
PROGRAMMING FOR
ENGINEERS AND SCIENTISTS

Homework 1

Matlab

Submitted by
Karthik Neerala Suresh

M.Sc. Computational Mechanics
Universitat Politècnica de Catalunya,

BarcelonaTECH

Submitted to
Dr. Esther Sala Lardies

Associate Professor
Universitat Politècnica de Catalunya,

BarcelonaTECH

03 April 2017

Contents

1 Homework 1 2
1.1 Problem Description . 2
1.2 The Poisson’s equation . 3
1.3 Structure of the program . 4

1.3.1 User Defined Data . 4
1.3.2 Processing user defined data 5
1.3.3 Creating reference element 6
1.3.4 Preprocessing boundary data 10
1.3.5 Computation . 10
1.3.6 Post-process . 11

1.4 Convergence test . 13
1.4.1 Convergence test with example problem 15

1.5 Post-processing . 18
1.5.1 Matlab post-process . 18
1.5.2 VTK post-process . 20

1.6 Comparison of computation time 22
1.7 Conclusion . 23

List of Figures

1.1 Computational domain . 2
1.2 Convergence plot with triangular elements 16
1.3 Convergence plot with quadrilateral elements of degree 2 17
1.4 Results for linear triangular elements 18
1.5 Results for quadratic triangular elements 19
1.6 Results for linear quadrilateral elements 19
1.7 Results for quadratic quadrilateral elements 20

i

1.8 VTK results for linear triangular elements 20
1.9 VTK results for quadratic triangular elements 21
1.10 VTK results for linear quadrilateral elements 21
1.11 VTK results for quadratic quadrilateral elements 22

List of Tables

1.1 Error and convergence associated with triangular elements of degree 1 14
1.2 Computation time for triangular elements of degree 1 14
1.3 Example problem: Error and convergence associated with linear

triangular elements . 15
1.4 Example problem: Error and convergence associated with quadratic

triangular elements . 15
1.5 Example problem: Error and convergence associated with linear

quadrilateral elements . 16
1.6 Example problem: Error and convergence associated with quadratic

quadrilateral elements . 17
1.7 Description of different cases and their CaseNum 22

1

1. Homework 1

1.1 Problem Description

The objective of this homework is to determine the potential flow around an object
solving the following two dimensional Poisson problem

∆u = 0 in Ω,
∇u · n = −1 on Γin = 0× (0, 1),
∇u · n = 1 on Γout = 1× (0, 1),
∇u · n = 0 on ∂Ω\(Γin ∪ Γout),
u(0, 0) = 0,

(1.1)

where Ω is the computational domain shown in Figure 1.1, ∂Ω is its boundary and
n is the outward unit normal. Further it is required to obtain the velocity field in
terms of this potential as

vx =
∂u

∂x
vy =

∂u

∂y
. (1.2)

Figure 1.1: Computational domain

2

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

In order to achieve the objectives of this homework, a code must be developed
for solving the two-dimensional Poisson equation, accounting for the following
features:

� The computational mesh is loaded from input files,

� Triangular and quadrilateral elements of degree one and two can be used,

� A convergence analysis must be performed for the different elements, using
as a reference solution the one on the finer mesh.

In order to make a comparison of the solutions, running time and accuracy
for all the element’s types, five different meshes are considered for each type of
element, with the i-th mesh containing approximately the same number of nodes
for all element types.

1.2 The Poisson’s equation

The strong form of the Poisson’s equation is given in Equation (1.1). In order
to solve this using the standard finite element method, the first step involves
determining the weak form of the problem after multiplying it with the suitable
test function. The weak form can be written as∫

Ω

∇w ·∇u dΩ =

∫
ΓN

w(∇u · n) dΓ ∀w (1.3)

where ΓN is the Neumann portion of the boundary where normal fluxes are pre-
scribed.

The Galerkin approximation of the weak form given in (1.3) can be written
as follows. First the computational domain is discretized into elements Ωe. The
approximate solution uh and the test function wh is written as

u ≈ uh(x) =
∑
j

Nj(x)uj

w ≈ wh(x) =
∑
i

Ni(x)ui

The discrete form of the (1.3) can be written as

wj

(∫
Ω

∇Nj∇NidΩ

)
ui = wj

(∫
ΓN

Njq dΓ

)
∀wj (1.4)

where

∫
Ω

∇Nj∇NidΩ is the elemental stiffness matrix Ke.

3

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

1.3 Structure of the program

The code written in order to solve the poisson’s equation has a definite structure
as the finite element method is being used. In this section the structure of the
code will be explained, giving emphasis to the reason behind the choice for such
a structure. Also, procedures undertaken to ensure the test the routines written
will also be briefed wherever applicable.

1.3.1 User Defined Data

Before beginning the process of solving the equation, there is a need to define the
level of refinement of the domain, the type of element to be used and the order
of polynomial. These are user defined parameters and are left to the discretion of
the user within the available functionalities of the code. For example, the user can
choose to use linear or quadratic finite elements to solve the problem. Also meshes
with both triangles and quadrilaterals are available for both the above mentioned
order of polynomials in order to solve the problem. Finally five different meshes of
varied levels of mesh refinement are provided to the user for all the four different
combinations of order and type of element. In the present code, the first section
is devoted to obtaining data from the user in the following manner.

%% User de f ined parameters
orderOfApproximation = 1 ;
elementType = 0 ;
% Use 0 f o r q u a d r i l a t e r a l element mesh
% and 1 f o r t r i a n g u l a r element mesh
meshRefinement = 1 ;

The user has to manually change the parameters to switch from one option to
another. There are better ways of implementing this section on user defined data.
One can use the Matlab function ’input’ to allow the user to choose these parame-
ters on the command window after beginning the run of the code. This will avoid
users from interfering with the source code. Yet another option that can be used
to get the user input is by making use of the function ’menu’. This is ideal for a
situation like that of ours where there are finite number of options from which the
users need to choose one. Since this is a very small program, the time required for
these operations does not really matter. However, in large programs, one needs to
also consider the memory usage and time requirement before providing one of the
above options for the user to input their selection.

4

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

1.3.2 Processing user defined data

Once the user has defined his choice, it become imperative to extract information
that will be useful from a finite element context. The first major requirement
for any finite element code is the information of the coordinates of the nodes in
the mesh, called the nodal coordinates, and the connectivity table that defines
the nodes constituting the elements. In the present project, mesh information is
provided in data files (.dat file). These files are named using a common format that
can be related to user defined parameters. The data file containing information
about the connectivity matrix is named as Element 2D type%d P%d H%d.dat,
where the three %d correspond to the user defined input of element type (0 for
quadrilaterals or 1 for triangles), order of approximation (1 for linear and 2 for
quadrilaterals) and degree of mesh refinement (1 being the coarsest mesh and 5
being the finest). In a similar manner, the data files with information about nodal
coordinates are named as Node 2D type%d P%d H%d.dat.

In the present code, a cumbersome method is adopted to read information from
these data files by making use of the function ’fscanf’. This function can be used
after the file is opened for reading using ’fopen’. Unfortunately, fscanf stores all
the information from the file in a row vector. This is not what is ideal for a finite
element code. The connectivity table must be stored as a matrix with as many
rows as elements with each row containing as many columns as there are nodes in
the element. Also nodal coordinates must be stored as a matrix with as many rows
as there are nodes in the mesh and as many columns as are the number of spatial
dimensions. In order to achieve this from the information read from the files that
are stored in row vectors, an additional step of rearranging is done by making use
of a for loop. The entire of sequence of routine to obtain the connectivity matrix
and nodal coordinates as required by a finite element code, as implemented in the
code is shown below.

fileNameT = s p r i n t f (’ Element 2D type%d P%d H%d . dat ’ , . . .
elementType , orderOfApproximation , meshRefinement) ;
fileNameX = s p r i n t f (’ Node 2D type%d P%d H%d . dat ’ , . . .
elementType , orderOfApproximation , meshRefinement) ;
f i l e I D T = fopen (fileNameT , ’ r ’) ;
f i l e I D X = fopen (fileNameX , ’ r ’) ;
switch elementType
case 0
nOfNodesPerElement = orderOfApproximation *4 ;
nOfVert ices = 4 ;
case 1
nOfNodesPerElement = (orderOfApproximation + 1) . . .
*(orderOfApproximation +2)/2;

5

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

nOfVert ices = 3 ;
o the rw i s e
e r r o r (’ e lement type not de f ined ’) ;
end
Tvector = f s c a n f (f i l e ID T , ’%d ’ , [1 , i n f]) ;
Xvector = f s c a n f (f i l e ID X , ’%d %f %f \n ’ , [1 , i n f]) ;
T = ze ro s (l ength (Tvector)/ nOfNodesPerElement , . . .
nOfNodesPerElement) ;
X 1 = ze ro s (l ength (Xvector) / 3 , 3) ;
f o r indexT = 1 : l ength (Tvector)/ nOfNodesPerElement
T(indexT , :) = Tvector ((indexT−1)*nOfNodesPerElement + 1 . . .
: indexT*nOfNodesPerElement) ;
end
f o r indexX = 1 : l ength (Xvector)/3
X 1 (indexX , :) = Xvector ((indexX−1)*3+1: indexX *3) ;
end
[Y, I] = s o r t (X 1 (: , 1) , 1) ;
X = X 1 (I , :) ;
[hMin] = computeMinElementSize (X(: , 2 : 3) , T) ;

This part of the code can be improved by converting the .dat files into .mat
files and then using the Matlab function ’load’. Load saves data in the manner
in which is desirable for finite element codes and thus avoids the requirement of a
routine to reorganise data. It is also possible to use format specifiers in fscanf to
improve the manner in which data is read and stored from the .dat file.

The final line in the routine that processes the user defined data to gen-
erate information relevant from a finite element context calls a function called
computeMinElementSize. This function has been written to compute the mini-
mum characteristic size of the elements in the mesh. This information is necessary
when convergence study is carried out to validate the written finite element rou-
tine. This function uses distance formula to compute the edge length of every
element. Thus, inside this function, a loop on elements is done and the minimum
edge length of each element is computed. Finally the minimum of all the minimum
elemental edge lengths is considered as the characteristic length of the given mesh.

1.3.3 Creating reference element

In every standard finite element code, every computation is carried out in a refer-
ence element. Thus it is a necessity to generate the right reference element in any
standard finite element code. In the present code, four different types of elements
are available, linear and quadratic triangles and quadrilaterals. Thus based on the

6

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

choice of input, the right reference element information must be accessed by the
code. The fields that are present in the structure called refElem created by the
function referenceElement contain information about the nodal coordinates of
the reference elements, the coordinates of the nodes in each of the faces, shape
functions and their derivatives computed at volume integration Gauss points and
the weights corresponding to these quadrature points (in our case 2D shape func-
tions and their derivatives). Also shape functions and derivatives are computed at
quadrature points required for integration along Neumann faces (in our case 1D
shape functions and their derivatives).

Since the reference element forms the crux of the finite element computations,
it is mandatory to ensure the accuracy of the quadrature points, weights and the
shape functions. Some functions are written to test these. In order to test the
shape functions, there is a need to ensure that the shape functions satisfy the delta
property at the nodes. This is tested by using a simple routine as shown below:

% t e s t 1D shape f u n c t i o n s

t o l = 1e−10;
f o r degree = 1 :3
theReferenceElement = referenceElement1D (degree) ;
nodes = theReferenceElement . nodeCoord ;
N = shapeFunctions1D (nodes , degree) ;
Err = max(max(abs (eye (degree +1) − N))) ;
cond i t i on = s p r i n t f (’%0.16 g <= %0.16g ’ , Err , t o l) ;
testName = s p r i n t f (’ 1D shape funct i ons , degree=%d ’ , degree) ;
myAssert (cond i t ion , testName , nameFunction , lineNumber) ;
end

Quadratures are tested by ensuring that they are able to integrate exactly
polynomials upto the order for which they are designed. This is done by writing
a simple routine that compares numerical integration to the exact value of the
integral computed analytically. The routine written is as follows:

% t e s t 2D quadrature

t o l = 1e−10;

% Tr iang l e s
I e x t r i = [
2 −2/3 2/3 −2/5 2/5 −2/7 2/7 −2/9 2/9

−2/11 2/11
−2/3 0 −2/15 0 −2/35 0 −2/63 0 −2/99

0 −2/143

7

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

2/3 −2/15 2/9 −2/21 2/15 −2/27 2/21 −2/33
2/27 −2/39 2/33

−2/5 0 −2/21 0 −2/45 0 −2/77 0 −2/177
0 −2/165

2/5 −2/35 2/15 −2/45 2/25 −2/55 2/35 −2/65
2/45 −2/75 2/55

−2/7 0 −2/27 0 −2/55 0 −2/91 0 −2/135
0 −2/187

2/7 −2/63 2/21 −2/77 2/35 −2/91 2/49 −2/105
2/63 −2/119 2/77

−2/9 0 −2/33 0 −2/65 0 −2/105 0 −2/153
0 −2/209

2/9 −2/99 2/27 −2/117 2/45 −2/135 2/63
−2/153 2/81 −2/71 2/99

−2/11 0 −2/39 0 −2/75 0 −2/119 0 −2/171
0 −2/231

2/11 −2/143 2/33 −2/165 2/55 −2/187 2/77
−2/209 2/99 −2/231 2/121

] ;

Iex qua = [
4 0 4/3 0 4/5 0 4/7 0 4/9 0 4/11
0 0 0 0 0 0 0 0 0 0 0
4/3 0 4/9 0 4/15 0 4/21 0 4/27 0

4/33
0 0 0 0 0 0 0 0 0 0 0
4/5 0 4/15 0 4/25 0 4/35 0 4/45 0

4/55
0 0 0 0 0 0 0 0 0 0 0
4/7 0 4/21 0 4/35 0 4/49 0 4/63 0

4/77
0 0 0 0 0 0 0 0 0 0 0
4/9 0 4/27 0 4/45 0 4/63 0 4/81 0

4/99
0 0 0 0 0 0 0 0 0 0 0
4/11 0 4/33 0 4/55 0 4/77 0 4/99 0

4/121
] ;

% elemType = 1 ;

8

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

nIP = [1 3 4 6 12 1 2] ;

f o r i IP = 1 : l ength (nIP)
[z ,w] = quadrature2D (1 , nIP (i IP)) ;

f o r powX = 0 : i IP
f o r powY = 0 : (iIP−powX)
exac t In t = I e x t r i (powX+1,powY+1);
aproxInt = w*(z (: , 1) . ˆ powX.* z (: , 2) . ˆ powY) ;

i f exac t In t == 0
r e l E r r = abs (aproxInt − exac t In t) ;
e l s e
r e l E r r = abs (aproxInt − exac t In t) / exac t In t ;
end
cond i t i on = s p r i n t f (’%0.16 g <= %0.16g ’ , r e lEr r , t o l) ;
testName = s p r i n t f (’ 1D quadrature po in t s=%d , order=%d ’ , nIP , k) ;
myAssert (cond i t ion , testName , nameFunction , lineNumber) ;
end
end
end

% elemType = 0 ;
f o r n = 1 :4
nIP = n ˆ2 ;
order = 2*n−1;
[z ,w] = quadrature2D (0 , nIP) ;

f o r powX = 0 : order
f o r powY = 0 : order
exac t In t = Iex qua (powX+1,powY+1);
aproxInt = w*(z (: , 1) . ˆ powX.* z (: , 2) . ˆ powY) ;

i f exac t In t == 0
r e l E r r = abs (aproxInt − exac t In t) ;
e l s e
r e l E r r = abs (aproxInt − exac t In t) / exac t In t ;
end
cond i t i on = s p r i n t f (’%0.16 g <= %0.16g ’ , r e lEr r , t o l) ;
testName = s p r i n t f (’ 1D quadrature po in t s=%d , order=%d ’ , nIP , k) ;

9

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

myAssert (cond i t ion , testName , nameFunction , lineNumber) ;
end
end
end

Once it has been ensured that the shape functions and the quadratures have
been properly computed, the code then moves onto the preprocessing, computing
and postprocessing sections.

1.3.4 Preprocessing boundary data

This section of the code is useful while imposing boundary conditions. A func-
tion called preprocess is written which returns two matrices called DBCmatrix

and NBCmatrix containing information about Dirichlet and Neumann boundary
conditions. The variable DBCmatrix, contains as many rows as there are nodes on
the boundary on which fixed displacement boundary condition is imposed. The
columns of this matrix contain node number and the value of the fixed displace-
ment at the specified node. Dirichlet boundary condition information is stored in
this manner as Dirichlet boundary condition is imposed in this code by eliminating
the rows and columns corresponding to dirichlet nodes from the global matrix.

The variable NBCmatrix is slightly different from Dirichlet counterpart. This
matrix has as many rows as there are faces on the Neumann boundary. The
columns of this matrix contain information about the nodes on the Neumann face
considered in a counter clockwise manner, with the final column containing the
value of the prescribed normal flux on the face.

1.3.5 Computation

This section of the code is the most important part where the finite element com-
putations are carried out. In the function elementalComputation, a loop on
elements is done to get the elemental contributions from each element. In this
loop, a loop on Gauss points is done to carry out integration in the computation
of the stiffness matrix and the right hand side forcing term. In the loop on ele-
ments, first the value of the shape functions and their derivatives are extracted
from the structure refElem at the Gauss points. Following this in the loop on
Gauss points the Jacobian of the transformation is computed and then the indi-
vidual contribution of the gauss point to the elemental contribution is computed.
Finally using the connectivity matrix, the elemental contribution is added to the
global matrix.

The routine written here is not an ideal one. Since the global stiffness matrix
is largely sparse, memory and time can be saved by initialising the global stiffness

10

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

matrix as a sparse matrix and then using the matrix matlab function sparse to
assemble the elemental contributions. This will make the code both time and
memory efficient.

Once the global stiffness matrix has been assembled, the Neumann bound-
ary condition contribution needs to be added to the system. This is done in the
function named nuemannFaceComputation. In this function a loop over all the
Neumann faces is done and then similar to the loop in the elemental contribu-
tion computation, a loop over Gauss points for face integration is done and the
contribution of each Neumann face is added to the global right hand side vector.
The matrix NBCmatrix defined in the preprocessing part of the code is used to get
information about the nuemann faces.

Once the global stiffness matrix and the right hand side vector have been com-
puted, the Dirichlet boundary condition is imposed by making use of DBCmatrix
defined in the preprocessing part of the code in the function deleteRowsDBC. In
this functions, rows and columns corresponding to the nodes with imposed dis-
placement are eliminated. In case of non zero imposed displacement, the right
hand side vector is modified.

Finally displacement is computed by making us of the LU decomposition direct
method. Since the system to be solved in this Poisson problem is considerably
small, the direct method used for solving the system of equation does not make
the code considerably slow. However, when larger problems are solved there is
a need to check if this is the best way to solve the system of linear equations or
whether there is a need to use some iterative solvers.

1.3.6 Post-process

Velocity field

As the velocity potential is obtained by solving the system of equations, the velocity
field (1.2), which is nothing but the derivative of solution, is computed using the
function as follows in the code.

[N, Nxi , Neta] = shapeFunctions2D (elementType , refElem . p , . . .
refElem . nodesCoord (: , 1) , refElem . nodesCoord (: , 2)) ;
f o r iElem = 1 : s i z e (T, 1)
f o r jNode = 1 : s i z e (T, 2)
NxiNode = Nxi (jNode , :) ;
NetaNode = Neta (jNode , :) ;
J = [NxiNode ; NetaNode]*X(T(iElem , :) , 2 : 3) ;
r e s = J \ [NxiNode ; NetaNode] ;
dNdx = r e s (1 , :) ;
dNdy = r e s (2 , :) ;

11

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

ux = dNdx*u(T(iElem , :) , :) ;
uy = dNdy*u(T(iElem , :) , :) ;
v e l o (T(iElem , jNode) , :) = [ux uy] ;
end
end

The reference element coordinates and derivatives of shape functions at these coor-
dinates are necessary to compute the derivative of solutions. The reference element
coordinates are stored in the structure refElem. The shape function at this coor-
dinates are computed using the function shapeFunctions2D. Finally to get the
derivatives of the solution, a loop over elements and then a loop over nodes is
defined to extract nodal shape functions, Jacobian and derivatives in x and y co-
ordinates. Elemental velocity fields are assembled using connectivity matrix and
stored in the variable named as velo.

Error computation

In order to validate any finite element code, it is necessary to perform a convergence
study to ensure the solution converges asymptotically at the desired rate. The L2

norm and H1 seminorms of the errors are computed as

||e||L2 =

[∫
Ω

(uh − u)2 dΩ∫
Ω
u2 dΩ

](1/2)

||e||H1 =

[∫
Ω

(∇uh −∇u) · (∇uh −∇u) dΩ∫
Ω
∇u ·∇u dΩ

](1/2)

where uh is the solution of the current mesh and u is the analytical solution.
For the given Poisson’s problem analytical solution is not available. Hence, in

order to perform convergence study, the solution obtained using the finest mesh is
chosen as the reference solution u. The solution computed using the finest mesh for
all the four cases are stored in .mat as uTriLinear, uTriQuadratic, uQuadLinear
and uQuadQuadratic for the four cases. Based on the type of element used and
the order of approximation these are loaded at the beginning of the run of the
code and the solution, nodal coordinates and the connectivity matrix of the finest
mesh are stored in variables called uForError, XforError and TforError.

Upon computing the solution for the problem these variables, along with the
computed solution and connectivities and nodal coordinates of the present mesh
under consideration are sent into a function called computeError. In the compute
error a loop on the elements in the finest mesh is done. At each Gauss point of
the finest mesh, the reference solution and the computed solution are calculated
and the using these values, the norms of errors are estimated.

12

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

However, finding the computed solution at the Gauss point of the fine mesh is
not that straigh forward. Since isoparametric transformation is used to compute
the solution at any point in the element, shape functions must be computed at
these points. In order to compute shape functions at the Gauss points of the finest
mesh corresponding to the course mesh, an inverse isoparamteric transformation
needs to done. This is quite straight forward in the case of linear triangles as the
mapping is linear. However, with quadratic triangles and quadrilateral elements,
one needs to solve a non linear equation for computing the reference element
position of every Gauss point. This is done using fsolve in the program. Also
to accurate results, the tolerance of fsolve must be set to very small value. This
makes the task of computing error extremely expensive.

Convergence test is performed to check the correctness of the code. However,
the error computation is much costlier than the computation of the solution. Also,
in the present problem, the error computation involves inverse mapping where
nonlinear equation is to be solved to compute the coordinates of the Gauss point
in the reference element. So, the accuracy of the code is checked by performing the
convergence test with an example problem whose analytical solution is known. In
addition to this, both 1D and 2D the quadrature and shape functions are tested.

1.4 Convergence test

The evaluation of L2 and H1 norms of the error for the present problem involves
solving of non-linear equations. Also it has been observed that the finest mesh
availbale is not fine enough to use its solution as analytical solution. Hence the
convergence test doesn’t completely tell about the correctness of the code as the
reference solution is not accurate enough to compute the error. However, the
convergence rate of the triangular elements with first order approximation are
presented in the table 1.1. From the table and plot, it can seen that the L2

norm and H1 semi-norms error converge at the rate of 2 and 1 respectively as the
characteristic element size approaches zero. Therefore, these convergence rates are
in agreement with the rate of convergence of standard FEM as the element used
here is of degree 1.

13

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

Table 1.1: Error and convergence associated with triangular elements of degree 1

h Error in the norm Convergence rate
L2 H1 L2 H1

3.18E-002 6.39E-003 5.29E-002 2.22 0.80
2.34E-002 3.23E-003 4.14E-002 2.05 0.76
1.42E-002 1.16E-003 2.83E-002

Since the computation of error involves inverse isoparametric transformation
of each of the Gauss point in the finest mesh, the error computation routine is
highly time consuming in addition to being complex in implementation. The time
taken to solve for the solution is much less than the the time required to compute
the error. The time taken for triangular elements of degree 1 is compared in the
table 1.2.

Table 1.2: Computation time for triangular elements of degree 1

Triangular mesh Computation time in seconds
degree 1 without error with error

1 0.16 240.00
2 0.15 285.00
3 0.35 421.00
4 0.95 674.00
5 2.08 1030.00

Further it has been noticed that the meshes are not nested meshed. For ac-
curate convergence study it is necessary that the meshes under consideration are
nested meshes with the characteristic size of each refined mesh being one half of
the previous course mesh. Since error computation for this problem consumes very
much higher time than the computation of the solution, and since the finest mesh
is not fine enough to be considered as reference solution in addition to the absence
of nested meshes upon refinement,this method of checking the correctness of the
code is not recommended. The correctness of the routine is tested with an example
problem whose analytical solution is known.

14

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

1.4.1 Convergence test with example problem

An example problem whose analytical solution is known is solved using the same
routine. The problem is described below.{

∆u = 0 in [0, 1]× [0, 1]

u(x, 0) = sin(πx)

Analytical solution of the problem is,

u(x, 0) = cosh(πy)− coth(π) sinh(πy) sin(πx)

The convergence rate of the obtained solution with different types of elements is
tabulated in 1.3, 1.4, 1.5 and 1.6 and plots are shown in Figures 1.2 and 1.3.

Table 1.3: Example problem: Error and convergence associated with linear trian-
gular elements

h Error in the norm Convergence rate
L2 H1 L2 H1

1.00E-001 1.05E-002 1.45E-001 1.99 1.01
5.00E-002 2.64E-003 7.22E-002 2.00 1.00
2.50E-002 6.62E-004 3.61E-002 2.00 1.01
1.67E-002 2.94E-004 2.40E-002

Table 1.4: Example problem: Error and convergence associated with quadratic
triangular elements

h Error in the norm Convergence rate
L2 H1 L2 H1

1.00E-001 3.96E-004 6.69E-003 3.00 1.99
5.00E-002 4.96E-005 1.68E-003 3.00 1.99
2.50E-002 6.21E-006 4.22E-004 3.00 1.99
1.67E-002 1.84E-006 1.88E-004

15

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

Figure 1.2: Convergence plot with triangular elements

Table 1.5: Example problem: Error and convergence associated with linear quadri-
lateral elements

h Error in the norm Convergence rate
L2 H1 L2 H1

1.00E-001 4.96E-003 9.07E-002 2.00 1.00
5.00E-002 1.24E-003 4.54E-002 2.00 1.00
2.50E-002 3.10E-004 2.27E-002 2.00 1.01
1.67E-002 1.38E-004 1.51E-002

16

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

Table 1.6: Example problem: Error and convergence associated with quadratic
quadrilateral elements

h Error in the norm Convergence rate
L2 H1 L2 H1

1.00E-001 2.12E-004 3.68E-003 2.99 2.00
5.00E-002 2.66E-005 9.19E-004 3.00 2.00
2.50E-002 3.33E-006 2.30E-004 3.00 2.01
1.67E-002 9.88E-007 1.02E-004

Figure 1.3: Convergence plot with quadrilateral elements of degree 2

In the case of standard FEM, for an interpolation polynomial of degree p, the
norms of upper bounds of the errors is given by,

||e||L2 ≤ Chp+1

||e||H1 ≤ Chp

From the table and plot, it can seen that the L2 norm and H1 semi-norms error
converge at the rate of p + 1 and p respectively as the characteristic element size
approaches zero. Therefore, these convergence rates are in agreement with the
rate of convergence of standard FEM.

17

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

1.5 Post-processing

In this section velocity potential and velocity fields obtained upon solving the
problems using different element types is presented. The post-processing is done
in both matlab and paraview. Additionally, the computation time is compared for
different elements.

1.5.1 Matlab post-process

The velocity potential and velocity fields of the finest mesh in each element type
are presented using Matlab. As the velocity potential is a scalar, trisurf is used
to plot. Whereas the velocity field is a vector, so quiver is used to present the
field.

(a) Velocity potential (b) Velocity Field

Figure 1.4: Results for linear triangular elements

18

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

(a) Velocity potential (b) Velocity Field

Figure 1.5: Results for quadratic triangular elements

(a) Velocity potential (b) Velocity Field

Figure 1.6: Results for linear quadrilateral elements

19

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

(a) Velocity potential (b) Velocity Field

Figure 1.7: Results for quadratic quadrilateral elements

1.5.2 VTK post-process

Paraview is used to read VTK files. The VTK files are generated using Matlab
program named as writeToText.m.It reads data from .dat files which contains the
nodal coordinates, connectivity, velocity potential and velocity field. These .dat
files are saved from the Poisson code poissonFEM.m. The figures below are the
post-process results of the stated problem. The colour map represents the velocity
potential whereas the arrows represent the velocity field.

Figure 1.8: VTK results for linear triangular elements

20

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

Figure 1.9: VTK results for quadratic triangular elements

Figure 1.10: VTK results for linear quadrilateral elements

21

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

Figure 1.11: VTK results for quadratic quadrilateral elements

1.6 Comparison of computation time

The computation time for the Poisson problem using different element types is
tabulated in 1.7.

Table 1.7: Description of different cases and their CaseNum

Description Time Description Time
in seconds in seconds

Linear triangular elements Linear quadrilateral elements
Mesh 1 0.13 Mesh 1 1.06
Mesh 2 0.17 Mesh 2 0.27
Mesh 3 0.49 Mesh 3 0.33
Mesh 4 1.17 Mesh 4 1.11
Mesh 5 2.26 Mesh 5 1.92

Quadratic triangular elements Quadratic quadrilateral elements
Mesh 1 0.16 Mesh 1 0.20
Mesh 2 0.31 Mesh 2 0.26
Mesh 3 1.36 Mesh 3 0.89
Mesh 4 7.67 Mesh 4 4.02
Mesh 5 71.76 Mesh 5 15.47

22

Programming for Engineers and Scientists: HW 1 Matlab Homework 1

1.7 Conclusion

Matlab program is developed to solve the 2D Poisson problem is solved to obtain
potential flow around an object using finite element method using both triangular
and quadrilateral element types with linear and quadratic orders of approximation.
The correctness of the code is tested using convergence study and it is found that
the errors converge asymptotically to at the desired rate. Post-process results from
both Matlab and paraview are presented and computation times are compared for
different element types.

23

	Contents
	Homework 1
	Problem Description
	The Poisson's equation
	Structure of the program
	User Defined Data
	Processing user defined data
	Creating reference element
	Preprocessing boundary data
	Computation
	Post-process

	Convergence test
	Convergence test with example problem

	Post-processing
	Matlab post-process
	VTK post-process

	Comparison of computation time
	Conclusion

