
Programming for Engineers and Scientists
-

FEM C++ code design to solve Poisson’s equation

By
Ahmed Saeed Sherif (ahmedsaeed_713@yahoo.com)
Chiluba Isaiah Nsofu (chilubansofu@hotmail.com)

Nikhil Dave (nikdave14@gmail.com)

May 13, 2018



1 Introduction

The work presented in this report is concerned with the designing of a 2D/3D Finite Element Method
(FEM) code in C++. One of the main considerations in coming up with the current design is to utilise
the unique aspects of C++ programming language while taking into consideration the various relationships
used in the finite element method. With respect to the aforementioned goals the entire report is structured
as follows. Firstly, an overview of a FEM code is presented as a flowchart in Figure 1 where the main
sections of the codes are highlighted and briefly explained. Secondly, the designed classes are proposed and
the member functions to be used are presented with the objective to understand the reliance of each class
in the potential code. This is followed by a library of classes where each class is described and their inputs
and outputs are listed and explained. Next, a section explaining the good/bad properties of the design,
alternative possibilities, is included and finally a reference to the upcoming tasks is presented.

Basic definitions

Load reference
elements

Load
mesh data

Process

Create VTK files

Analytical? End

Compute errors

End

Assemble
Global system

Appy Neumman BC

Apply Dirchlet BCs

Solve for U

No

Yes

Figure 1: Flowchart of the FEM code

1



2 Design of classes

Figures 2 shows the graph of the potential classes that will be used in the implementation of the Finite
Element Method code. In the proposed design, the class Problem has member functions that provides the
material properties, source term, Neumann flux and exact solution (if it exists). Secondly, the class Mesh
defines an object that has the mesh data such as nodal coordinates, table of connectivities, Neumann and
Dirichlet boundary data. The reference element is constructed using two different classes, GaussQuadrature
and ShapeFunctions, where the former provides an object that has integration points and weights and the
latter provides the shape functions and their derivatives evaluated at Gauss points. The class SytemSolve
defines an object that has the nodal solution, the global system and the right hand side forcing vector. Hence,
this class has member functions that assemble, apply boundary conditions and solve the linear system. Fi-
nally, all the aspects related to the post-processing section are defined by an object of type PostProcess.

class Problem

FEM Solver

class Mesh

class
GaussQuadrature

class
ShapeFunctions

class
SystemSolve

class
PostProcess

Figure 2: Designed classes for the Poisson’s FEM solver

All the details of the designed classes including member data and methods are presented in the next
section.

2



3 Implemented Classes

class Mesh
Data Members:

X
T
DBC
NBC

Methods:
Mesh::loadMeshData(nsd, elemType, elemDegree, H, meshFile)

Comments:
X: is a matrix containing mesh nodal coordinates
T: is a matrix containing the connectivity table and the material indices
DBC: is a matrix containing Dirchlet boundary information
NBC: is a matrix containing Neumann boundary information
nsd: spatial dimension
elemType: 0 for Line(1D)/Quad(2D) or 1 for Tri(2D)/Tet(3D)
elemDegree: 1 for linear and 2 for quadratic
H: Level of mesh refinement
meshFile: the name of the file containing the mesh data

class GaussQuadrature
Data Members:

gaussPoints
gaussWeights
nOfGauss
nOfNodes
coordinates
elementType
elementDegree
nsd

Methods:
GaussQuadrature::GaussQuadrature(nsd, elementType, elementDegree)
GaussQuadrature::∼GaussQuadrature()

Comments:
gaussPoints: Matrix containing coordinates of Gauss points in the reference element
gaussWeights: Vector of Gauss corresponding Gauss weights
nOfGauss: number of Gauss points
nOfNodes: Number of nodes within an element
coordinates: Matrix containing the nodal coordinates of the reference element
elementType: 0 for Line(1D)/Quad(2D) or 1 for Tri(2D)/Tet(3D)
elementDegree: 1 for linear and 2 for quadratic
nsd: spatial dimension

3



class ShapeFunctions
Data Members:

N
Nxi
Neta
Nzeta

Methods:
ShapeFunctions::ShapeFunctions(GaussQuadrature, elementType,

elementDegree)
ShapeFunctions::∼ShapeFunctions()

Comments:
N: Matrix containing shape functions evaluated at Gauss points
Nxi: Matrix containing derivatives of shape functions w.r.t xi evaluated at Gauss points
Neta: Matrix containing derivatives of shape functions w.r.t eta evaluated at Gauss points
Nzeta: Matrix containing derivatives of shape functions w.r.t zeta evaluated at Gauss

points

class SystemSolve
Data Members:

U
K
F_source
F_neumann
K_reduced
F_reduced

Methods:
SystemSolve::globalSystem(GaussQuadrature, Mesh)
SystemSolve::applyNeumann(GaussQuadrature, Mesh)
SystemSolve::applyDirchlet(SystemSolve, Mesh)
SystemSolve::linearSystemSolve(SystemSolve)

Comments:
U: is the FEM solution (vector of nodal values)
K: is the assembled stiffness matrix
F_source: is the RHS forcing vector due to source term contribution
F_neumann: is the RHS forcing vector due to Neumann boundary contribution
K_reduced: is the reduced global stiffness matrix after eliminating the rows and columns

corresponding to Dirchlet nodes
F_reduced: is the reduced RHS forcing vector after eliminating the rows corresponding

to Dirchlet nodes and adding the Dirchlet boundary contribution

4



class postProcess
Data Members:

U
Ux
U_exact
Ux_exact
errL2
errH1

Methods:
postProcess::computeGradients(GaussQuadrature, SystemSolve)
postProcess::createVTKfile(SystemSolve, Mesh)
postProcess::computeErrors(GaussQuadrature, SystemSolve, Mesh)

Comments:
U: is the FEM solution (vector of nodal values)
Ux: is the numerical gradients computed at Gauss points
U_exact: is the exact nodal solutions (if exists)
Ux_exact: is the exact gradients at Gauss points (if exists)
errL2: is the L2-norm of the error
errH1: is the H1-norm of the error

class problem
Data Members:

U_exact
k
s
fluxVec
normalFlux

Methods:
problem::materialProperties
problem::sourceTerm
problem::neumannFlux
problem::neumannNormalFlux
problem::exactSol

Comments:
U_exact: is the exact nodal solutions (if exists)
k: material property depending on space
s: source term depending on space
fluxVec: is the flux vector
normalFlux: is the normal flux at boundaries

5



4 Conclusions

In conclusion, the use of classes presents a better aspect of gathering all the related information into
objects which is fundamentally a good practice. One of the features of the proposed design is that the class
mesh would only work if the mesh files are given together with the boundary condition data, otherwise some
modifications are required in order to include the boundary data in the mesh files. This might become
an obstacle in solving a specific problem. A fundamental issue to consider is the implementation of a
linear system solver. Currently, we are not aware of an available linear solver which might be useful while
implementing the proposed design in C++. The next step in this module is the actual implementation of
the code in C++. Depending on the problems we might face during the implementation, we expect to make
a few changes in the current design and report it in the next report of this assignment.

6


	1 Introduction
	2 Design of classes
	3 Implemented Classes
	4 Conclusions

