Programming for Egineers and
Scientists

C++: Part 1

Domingo Eugenio Cattoni Correa <domingocattoni@gmail.com>

Juan Diego Iberico Leonardo <ibericoleonardo@hotmail.com>

Oriol Call Pinol <oriolcalll@gmail.com>

Introduction

In the present document it is developed the main structure of the program. It is based in the
decomposition of the necessary functions as well as structures where the variables are saved by

packages. The main functions of the code we are going to be developing are the following:

Topology.h
. class elemType : public meshtopology{
Topology.h public:

int totElement();
class n}eshtopolo gy { int elementType();

public: int totnodes();
int Tmesh(); Private:
re:}l Xmesh(); int elem_tot();
!’rlvate: int elem_type();
int T int nodes_tot();
real X

inline int elemType:: totElement() {
\\ read and store different sort of element... }
inline...

inline int meshtopology:: Tmesh() {
\\read and store Tmesh ...

inline int meshtopology:: Xmesh() {
\\read and store Xmesh... }

Description: subclass of meshtopology, from T and

.. matrix or txt file, it store the necessary mesh
Description:. from a txt file, read and store the v

tivi trix T and the nod dinat i information (nodes per element, degree of
LG S TV ETY X ¢ nodes coordinate matriy interpolation, number of elements, number of nodes,

H etc.)




class Beondition {
public:
real N_Bc();
real D_Bc();
Private:
real NBc
real DBc

Boundarycondition.h

}

inline Beondition:: N_Be() {

\\read and store the edge and value where it is applied}
Inline meshtopology:: D_Be() {

\\read and store node and value where it is applied... }

Description: from a txt file, read and store the boundary
conditions, for Neuman it stores in a matrix the edge
(two nodes) where the value it lie and for Dirichlet the

-1 hf\t‘n A Y.? ]‘\AI"A 'if is nrnenrﬂ-\nrl
P

class shapeFunction{
public:
Real N(), N&(), Nn(),Nx(),Ny();
Real Jacob(), invJacob(), detJacob();
Private:
Real gaussPoints(wgi,zgi);
int elem_type();
int nodes_tot();

inline shapeFunction:: N() {
\\ Define shape function accoridng to degree of int.}
inline...

— T

— T

class elemental Matrices {
public:
real Kmatrix(), Mmatrix(), Cmatrix();

inline elementalMatrices:: Mmatrix() {
\\ Compute the mass matrix ... }
inline...

the reference coordinate to cartesian system.

Description: The present class has the aim to map fron

| Description: This subclass of shapeFunction, it
compute in different functions the elementals matrices
such as stiffness, convective or mass matrix.

class elemental Force {
public:
Real fVector();

inline...

— T

inline elementalForce:: N() {
\\ Compute the R.H.S of the system.}

Description:. The present subclass of shapeFunction i
compute the R.H.S of the system through the functio
fVecotr defined in the subclass elementalForce.




Materialproperties.h

class postProcess {

public:
Materialproperties.h vtk()

Private:
class material Property { Quantities()
public: }
real k,E poisson; inline postProcess:: Quantities() {
real k(); \\ Define the necessary values to be plotted... }
} inline...

inline elementalMatrices:: Mmatrix() {
W\ Define a lineal function for the k parameter... } L
inline... Description: This class deals with two functions, the

first one it writes in s txt file the necessary output to
plot in Paraview for example and the same for the

function Quantities where the prepare the output to b

read by another program to be plotted for example.

Description: This subclass of shapeFunction, it store
- the material values and it is implemented a function in

order to define a linear function of the value, depending
of the problem

o

As we can see, all the different functions have their specific task. We also need to point out that all
of them belong to different classes such as the ones we are going to explain right below.

Structure
The structure for this different functions is organized by classes and subclasses.

The class “meshTopology” has a subclass called “elementType” and they both are connected to
the header file “Topology.h”.

The class “bCondition” is associated to the header file “Boundarycondition.h”.

The class “shapefunction” has two subclasses called “elementalMatrices” and “elementalForce”
respectively. This two classes and their mother (shapeFunction) are linked to the header
“Element.h”.

The last two structures that will form our code are the class “materialProperty” which is related to
the header “Materialproperties.h” and “postProcess”, which is connected to the header
“Postprocess.h”.

The structure above will be enough to carry out the different tasks stated by the problem.
Diagram:

The first element is the header, the second is the class and the the last part are subclasses, only for
some of them.

Topology.h 2 meshTopology = elementType

Boundarycondition.h 2 bCondition

Element.h = shapeFunction 2 (elementalMatrices, elementalForce)
Materialproperties.h = materialProperty

Postprocess.h = postProcess



Conclusion

In addition to everything said before, this assignment has been an introduction to the main
assignment about coding a whole Finite Element code using the programming language C++.

This first approach was useful to start understanding how the different structures work in this
language. The main difficulties found during this homework were trying to comprehend how these
were organized and which was the best or most suitable way to construct with them.



