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1. Part I: Rate-independent  

1.1. Continuous damage models 

The Figure 1 shows different continuous damage models. The Figure 1a is corresponded to 
symmetric damage models. It can be seen that the elastic traction region and the elastic 
compression region are the same. The Figure 1b shows only-tension damage model. As can be 
seen, it has an infinite elastic compression region. On the other hand, the tension elastic region 
is small compared with the compression region. Finally, the Figure 1 c shows a non-symmetric 
model. It shows that the compression elastic region is larger than the elastic traction region, this 
behaviour is related with the parameter “n”. This parameter takes into account the rate 
between compression and traction region. All of these models were plot in the Stress-Stress 
space. 

  

 

Figure 1: Three different models are shown a) Symmetric model, b) Only tension, c) Non-symmetric model. 

1.2. Linear and exponential Hardening and softening 

  

Figure 2: Linear and exponential hardening law a) Hardening. b) Softening. 

In the Figure 2 can be shown two different hardening laws, linear and exponential. Is quite 
obvious the different between them. In this case the linear and exponential hardening were plot 
taking into account a hardening modulus H = 2 for hardening behaviour and H = -2 for softening 
behaviour. 

a) b) 

c) 

a) b) 
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1.3. Loading and unloading path 

1.3.1. Uniaxial loading and unloading 

The loading path and material parameters are shown in the table below.  

Table 1: Total loading path and material parameters. 

Load Path 1 Load Path 2 Load Path 3 Material parameters 

1  2  1  2  1  2  E yied    H 

250 0 -600 0 350 0 2000 200 0.3 -0.1 

The loading path and the material parameters, shown before, were used not only for symmetric 
model, but also for only tension and non-symmetric models. Exponential hardening law was 
used as well. 

Symmetric model 

 

Figure 3: Symmetric model behaviour for uniaxial loading and unloading. 

The Figure 3 shows the behaviour of the symmetric model when it is submitted by a uniaxial 
loading and unloading. It can be seen how the damage surface is shrink by the effect of the 
softening with each time step. The distance between different damage surface keep an 
exponential relation due to an exponential hardening law was used.  

Figure 4: Results for symmetric model. a) Strain – Stress curve, b) Damage variable (d) – Time. 

In the Figure 4 can be observed the strain – stress plot and the damage variable – time plot. 
Several remarks can be said. Firs of all, the behaviour of the model was as expected. The load 
path 1 produced an elastic loading followed by a damage loading (red line). In the load path 2 
(blue line) can be seen an elastic unloading, followed by a compressive loading, and the load 
path 3 showed an unloading until the origin of the plot. Second, a reduction of the slope 

  

a) b) 
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correspond to the blue and the green straight lines was observed (the elastic unloading / 
compressive loading). That reduction of the two slopes was due to a material degradation. This 
important remark is in accordance with the Figure 4b. Finally, in the Figure 4b can be seen that 
the horizontal lines not only represent a constants value of the damage in the material but also, 
represent the different elastics loading and elastics unloading stages as well. 

Only tension model 

 

Figure 5: Only tension model behaviour for uniaxial loading and unloading. 

The Figure 5 shows the behaviour of the only tension model when it is submitted by the loading 
path described above. It can be seen that the radial distance between different damage surface 
keep an exponential relation in accordance with the exponential hardening law used. 

  

Figure 6: Results for only tension model. a) Strain – Stress curve, b) Damage variable (d) – Time. 

In the Figure 6a can be observed three elastic paths. The first one corresponds to the elastic 
loading until reach the yield stress (straight red line). The second one (straight blue line) 
corresponds to the tensile unloading and compressive loading and the third one (straight green 
line) corresponds to the compressive unloading. It has been observed a degradation of the 
material. The difference between the slopes of the straight red and blue line means a 
degradation of the material. This degradation can be detected in the Figure 6b where the 
horizontal blue and green line point the damage level in the material. According to this graphic, 
a constant level of damage means an elastic loading or unloading path. 

Non-symmetric model 

 
Figure 7: Non-symmetric model behaviour for uniaxial loading and unloading. 

a) b) 
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This model keeps a similar behaviour as it described before. The different between them is that 
this model has a finite elastic region. 

  

Figure 8: Non-symmetric model behaviour for uniaxial loading and unloading. 

As it said before, these two models (only tension and non-symmetric model) have shown a 
similar behaviour for the loading path applied. As it can be noted that the Figure 6a and Figure 
8a are similar, while Figure 6b and Figure 8b keep certain similitude. 

1.3.2. Uniaxial - biaxial loading and unloading 

The Table 2 shows the loading path and material parameters used.  

Table 2: Total loading path and material parameters. 

Load Path 1 Load Path 2 Load Path 3 Material parameters 

1  2  1  2  1  2  E yied    H 

250 0 -250 -250 100 100 2000 200 0.3 -0.1 

The loading path and the material parameters, shown above, were used not only for symmetric 
model, but also for only tension and non-symmetric models. Exponential hardening law was 
used as well. 

Symmetric model 

 

Figure 9: Symmetric model behaviour for uniaxial – biaxial loading and unloading. 

In the Figure 9 can be noted the behaviour of the model when it was submitted by the loading 
path described in the table above. It can be observed that the first load path, correspond to the 
uniaxial loading, crosses the damage surface. Then a biaxial tensile/compressive loading and 
unloading was applied showing that those load paths never crossed through the damage surface 
keeping the material on the elastic region. These observations are in accordance with the Figure 

a) b) 
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10a and b, where it can be seen an elastic loading followed by a damage loading and finally an 
elastic tension/compression loading and unloading.  

  

Figure 10: Results for symmetric model. a) Strain – Stress curve, b) Damage variable (d) – Time. 

The arrows in the Figure 10b mark four points belong to the damage region. Those four points 
are outside of the elastic region and they can be seen in the Figure 9. 

Only tension model 

 

Figure 11: Only tension model behaviour for uniaxial – biaxial loading and unloading. 

 

  

Figure 12: Results for only tension model. a) Strain – Stress curve, b) Damage variable (d) – Time. 

As it can be seen the behaviour of this model is almost the same as the behaviour of the model 
described before. There are no big differences between them.  

 

a) b) 

a) b) 
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Non-symmetric model 

 

Figure 13: Non-symmetric model behaviour for biaxial loading and unloading. 

 

  

Figure 14: Results for non-symmetric model. a) Strain – Stress curve, b) Damage variable (d) – Time. 

As it said before, there were not found big differences between the three models used for the 
same uniaxial – biaxial loading and unloading. But, it can be said that the non-symmetric and 
only tension models are more conservatives that the symmetric model when are submitted by 
a biaxial compressive loading. 

 

1.3.3. Biaxial loading and unloading 

The Table 3 shows the loading path and material parameters used.  

Table 3: Total loading path and material parameters. 

Load Path 1 Load Path 2 Load Path 3 Material parameters 

1  2  1  2  1  2  E yied    H 

250 250 -600 -600 350 350 2000 200 0.3 -0.1 

The loading path and the material parameters, shown above, were used not only for symmetric 
model, but also for only tension and non-symmetric models. Exponential hardening law was 
used as well. 

 

 

a) b) 
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Symmetric model 

 

Figure 15: Symmetric model behaviour for biaxial loading and unloading. 

The Figure 15 shows the behaviour of the model when it submitted by a tensile 
loading/unloading path, and a compressive loading/unloading path. It can be observed that both 
tensile and compressive loading have crossed the damage surface yielding a degradation in the 
material.  

  

Figure 16: Results for symmetric model. a) Strain – Stress curve, b) Damage variable (d) – Time. 

Different events are shown and numbered in the Figure 16a. Each event is described below. The 
event n° 1 is corresponded with an elastic loading, the second event produced a damage in the 
material. After that, an elastic tensile unloading and an elastic compressive loading is observed 
(event n° 3) followed for a second damage in the material (event n° 4). Finally, the event n° 5 
shows an elastic compressive unloading.  

The Figure 16b shows two level of damage correspond to the tensile and compressive loading. 
It is in accordance with the Figure 16a and several remarks can be said. First of all, the first 
damage level was produced by a tensile loading. This damage produces a degradation in the 
material that match with a reduction in the slope of the straight blue line shown in the Figure 
16a. A second damage level was yielded due to a compressive loading. This damage produced a 
second degradation in the material that can be observed in a second reduction of the slope of 
the straight green line shown in the Figure 16b. 

Remark 1: In order to show different degradation levels of the material, it was plot the 
norm(Strain) against the norm(stress). In this way, it can be shown the degradation of the 
material when a compressive loading is applied. 

 

 

 

1st damage level 

2nd damage level 1 

2 

3 

4 

5 
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Only tension model 

 

Figure 17: Only tension model behaviour for biaxial loading and unloading. 

This model has shown a different behaviour compared with the model described before. In this 
case, the model did not present a degradation or damage submitted by a compressive loading 
due to it has an infinite compressive elastic region.  

  

Figure 18: Results for only tension model. a) Strain – Stress curve, b) Damage variable (d) – Time. 

The remark written before can be seen in the Figure 18a and b. The Figure 18a presents an 
elastic stage followed by a corresponding damage followed by an elastic tensile unloading and 
an elastic compressive loading. According to these observation, the Figure 18b only shows a 
level of damage. 

 

Non-symmetric model 

 

Figure 19: Non-symmetric model behaviour for biaxial loading and unloading. 

It can be seen that this model presented a similar behaviour that the model described above. In 
this case the compressive loading did not cross the damage surface, due to this, there was no 
damage by applying a compressive loading path. 

a) b) 
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Figure 20: Non-symmetric model behaviour for a biaxial loading and unloading. 

The observations written for the only-tension damage model are valid for this model as well.  

 

2. Part II: Rate-dependent  

The following part will show different results obtained by variation of several parameters such 
as viscous parameter, strain ratio, among others. 

A uniaxial loading path was used in order to show how the material behaviour is affected by the 
variation of different parameters. The different results will be shown in several strain-stress 
curves. 

Table 4: Load path. 

Load Path 1 Load Path 2 Load Path 3 

1  2  1  2  1  2  

100 0 100 0 300 0 

It can be observed that the loading path will cross the damage surface. The reason of why this 
path was chosen, is in the fact that will be shown the variation of the material damage when the 
different parameters change. Finally, the linear hardening will be used. 

 Variation of the viscous parameter 

The Table 5 shows different parameters; material parameters, integration parameters and 
different values of the viscous parameter to be evaluated. 

Table 5: Material, Integration and viscous parameters. 

Material Parameters Integration Parameters Viscous Parameter 

E yied    H Total time int.     

2000 200 0.3 -0.1 10 1 0 0.1 1 10 

The Figure 21a shows that while the viscous parameter increases the initial damage threshold (

0 yied  ) increases as well. It can be observed when viscosity takes large values, the curves 

strain-stress becomes a straight line. On the other hand, the Figure 21b shows the damage in 

a) b) 
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the material. It can be seen while the viscous parameter increases the material starts to behave 
as a “rubber”. 

Figure 21: Variation of viscous parameter. a) Strain-Stress curves, b) Damage variable (d) – time. 

 Variation of the strain ratio 

Different values of the total time integration will be evaluated in order to produce a variation of 
the strain ration. The Table 6 shows different parameters that will be used; material and 
integration parameters. 

Table 6: Material and Integration parameters. 

Material Parameters Integration Parameters 

E yied    H     Total time int. 

2000 200 0.3 -0.1 1 1 0.1 1 10 100 

 

 

Figure 22: Variation of strain ration. 

It can be observed the variation of the strain ratio and the viscosity have similar effect on the 
strain-stress relation. Another important remark is while the strain ratio decreases the system 
will behave as quasi-static system. In other words, while the strain ration increases the system 

  

yied

0



12 

 

is not able to dissipate the energy received, as consequence the material will not be able to 
resist loads and a total damage of the material could appear. 

 

 Variation of alpha and its influence over strain-stress relation 

Different values of alpha are shown in the Table 7. Each of these values will be evaluated. The 
influence of the variation of this parameter will be studied. 

Table 7: Material and Integration parameters. 

Material Parameters Integration Parameters 

E yied    H   Total time int.   

2000 200 0.3 -0.1 1 100 0 0.25 0.5 0.7 1 

 
As it can be known the alpha method used as time integration method is stable with values of 
alpha greater or equal than 0.5. The Figure 23 shows that the method becomes unstable and 
less accurate with alpha values equal to 0 or 0.25. On the other hand, for alpha values greater 
than 0.5, the method is stable and accurate, in particular, for alpha = 0.5, the method has second 
order of accuracy.  

 

Figure 23: Variation of alpha. 

 Variation of alpha and its influence over constitutive matrices 

The same parameters will be used. It will be studied the behaviour of the algorithm and 
tangential constitutive matrices, more precisely the C11 component of each matrix. 

It can be observed again the lack of stability and accuracy of the method for alpha values less 
than 0.5. The Figure 24a shows an oscillatory result for the component C11 of the algorithm 
matrix, correspond to alpha value = 0, although an oscillatory result for alpha value equal to 0.25 
was not observed, this result does not guarantee the accuracy of it. On the other hand, stable 
results were computed with alpha values greater or equal than 0.5, in particular, for alpha = 0.5 
the method has second order of accuracy.  
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Similar remarks can be written for the result obtained of the component C11 of the tangent 
matrix. But, for the alpha value equal to 0.25 an oscillatory result was observed and it can be 
seen I the Figure 24b. 

 

  

 

 

 

 

 

 

Figure 24: The influence of variation of alpha over: a) Algorithm constitutive matrix and b) Tangent constitutive 
matrix. 

An important remark, between the algorithm and tangent matrices, can be said. First of all, these 
two matrices were damaged as consequence of the loading path. The computed result made 
continuous plot for the tangent constitutive matrix (Figure 24b) without a jump between the 
horizontal line, correspond to the undamaged of the material, and the asymptotic curve, 
correspond to the damage of the material. On the other hand, it can be seen that the algorithm 
constitutive matrix showed a discontinued behaviour (Figure 24a). This fact is due to the 
expression of the algorithm constitutive matrix is a piecewise function, where Calg = Ctg in the 
elastic region and Calg is different than Ctg  in the damage region.  

 

 

 

 

 

 

 

 

 

 

a) b) 
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3. Annex 

In this section are included the parts of the code that were modified. 

Dibujar_criterio_dano1.m (function) 

 

 

 

 

 

Only Tension 

Non-symmetric 

Non-symmetric 
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Damage main (function): These modifications were made in order to plot different parameters, 
such as C11 tangent or algorithm, among others. 
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Rmap_dano1 (function): The modification made on this function were implemented for 
calculating Algorithm and tangent constitutive matrices, exponential hardening and viscous 
model. 
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modelo_de_dano1 (function): This implementation was made in order to calculate the different 
damages region correspond to the different models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


