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1 Introduction

The work presented in this report is concerned with designing a Finite Element Method (FEM)
code in Matlab to solve 2D Poisson’s equation. One of the main considerations is to generalize the
code for using elements of different shapes and orders. Apart from that, the code structure relies
heavily on the use of functions which makes it readable and easily editable. Firstly, an overview of the
proposed design is presented as a flowchart where the main sections of the codes are shown, followed
by a brief explanation. Secondly, a dependence graph of the functions to be used is presented with the
objective to understand the reliance of each function in the potential code. This is followed by a library
of functions where each function is described and their inputs and outputs are listed and explained.
Next, a section explaining data structures is included and finally a reference to the upcoming tasks is
presented.

2 FEM code flowchart

2.1 Flowchart shapes and colour code description

To begin our discussion on the flowchart shown in figure 1, we start with the description of each
of the blocks in the chart. As it can be seen in the flowchart we have decided to use different shapes
for clarity to represent different parts of the code. Therefore, each shape represents a specific function
that performs a certain task described by its contents.

Diamond : This shape is used to represent the decision point within the code. For example the
decision point at the end of the Gauss iteration loop, element iteration loop and the comparison of the
FEM solution with the analytical solution .

Hexagon : Highlighted in yellow, this shape is used to indicate the starting point of a loop. Specific
examples been the loop across the gauss points in an element and also a loop for all the elements in
the mesh.

Parallelogram : This shape is used to represent the load of data such as the reference elements and
eventually mesh related data.

Circle: This shape is used to represent the start and the end of program. For example the entire
process of defining all the basic definitions at the beginning of the code.

Rectangle with rounded-corners : These shapes represents a main process such as the assembling
of the local and global stiffness matrices.

Rectangle with right angled-corners : This is used to represent the parts of the code such as the
process, plot variables and compute errors.

2.2 Specific code structure divisions

Just like any formidable finite element code, we have decided to partition the entire code structure
into three different sections, these being the pre-process, process and post-process sections.
The pre-process section is made up of blocks denoted by the following;

• Basics definitions

• Load reference element

• Load mesh data
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Figure 1: Flowchart of the FEM code
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The process section is made up of the blocks represented by the following;

• Loop on elements

• Loop on Gauss points

• Add to Ke, fe

• Gauss loop finished

• Assembly to K,F

• Element loop finished

• Apply Neumann BC

• Apply Dirchlet BC

• Solve for U

The post-process section is made up of the blocks represented by the following;

• Plot variables

• Compute errors

2.2.1 Pre-process section

This is indeed the starting point of the code. Within this section we will define functions that will
be able to load in the basic definitions of the problem in accordance with the user specifications. For
example when it comes to solving the 2D Poisson’s equation the user will be asked to select the type
of element and the interpolation degree to be used. Upon doing that, the element and nodal data
pertaining to the selected reference element will be loaded into the code. This data includes loading of
the elemental coordinates, shape functions, shape functions derivatives and also the number of Gauss
points and weights that will be used for the numerical integration. It is also within this section that
the mesh will be loaded hence the user will have an option to choose the level of mesh refinement.
Once the mesh has been loaded, the information concerning the connectivity and coordinates matrices
that will be extracted using a function.

2.2.2 Process section

This section describes another important part of the FEM code. It is within this section where
tasks such as Gauss integration and calculation of the unknown solution is performed. Once the much
needed information has been received from the functions in the pre-process section, the first thing that
will be carried out is the formation of the local stiffness (Ke) matrix and R.H.S (fe) vector in each
element. To perform this task we will need to perform the Gauss integration using the Gauss points
in each specific element. After the Gauss integration process is finished we will begin the assembly of
the global stiffness matrix and R.H.S vector. This process will be carried out for all the elements in
the mesh. Once this process has finished we will then apply the boundary conditions on the specified
parts on the domain which will then allow us to solve the entire system for the unknown solution.

2.2.3 Post-process section

It is within this section that once the model has been solved, the results are visualized and analyzed.
Another important function is to compute errors for problems with known analytical solution. For this,
a mesh convergence study is performed to check if the optimum convergence rates are achieved.
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3 Functions dependence graph

mainPoisson

refElem2D

refElemTri

gauss
QuadratureTri

shape
FunctionsTri

nodal
CoordinatesRef

ElemTri
refElemQua

refElem1D

gauss
Quadrature1D

shapeFunctions
1D

nodal
Coordinates
RefElem1D

loadMeshData

globalSystem

elemental
Contribution

gaussElem2D
CartesianInfo

neumann
Contribution

gaussElem1D
CartesianInfo

plotVariables

computeErrors

Figure 2: Dependence graph of the FEM code functions

Figure 2 shows the dependence graph of the functions to be used while writing the Finite Element
Method code in MATLAB. The objective of designing a dependence graph is to understand the reliance
of each function of the potential code. For the purpose of clarity and legibility of the process, most
processes involved in the design are defined as independent functions which are to be called from the
mainPoisson.m file to perform the action and output the results to the main file. This design gives us
the flexibility to incorporate any required change to the code much easily.

To launch the problem solver, we run the script mainPoisson.m which comprises of the core struc-
ture to be executed. After the user provides the input data regarding the type and order of the mesh
element, the functions related to the reference element (refElem2D and refElem1D) are called. For
instance, in case of triangular elements, the procedure is as follows:

• Firstly, determine the number of Gauss points required for numerical integration.

• Load the corresponding Gauss points and weights using function gaussQuadratureTri.

• Load the shape functions and their derivatives evaluated at Gauss points as well as nodal coor-
dinates of the reference element, using functions shapeFunctionTri and nodalCoordinatesRef.
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Next, the user loads the mesh data i.e. connectivity matrices, nodal coordinates and boundary
conditions data based on the level of mesh refinement using the function loadMeshData.

The solution process is then executed,

• Using the globalSystem function where a loop over elements as well as a loop over Neumann
faces are performed and their contributions are assembled into the global system. In each loop
iteration over elements, the elemental data are extracted and the function elementalContribution
is called. While in each loop iteration over Neumann faces, the face data are extracted and the
function neumannContribution is called. Finally, a reduced system of equations is obtained after
applying the Dirchlet boundary conditions.

• The function elementalContribution performs a loop over the Gauss points of the element to
compute Ke, fe. In each loop iteration, all the data evaluated at the Gauss point are extracted
using the function gaussElem2DCartesianInfo.

• gaussElem2DCartesianInfo extracts the values of the shape functions, their derivatives, Gauss
weight and physical coordinates of the Gauss point as well as the Jacobian and its determinant
evaluated at a specific Gauss point.

• The function neumannContribution performs a loop over the Gauss points of the Neumann face
to compute and add the Neumann boundary contribution to fe. In each loop iteration, all the
data evaluated at the Gauss point are extracted using the function gaussElem1DCartesianInfo.

• gaussElem1DCartesianInfo extracts the values of the shape functions, the outward normal unit
vector, Gauss weight and physical coordinates of the Gauss point as well as the determinant of
the Jacobian evaluated at a specific Gauss point.

After the reduced system of equations is solved, the solution variables are plotted and error com-
putation is performed using plotVariables and computeErrors functions, respectively.
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4 Library of functions

This section helps to further understand the routines performed by each block in the dependence
graph. The functions are explained in more details, where the inputs and outputs for each function
are listed and commented.

refElem2D
Inputs: elementType, elementDegree
Outputs: refElem
Description: Gives all the data associated to a 2D reference element.
Uses: refElemTri, refElemQua
Used by: mainPoisson
Comments:

Valid inputs:
elementType: 0 for quadrilaterals or 1 for triangles.
elementDegree: 1 for linear elements or 2 for quadratic elements.

Outputs:
refElem is a data structure containing:
refElem.gaussPoints
refElem.gaussWeights
refElem.nOfGauss
refElem.nOfNodes
refElem.shapeFunctions
refElem.coordinates
refElem.elementType
refElem.elementDegree

refElemTri
Inputs: elementDegree
Outputs: refElem
Description: Gives all the data associated to a triangular reference element.
Uses: gaussQuadratureTri, shapeFunctionsTri, nodalCoordinatesRefElemTri
Used by: refElem2D
Comments:

Valid inputs:
elementDegree: 1 for linear triangles or 2 for quadratic triangles.

Outputs:
refElem is a data structure containing:
refElem.gaussPoints
refElem.gaussWeights
refElem.nOfGauss
refElem.nOfNodes
refElem.shapeFunctions
refElem.coordinates
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refElemQua
Inputs: elementDegree
Outputs: refElem
Description: Gives all the data associated to a quadrilateral reference element.
Uses: gaussQuadratureQua, shapeFunctionsQua, nodalCoordinatesRefElemQua
Used by: refElem2D
Comments:

Valid inputs:
elementDegree: 1 for linear quadrilaterals or 2 for quadratic quadrilaterals.

Outputs:
refElem is a data structure containing:
refElem.gaussPoints
refElem.gaussWeights
refElem.nOfGauss
refElem.nOfNodes
refElem.shapeFunctions
refElem.coordinates

gaussQuadratureTri
Inputs: elementDegree
Outputs: gaussPoints, gaussWeights
Description: Implements the Gauss quadrature in a reference triangle to be used in
integrals’ evaluation.
Uses: none
Used by: refElemTri
Comments:

Valid inputs:
elementDegree: 1 for linear triangles or 2 for quadratic triangles.

Outputs:
gaussPoints: Matrix of Gauss points’ coordinates in the reference triangle.
gaussWeights: Vector of Gauss weights corresponding to each Gauss point.
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shapeFunctionsTri
Inputs: elementDegree, gaussPoints
Outputs: shapeFunctions
Description: Gives the values of the shape functions and their derivatives evaluated at
the Gauss points in the reference triangle.
Uses: none
Used by: refElemTri
Comments:

Valid inputs:
elementDegree: 1 for linear triangles or 2 for quadratic triangles.
gaussPoints: Matrix of Gauss points’ coordinates in the reference triangle.

Outputs:
shapeFunctions is a tensor of size (nOfGauss, nOfNodes, 3) where:
shapeFunctions(:,:,1) contains the shape functions,
shapeFunctions(:,:,2) contains the first derivative in direction of ξ,
shapeFunctions(:,:,3) contains the first derivative in direction of η.

nodalCoordinatesRefElemTri
Inputs: elementDegree
Outputs: coordinates
Description: Gives the coordinates of the nodes in the reference triangle.
Uses: none
Used by: refElemTri
Comments:

Valid inputs:
elementDegree: 1 for linear triangles or 2 for quadratic triangles.

Outputs:
coordinates: Matrix of nodal coordinates of the reference triangle.

8



refElem1D
Inputs: elementDegree
Outputs: refFace
Description: Gives all the data associated to a 1D reference element. The output data
are used for computing the integrals on Neumann boundaries.
Uses: gaussQuadrature1D, shapeFunctions1D, nodalCoordinatesRefElem1D
Used by: mainPoisson
Comments:

Valid inputs:
elementDegree: 1 for linear elements or 2 for quadratic elements.

Outputs:
refFace is a data structure containing:
refFace.gaussPoints
refFace.gaussWeights
refFace.nOfGauss
refFace.nOfNodes
refFace.shapeFunctions
refFace.coordinates
refFace.elementDegree

gaussQuadrature1D
Inputs: elementDegree
Outputs: gaussPoints, gaussWeights
Description: Implements the Gauss quadrature in the reference 1D element.
Uses: none
Used by: refElem1D
Comments:

Valid inputs:
elementDegree: 1 for linear triangles or 2 for quadratic triangles.

Outputs:
gaussPoints: Vector of Gauss points’ coordinates in the reference 1D element.
gaussWeights: Vector of Gauss weights corresponding to each Gauss point.
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shapeFunctions1D
Inputs: elementDegree, gaussPoints1D
Outputs: shapeFunctions
Description: Gives the values of the shape functions and their derivatives evaluated at
the Gauss points in the reference 1D element.
Uses: none
Used by: refElem1D
Comments:

Valid inputs:
elementDegree: 1 for linear triangles or 2 for quadratic triangles.
gaussPoints: Vector of Gauss points’ coordinates in the reference 1D element.

Outputs:
shapeFunctions is a tensor of size (nOfGauss, nOfNodes, 2) where:
shapeFunctions(:,:,1) contains the shape functions,
shapeFunctions(:,:,2) contains the first derivative.

nodalCoordinatesRefElem1D
Inputs: elementDegree
Outputs: coordinates
Description: Gives the coordinates of the nodes in the reference 1D element.
Uses: none
Used by: refElem1D
Comments:

Valid inputs:
elementDegree: 1 for linear triangles or 2 for quadratic triangles.

Outputs:
coordinates: Vector of nodal coordinates of the reference 1D element.
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loadMeshData
Inputs: meshFile
Outputs: mesh
Description: Loads all the data related to a mesh such as the nodal Cartesian coordinates,
connectivity table, Dirchlet and Neumann boundary conditions data. This function loads
the data from a (.DAT) file.
Uses: none
Used by: mainPoisson
Comments:

Valid inputs:
meshFile: takes the format

domainShape_elementType_elementDegree_meshRefinementLevel
for example: rectangle_Tri_P1_H1

Outputs:
mesh is a data structure containing:
mesh.X: Matrix of nodal coordinates of the mesh.
mesh.T: Table of connectivities.
mesh.DBC: Matrix of size (nNodesDBC,2) containing Dirchlet nodes with their

prescribed values.
mesh.NBC: Matrix of size (nFacesNBC,nOfFaceNodes+1) containing the global number

of face nodes and an index corresponding to a Neumann boundary function.

11



globalSystem
Inputs: refElem, refFace, mesh
Outputs: K, f
Description: This function performs the loop over elements and assemble the elemental
contributions to the global stiffness matrix and forcing vector, then gives the reduced
system of equations after applying Dirchlet boundary conditions.
Uses: elementalContribution, neumannContribution
Used by: mainPoisson
Comments:

Valid inputs:
Data structure refElem contains:
refElem.gaussPoints
refElem.gaussWeights
refElem.nOfGauss
refElem.nOfNodes
refElem.shapeFunctions
refElem.coordinates
refElem.elementType
refElem.elementDegree

Data structure refFace contains:
refFace.gaussPoints
refFace.gaussWeights
refFace.nOfGauss
refFace.nOfNodes
refFace.shapeFunctions
refFace.coordinates
refFace.elementDegree

Data structure mesh contains:
mesh.X: Matrix of nodal coordinates of the mesh.
mesh.T: Table of connectivities.
mesh.DBC: Matrix of Dirchlet BCs data.
mesh.NBC: Matrix of Neumann BCs data.

Outputs:
K: Global stiffness matrix after applying DBC.
f: Global forcing vector with DBC and NBC contributions.
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elementalContribution
Inputs: refElem, Xe, Te
Outputs: Ke, fe
Description: This function performs a loop over Gauss points of an element and assemble
the Gauss points contributions to the elemental stiffness matrix.
Uses: gaussElem2DCartesianInfo
Used by: globalSystem
Comments:

Valid inputs:
Data structure refElem contains:
refElem.gaussPoints
refElem.gaussWeights
refElem.nOfGauss
refElem.nOfNodes
refElem.shapeFunctions
refElem.coordinates
refElem.elementType
refElem.elementDegree

Xe: Matrix of nodal coordinates of an element.
Te: Table of connectivities of an element.

Outputs:
Ke: Elemental stiffness matrix.
fe: Elemental forcing vector with source term contributions.

neumannContribution
Inputs: refFace, mesh.NBC
Outputs: fe
Description: This function performs a loop over Gauss points of a Neumann face and
assemble the Gauss points contributions to the elemental forcing vector.
Uses: gaussElem1DCartesianInfo
Used by: globalSystem
Comments:

Valid inputs:
Data structure refFace contains:
refFace.gaussPoints
refFace.gaussWeights
refFace.nOfGauss
refFace.nOfNodes
refFace.shapeFunctions
refFace.coordinates
refFace.elementDegree

mesh.NBC: Matrix of Neumann BCs data.

Outputs:
fe: Elemental forcing vector with NBC contributions.
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gaussElem2DCartesianInfo
Inputs: refElem, Xe, iGauss
Outputs: N, dNx, detJ, w, Xg
Description: Gives all the functions evaluated at a specific Gauss point in a 2D element.
Uses: none
Used by: elementalMatrices
Comments:

Valid inputs:
Data structure refElem contains:
refElem.gaussWeights
refElem.shapeFunctions

Xe: Matrix of nodal coordinates of the physical element.
iGauss: index of Gauss point.

Outputs:
N: Shape functions evaluated at iGauss.
dNx: First derivatives with respect to Cartesian coordinates evaluated at iGauss.
detJ: Determinant of the Jacobian evaluated at iGauss.
w: Gauss weight associated to iGauss.
Xg: Cartesian coordinates of iGauss to be used for source term evaluation.

gaussElem1DCartesianInfo
Inputs: refFace, Xf, iGauss
Outputs: N, n, detJ, w, Xg
Description: Gives all the functions evaluated at a specific Gauss point in a 1D element.
Uses: none
Used by: elementalVectors
Comments:

Valid inputs:
Data structure refFace contains:
refFace.gaussWeights
refFace.shapeFunctions

Xf: Matrix of nodal coordinates of the 1D physical element.
iGauss: index of Gauss point.

Outputs:
N: Shape functions evaluated at iGauss.
n: Outward unit normal vector evaluated at iGauss.
detJ: Determinant of the Jacobian evaluated at iGauss.
w: Gauss weight associated to iGauss.
Xg: Cartesian coordinates of iGauss to be used for Neumann BC function evaluation.
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plotVariables
Inputs: what2Plot, U, mesh, refElem, refFace
Outputs: fig
Description: Plots the variables of interests
Uses: none
Used by: mainPoisson
Comments:

Valid inputs:
what2Plot: ’primalVariable’, ’secondaryVariable’
U: the numerical nodal solution.

Outputs:
fig: The plot of primal or secondary variable over the mesh.

computeError
Inputs: U, Uexact, mesh, refElem
Outputs: error
Description: Computes the error L2 and H1 norms if the analytical solution of the
problem exists.
Uses: none
Used by: mainPoisson
Comments:

Valid inputs:
U: the numerical nodal solution.
Uexact: the analytical nodal solution.

Outputs:
Data structure error contains:
error.L2
error.H1
error.L2elem
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5 Data structures

It is very useful to put together all the related data using data structures. A simple example, for
instance, is gathering all the data related to the mesh in one data structure. In this design of the
Matlab code, three data structures are used: mesh, refElem, and refFace.

5.1 First data structure: mesh

The data structure mesh is defined as follows:

• mesh.X: Matrix of nodal coordinates of size (number of nodes, spatial dimension). Therefore, for
a 2D mesh with n number of nodes, it is stored as:

mesh.X =

x1 y1
...

...
xn yn


• mesh.T: Matrix representing the table of connectivities of size (number of elements, number of

nodes per element + 1). Thus for a mesh with nel linear triangles, the matrix mesh.T is of size
(nel, 4), and is stored as:

mesh.T =

 elem 1-node 1 elem 1-node 2 elem 1-node 3 elem 1-material index
...

...
...

...
elem nel-node 1 elem nel-node 2 elem nel-node 3 elem nel-material index


• mesh.DBC: Matrix storing the Dirchlet boundary conditions data. It is of size (number of Dirchlet

nodes, 2) where the first column contains the global number of the node while the second column
contains the corresponding prescribed value of the primal variable. A mesh with nDBC nodes on
a Dirchlet boundary is stored as:

mesh.DBC =

 DBC 1-node DBC 1-value
...

...
DBC nDBC-node DBC nDBC-value


• mesh.NBC: Matrix storing the Neumann boundary conditions data. It is of size (number of

Neumann faces, number of nodes per face + 1). Considering a mesh of linear triangles with
nNBC faces on Neumann boundary, the matrix mesh.NBC will be of size (nNBC , 3). Each row of
the matrix corresponds to a face on a Neumann boundary, while the first and second columns
correspond to the global number of the nodes on that face. The third column contains an index
that corresponds to a Neumann boundary function.

mesh.NBC =

 NBC 1-node 1 NBC 1-node 2 NBC 1-function index
...

...
...

NBC nNBC-node 1 NBC nNBC-node 2 NBC nNBC-function index


It is important to note that a function index is stored instead of a value in mesh.NBC, unlike

mesh.DBC. The reason is that in case of variable flux, the function is evaluated at Gauss points when
the Neumann boundary integral is computed. Moreover, it is also important to note that the output
of the Neumann function is a vector of size (spatial dimension).
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5.2 Second data structure: refElem

The data structure refElem is defined as follows:

• refElem.nOfGauss: Number of Gauss points to be used in integrals evaluation.

refElem.nOfGauss = ngp

• refElem.gaussPoints: Matrix of Gauss points’ coordinates in the reference element.

refElem.gaussPoints =

ξgp1 ηgp1
...

...
ξngp ηngp


• refElem.gaussWeights: Vector of Gauss weights corresponding to each Gauss point.

refElem.gaussWeights =


wgp1
...

wngp


• refElem.nOfNodes: Number of nodes per element.

refElem.nOfNodes = nen

• refElem.shapeFunctions: is a tensor of size (nOfGauss, nOfNodes, 3) containing all the shape
functions and their derivatives evaluated at all the Gauss points.
refElem.shapeFunctions(:,:,1) contains the shape functions,
refElem.shapeFunctions(:,:,2) contains the first derivative in direction of ξ,
refElem.shapeFunctions(:,:,3) contains the first derivative in direction of η.

• refElem.elementType: The shape of the element. 0 means quadrilateral and 1 is triangle.

• refElem.elementDegree: The order of the element. 1 means linear and 2 is quadratic.

• refElem.coordinates: The nodal coordinates in the reference element.

refElem.coordinates =

 ξ1 η1
...

...
ξnen ηnen


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5.3 Third data structure: refFace

In case of 2D problems, the data structure refFace corresponds to a 1D reference element. The
definition of this structure is very similar to that of refElem with minor changes given as follows:

• refFace.gaussPoints: Vector of Gauss points’ coordinates in the reference 1D element.

refFace.gaussPoints =


ξgp1
...

ξngp


• refFace.coordinates: The nodal coordinates in the reference 1D element.

refFace.coordinates =


ξ1
...

ξnen


• refFace.shapeFunctions: is a tensor of size (nOfGauss, nOfNodes, 2) containing all the shape

functions and their derivatives evaluated at all the Gauss points.
refFace.shapeFunctions(:,:,1) contains the shape functions,
refFace.shapeFunctions(:,:,2) contains the first derivative in direction of ξ.

There is no field for refFace.elementType because there is only one type of elements in 1D, which
is a line.

5.4 Fourth data structure: error

The data structure error is defined as follows:

• error.L2: a scalar number representing the L2-norm of error in the whole domain.

• error.H1: a scalar number representing the H1-norm of error in the whole domain.

• error.L2elem: a vector containing the L2-norm of error of each element.

6 Upcoming tasks

Our objective was to design a Matlab code to solve Poisson’s problem. The effort has been made to
make a generic design in order to account for different types of boundary conditions and source terms
which are given by either constant or variable functions.

After completing the design of the FEM Matlab code, the next step is to start writing the main
script of the code in Matlab and to implement the needed functions to solve the problem. It is inevitable
the modifications that will be done to this proposed design during the process of developing the code.
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