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1 Introduction

In civil engineering, it is important to be able to predict the damage encountered by a structure after an accidental
event.The continuum damage models are used where the cracks are not reproduced but considered through a variable
that describe the degradation of the elastic properties.Moreover these models are phenomenological models which are
appropriated for geo-materials, materials which are not metals.In this assignment we are dealing with two parts, the
first part includes Rate independent model (Inviscid case) and second part includes Rate dependent models (Viscid
or viscous case). We are analysing only in the plane strain case that means our study in this assignment is limited
to only plane strain case.

2 Rate Independent Models (Inviscid case)

2.1 Non-symmetric tension-compression damage model :

The implementation of the MATLAB codes for this case has been demonstrated in Appendices and post process
results of appropriate curves of stress space and stress-strain curve has been analysed,considering hard soft modulus
as 0.5 and yield stress (100N/m2).

Case1:

For loading Paths,

∆σ̄
(1)
1 = α = 300; ∆σ̄

(1)
2 = 0 (uniaxial tensile loading )

∆σ̄
(2)
1 = −β = −500; ∆σ̄

(2)
2 = 0 (uniaxial tensile unloading/compressive loading )

∆σ̄
(3)
1 = γ = 400; ∆σ̄

(3)
2 = 0 (uniaxial compressive unloading/ tensile loading)

As we can see from Figure 1, for uniaxial loading case upto yield stress, material is in elastic region but when it
passes through the yield stress point there is tensile loading.But in the case of compressive loading the material is
completely in the elastic regime as in compression loading our elastic regime has increased for non symmetric case by
parameter ’n’. Hence our implementation is correct and behave as that of analytical approach or theoretical approach.

Case2:

For loading Paths,

∆σ̄
(1)
1 = α = 300; ∆σ̄

(1)
2 = 0 (uniaxial tensile loading )

∆σ̄
(2)
1 = −β = −250; ∆σ̄

(2)
2 = β = −250 (biaxial tensile unloading/compressive loading )

∆σ̄
(3)
1 = γ = 200; ∆σ̄

(3)
2 = γ = 200 (biaxial compressive unloading/ tensile loading)

The Figure 2 shows us the variation in stress space and stress-strain curve for case 2, i.e uniaxial and biaxial
loading.Upto yield stress,material is in elastic regime but when loaded beyond the point of yield stress (100N/m2)
there is tensile loading.And when compressive loading starts,the elastic regime for non symmetric case is enlarged
and hence in compressive loading the material is completely in elastic domain. Our apparent stress is not beyond
the damage surface as seen from the stress space curve from Figure 2 and we can conclude that we are dealing with
inviscid case that is rate independent models.
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Figure 1: Path of Stress space and Stress strain curve for case 1 (Non-symmetric model).

Figure 2: Path of Stress space and Stress strain curve for case 2 (Non-symmetric model).

Case3:

For loading Paths,

∆σ̄
(1)
1 = α = 200; ∆σ̄

(1)
2 = α = 200 (biaxial tensile loading )

∆σ̄
(2)
1 = −β = −250; ∆σ̄

(2)
2 = β = −250 (biaxial tensile unloading/compressive loading )

∆σ̄
(3)
1 = γ = 150; ∆σ̄

(3)
2 = γ = 150 (biaxial compressive unloading/ tensile loading)

Case 3 for non-symmetric model behaves as that of case 2 during biaxial tensile loading.The material will be in
elastic regime until the yield stress point and later the tensile loading starts during compression loading and hence
it behave similarly as that of case 2 of non-symmetric damage model which is well depicted in Figure 3.Hence We
can conclude that our implementation is correct and working as usual.

2



Figure 3: Path of Stress space and Stress strain curve for case 3 (Non-symmetric model).

2.2 Tension only damage model:

The implementation of the MATLAB codes for this case has been demonstrated in Appendices and post process
results of appropriate curves of stress space and stress-strain curve has been analysed,considering hard soft modulus
as -0.5.

Case1:

For loading Paths,

∆σ̄
(1)
1 = α = 300; ∆σ̄

(1)
2 = 0 (uniaxial tensile loading )

∆σ̄
(2)
1 = −β = −500; ∆σ̄

(2)
2 = 0 (uniaxial tensile unloading/compressive loading )

∆σ̄
(3)
1 = γ = 400; ∆σ̄

(3)
2 = 0 (uniaxial compressive unloading/ tensile loading)

For uniaxial tensile loading and compressive loading the material behaves as expected that is for uniaxial tensile
loading,the material is in the elastic regime until the yield stress (100N/m2).But when load path passes the yield
stress limit the tensile loading starts and the deformation of the material occurs and hence the blunt curve numbering
from 5 to 11 in Figure 4 represents the same. But when the compression loading comes to picture, even though the
load path passes through yield stress,there is no compression loading because the material will be in elastic regime
even though the threshold value of yield stress has been passed. Therefore the Figure 4 depicts the same and hence
we can conclude that our implementation is correct compared with analytical approach.

Case2:

For loading Paths,

∆σ̄
(1)
1 = α = 300; ∆σ̄

(1)
2 = 0 (uniaxial tensile loading )

∆σ̄
(2)
1 = −β = −250; ∆σ̄

(2)
2 = β = −250 (biaxial tensile unloading/compressive loading )

∆σ̄
(3)
1 = γ = 200; ∆σ̄

(3)
2 = γ = 200 (biaxial compressive unloading/ tensile loading)

From the stress space curve from Figure 5, we can say that our apparent stress is within the damage surface and
it does not go beyond the damage surface. From the Figure 5,we can also say that for uniaxial tensile load path
loading the material remains in elastic regime until the yield stress (100N/m2) but as it passes the limit there is a
tensile loading. For compression loading for given load paths the material is purely in the elastic regime even though
the load paths crosses the yield stress. And hence it behave normally as expected and we can conclude that our
implementation is correct.
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Figure 4: Path of Stress space and Stress strain curve for case 1 (Tension only damage model).

Figure 5: Path of Stress space and Stress strain curve for case 2 (Tension only damage model).

Case3:

For loading Paths,

∆σ̄
(1)
1 = α = 200; ∆σ̄

(1)
2 = α = 200 (biaxial tensile loading )

∆σ̄
(2)
1 = −β = −250; ∆σ̄

(2)
2 = β = −250 (biaxial tensile unloading/compressive loading )

∆σ̄
(3)
1 = γ = 150; ∆σ̄

(3)
2 = γ = 150 (biaxial compressive unloading/ tensile loading)

Case 3, behave as usual for tension damage model.It remains in elastic regime upto yield stress and as it passes
the threshold there is tensile loading as we it can be seen in the Figure 6.But for compressive loading the material
is completely in elastic regime even after passing the yield stress. Hence our implementation is correct.
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Figure 6: Path of Stress space and Stress strain curve for case 3 (Tension only damage model).

2.3 Linear hardening/softening(H > 0/H < 0):

The hardening and softening are the material property and here we are analysing how stress like internal variable
q varies with strain like internal variable r.The intial values of q0 and r0 are set same in order to satisfy the analytical
approach,hardening and softening modulus H as constant.We know that if hardening modulus H > 0 we have
hardening and if hardening modulus H < 0, then we have softening.In case of hardening the elastic domain expands
and in the case of softening it shrinks.Symmetric tension-compression model is used to show the implementation.

Figure 7: Linear Hardening with q∞ > r0

From Figure 7,we can conclude that for different load paths, the hardening parameter (H) is considered to be
0.5.Since it is a positive value the elastic domain has to expand which can be clearly seen from the stress space
curve.From the plot of r v/s q, we can say that slope (H) comes into the picture multiple times because of the
different load paths and hence it behaves as required and our implementation is correct. Here we should be very
careful while dealing with q∞, because in order to get hardening the value of this should be always greater than r0.
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But from Figure 8 we have assumed that hardening parameter (H) as -0.5,a negative value hence the elastic
domain has to shrink which can seen in stress space curve.From the plot of r v/s q, we can conclude that slope (H)
has increased multiple times because of the different load paths which was required for our implementation and hence
its correct.In case of linear softening q∞ should always be less than r0.If not then there is error in the algorithm that
is we get hardening.

Figure 8: Linear Softening with q∞ < r0

To conclude we can say that, in linear Hardening and softening the variation in the plot of r v/s q we have
linear variation and it behaves the same for change in load paths and slope (H).Therefore the implemention of linear
hardening and softening is correct.

2.4 Exponential hardening/softening(H > 0/H < 0):

The other way of explaining the hardening and softening law is continuous hardening and softening.Here the r0 and
q∞ are the parameters that has to be considered and rest are same as that of linear hardening and softening law,but
the slope H does not play a major role in this section.We can see from Fig 9 and Fig 10,the variation of exponential
hardening and softening for different load paths along with the plot of (internal variable) r v/s q (hardening variable)
and stress space as well.Symmetric tension-compression model is used to show the implementation.

Figure 9: Exponential Hardening with q∞ > r0
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From the Figure 9 we can see the exponential hardening, here the curve is continuous and blunt in shape and
the exponential function is asymptotic to q∞.In order to get exponential hardening,the value of q∞ should always be
greater than r0.The stress space curve shows us that there is an expansion in it because of hardening and also even
though we have multiple loads the curve is varying exponentially.

Figure 10: Exponential Softening with q∞ < r0

From Figure 10,we can see the exponential softening.Here the curve behaves same as that of the hardening and
in order to get exponential softening,the value of q∞ should always be lesser than r0.The value of q∞ was varied with
respect r0 and the implementation was done and analysed,therefore it behaved as expected.If we increase the value
of q∞ to a very large value than r0,there will be a elastic model and the minimum value of q∞ is zero.At this point
the model completely shrunken up to a point domain.

3 Rate dependent Model (Viscous case)

The modified MATLAB codes for viscous damage model has been given in the Appendices for reference.For
the analysis of the viscous case we have kept the following parameters: poisson’s ratio,ν = 0.3 and linear harden-
ing/softening parameter,H = 0.5.The assessment of correctness of the implementation is done by varying the values
of (η),for different strain rates (ε̇) and for different α values.The variation of the above parameters is analysed with
the help of stress-strain curves as shown in below figures.

3.1 Different viscosity parameters,η :

Viscosity parameter (η) s the important parameter when we model the viscodamage model.The ratio of 1
η should

always be greater than or equal to zero.When we have η = 0,we obtain the inviscid damage model.But increasing
the value of η increases the stress irrespective of variation in strain.The below stress-strain curves in figures below
show us the variation of η for different values with constant linear hardening parameter.

From Figure 11 shown below we can see that as and when the η parameter is increased, the damage surface
increases as well as the apparent stress also increases and it goes goes beyond the elastic regime for the yield stress=
100N/m2 and for the following loading paths,

∆σ̄
(1)
1 = 300; ∆σ̄

(1)
2 = 400

∆σ̄
(2)
1 = 500; ∆σ̄

(2)
2 = 600

∆σ̄
(3)
1 = 700; ∆σ̄

(3)
2 = 800
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Figure 11: Variation of stress space for viscous paramter η = 1

The main criterion to check for the correctness of the implementation is by taking the values of η = 0 and
α = 1.When this implementation is done we retain the rate independent model (Inviscid damage model ).For con-
stant time steps,i.e for TimeTotal=10 and α = 0.5,the values of η was varied in order to check for the changes in the
stress-strain curve and following points were drawn.

For η = 0.5 ,the stress strain curve in Figure 12 gives idea that with the increase in the value of the stress, and
if we further increase η = 1, the value of stress is also increased and so on for η = 2 and η = 5 which can be seen in
below Figures 13,14,15.

Figure 12: Variation of stress-strain curve for viscous paramter η = 0.5

Figure 13: Variation of stress-strain curve for viscous paramter η = 1
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Figure 14: Variation of stress-strain curve for viscous paramter η = 2

Figure 15: Variation of stress-strain curve for viscous paramter η = 5

The main reason for this behaviour is that as and when the η parameter was increased, the damage surface is
increased and the apparent stress which is in picture also increases in a manner such that, it exceeds beyond the
elastic regime and as it passes through the elastic regime and near the damage surface the value of stress in the
material under study increases for variation in the value of η The damage surface just expands for changes in the
value of η and the apparent stress in the viscous case tends to cross the elastic regime, which was the expected
behaviour for different viscosity parameter η and hence our implementation works as expected.

3.2 Different strain rate,(ε̇):

The main idea behind the variation in strain rate,(ε̇) is as when the value of (ε̇) was increased, that is we increase
the value of ’Time Total’ in mainointeractive.m file in order to study the variation of (ε̇).This parameter behave
same as that of variation or different values in the viscosity parameter.That is the stress increases for change in the
value of (ε̇).

From Figure 16 below, we can see that as the TimeTotal was increased to 100 for constant η = 1.5 ,the stress
space is expanded and because of this variation the points of apparent stress does not cross the damage surface and
will be well posed in the elastic regime.Here the increase in (ε̇) which tends to catch all the points of apparent stress
within the elastic regime and these points never expels out, but there is slight increase in the stress-strain curve
which is explained below.
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Figure 16: Variation of stress space for viscous case for TimeToal=100

Figure 17: Variation of stress-strain curve for viscous case for TimeToal=100

Figure 18: Variation of stress-strain curve for viscous case for TimeToal=1000

The stress variation is similar as that of change in η parameter, but as explained above,the damage surface
increases with increase in (ε̇) because of this the stress also increases as it passes the yield stress that has been
considered and initiates the tensile loading for the load paths applied same as that of different viscosity parameters,
η.

The Figure 17 and 18 depicts the minor increase in the value of stress. This was the behaviour that was expected
when we change the value of (ε̇).And hence our implementation is working fine for different range of values of (ε̇).
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3.3 Different α values :

In order to check for the correctness of the α,time-integration method we test for the following cases of α =
0, 1/4, 1/2, 3/4 and 1.We are assessing how the stress-strain curves varies for different values of α and we have to
comment on the stability criterion for different values of α by keeping the η and (ε̇) as constant values.Hence assessed
the value of η = 1.5 and TimeTotal=10.The variation of α is explained with the help of stress-strain curves.

The Figure 19, 20 and 21 below depicts the variation of α along the stress-strain curve.For α = 0 the variation
of curve in Figure 19 is similar as when α = 0.5 and 1.The main reason for this because within the range of α =0,
0.25, 0.5, 0.75 and 1,the ’alpha method’ is first order accurate and there is no oscillation in the stress-strain curve
for all the cases of α.Hence we can conclude that the Viscodamage model behaves perfectly as expected from the
analytical or theoretical point of view, hence therefore our implementation is behaving as expected.

Figure 19: Variation of stress-strain curve for viscous case for α = 0(zoomed view)

Figure 20: Variation of stress-strain curve for viscous case for α = 0.5(zoomed view)

α is the important parameter in deciding the time integration method. In our case it is behaving as first order
accurate that is, it is behaving in the stable manner for α values ranging from 0 to 1 and it complete stability for
α = 0.5. In both the cases, that is in inviscid and viscid the damage parameter (d) increases and remains constant
but never decreases, which can be seen from the Figure 22 below.
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Figure 21: Variation of stress-strain curve for viscous case for α = 1(zoomed view)

Figure 22: Variation of damage parameter (d) for inviscid and viscous case with respect to time.

3.4 The effects of the α values, on the evolution along time of the C11 component of
the tangent and algorithmic constitutive operators :

The algorithmic tangent operator is compared with the analytical operator, for varying alpha values.It has been
observed that the value of the C11 components of the elastic constitutive tensor C are exactly similar at the value of
α = 0 as observed in figure 23.It has also been observed that the analytical and algorithmic operators match when
the 4t value is set as 0.Therefore, the algorithmic tangent operator and analytical operator slightly behaves the
same with some slight variation which can be seen in the plots below.And the value of considered 4T = 0.01.

Figure 23: Plot of C11 component with different α values along with evolution of time.
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Appendices

Appendix 1: MATLAB code modified routines for rate independent
models

Tension and Non-Symmetric models:

In Modelos de dano1

In dibujar criterio dano1
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Appendix 2: MATLAB code modified routines for Linear and exponen-
tial hardening/ softening

In rmap dano1

Appendix 3: MATLAB code modified routines for rate dependent mod-
els

In damage main
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In rmap dano1

In Modelos de dano1

Appendix 4: MATLAB code modified routines for C11 component

In rmap dano1
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