvar_n(9) = ce(1,1); %C_tg11 

 

eps_n1 = strain(i,:) ; 

sigma_n1 =ce*eps_n1'; % Elastic 

sigma_v{i} = [sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  

sigma_n1(4)]; 

nplot = 5 ; %number of variables to plot 

vartoplot = cell(1,totalstep+1) ; 

vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 

vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 

vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 

vartoplot{i}(4) = hvar_n(8); 

vartoplot{i}(5) = hvar_n(9); 

for  iload = 1:length(istep) 

    % Load states 

    for iloc = 1:istep(iload) 

        i = i + 1 ; 

        TIMEVECTOR(i) = TIMEVECTOR(i-1)+ delta_t(iload) ; 

        % Total strain at step "i" 

        % ------------------------ 

        eps_n1 = strain(i,:) ; %eps at current time step 

        eps_n= strain(i-1,:); %eps at previous time step 

        

%***********************************************************************************

*** 

        %*      DAMAGE MODEL 

        % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        [sigma_n1,hvar_n,aux_var] = 
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rmap_dano1(eps_n1,hvar_n,Eprop,ce,MDtype,n,eps_n,delta_t); 

        % PLOTTING DAMAGE SURFACE 

        if viscpr == 0 

        if(aux_var(1)>0) 

            hplotSURF(i) = dibujar_criterio_dano1(ce, nu, hvar_n(6), 'r:',MDtype,n 

); 

            set(hplotSURF(i),'Color',[0 0 1],'LineWidth',1)                         

; 

        else 

        end 

 

        else 

        end 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %********************************************************************** 

        % GLOBAL VARIABLES 

        % *************** 

        % Stress 

        % ------ 

        m_sigma=[sigma_n1(1)  sigma_n1(3) 0;sigma_n1(3) sigma_n1(2) 0 ; 0 0  

sigma_n1(4)]; 

        sigma_v{i} =  m_sigma ; 

 

        % VARIABLES TO PLOT (set label on cell array LABELPLOT) 

        % ---------------- 

        vartoplot{i}(1) = hvar_n(6) ; % Hardening variable (q) 

        vartoplot{i}(2) = hvar_n(5) ; % Internal variable (r) 

        vartoplot{i}(3) = 1-hvar_n(6)/hvar_n(5)  ; %  Damage variable (d) 

        vartoplot{i}(4) = hvar_n(8) ; 

        vartoplot{i}(5) = hvar_n(9) ; 

    end 

end 

 


