
Polytechnic University of Catalonia

Msc. in Numerical Methods

Programming for Engineering and Science

Homework 1: "Matlab and FE"

Albert Capalvo and Lisandro Roldan

February 29, 2016

1 Introduction

A Matlab program for solving temperature di�usion problems was developed. Some incomplete code
was provided by the professors for the solution of a 2D problem using quadrilateral linear elements.
That code was modi�ed and extended in order to solve the same problem with di�erent 2D and 3D
�nite elements and exporting its results for visualization using Paraview.

2 Code description

The whole set of Matlab �les can be downloaded from the following GitHub repository:
https://github.com/lisandroroldan/PES_HW1_Roldan_Capalvo

The principal program consists on a main �le, several functions and input data. All of them can be
found in the folder SS_ General.
Additionally folders SS_ GiD and FEM.gid contain the �nite element program and GiD Problem type
that was used to generate additional meshes and reference results.

2.1 Main program - part 1

File: main.m

When executed, the user will �nd a message on the console asking for the name of the problem to be
solved.
Using the load function, the problem's geometry (node location and connectivity matrices ) and groups
that de�ne the boundary conditions are imported from data �les and converted into Matlab variables.
Automatically, the program will identify the element type to be used. The following types of elements
are allowed:

2D Elements

• Triangular linear (3 nodes)

• Triangular quadratic (6 nodes)

• Quadrilateral linear (4 nodes)

• Quadrilateral quadratic (8 nodes)

1

https://github.com/lisandroroldan/PES_HW1_Roldan_Capalvo


3D Elements

• Tetrahedral linear (4 nodes)

• Tetrahedral quadratic (8 nodes)

• Hexaedron linear (8 nodes)

• Hexaedron quadratic (20 nodes)

From then on, the implemented code will vary depending on the number of dimensions of the problems
and the element type selected.
The code executes several functions in order to solve the Finite Element problem, which will be
explained below.

2.2 Calculation of number of integration points

File: numbero�ntegrationpoints.m

This function uses the known number of dimensions and amount of nodes per element to return the
number of Gauss quadrature integration points to be used.

2.3 Position of Gauss points in normalized coordinate system and integra-

tion weights

Files: integrationpoints.m / integrationweights.m

With the same input variables than the last function plus the number of Gauss points, this functions
returns a matrix with the standard coordinates for the element in the normalized space and a vector
with the weights needed to perform the integration using Gauss quadrature.

2.4 Shape functions and their derivatives

File: shapefunctions.m / shapefunctionderivs.m

Both functions are run inside a loop over the number if integration points, and their outputs are stored
in two matrices.
The input for both are the number of dimensions of the problem, the amount of integration points and
their position in the normalized space.
The functions choose over many prede�ned equations to return the desired shape functions and shape
functions derivatives with respect to the space coordinates.

2.5 System resulting of discretizing the weak form

Files: CreateMatrix.m / MatEl.m / Isopar.m

This group of nested functions take the node coordinates, connectivity matrix, space dimensions, gauss
integration parameters, shape functions and their derivatives to calculate the components of the system
of equations to be solved.
The functions "MatEl" and "Isopar", make the transformation from the normalized space to the real
one and create the local sti�ness matrices and force vectors (in this case the source term is zero, but
it can import the information from a data �le). The function "CreateMatrix" assembles them to get
the global system of equations.

2



2.6 Main program - part 2

File: main.m

Once the global sti�ness matrix, force vector and boundary conditions are obtained, the system is
solved using the "Lagrange Multipliers Method".
Finally, with the known value of the temperature for every node, a postprocess function is called.

2.7 Post-process

File: postprocess.m

This function creates a .vtk �le with a structure and format that is readable by Paraview. Once
again, the form and information of the �le will vary depending on the element type detected at the
beginning. The output result is a �le that contains information about the coordinates of the nodes,
their connectivity, the element types used and the solution of the problem.

3 How of use the program

When the main �le is executed, the user will have to introduce via console the name of the problem
to solve:

Input of problem name

In case that a di�erent problems with di�erent geometries than the provided ones are needed to be
solved, the user will have to copy the input �les into de model and element folder. Their name should
have the structure: Name_ nodes, Name_ groups, Name_ elements and Name_ prop.

Once the program has �nished execution, the user will be asked to input the name of the output �le

Output �le name

The type of element used and the time used for the solving of the problem is informed.

4 Testing and comparison

4.1 Results of the supplied meshes

To test the code, all of the eight meshes and groups provided by the professors were used as inputs
with the same boundary conditions.

3



Top-left: 2D triangular mesh (linear and quadratic); Top-right: 2D quadrilateral mesh (linear and
quadratic); Bottom-left: 3D tetrahedral mesh (linear and quadratic); Bottom-right: 3D hexaedral

mesh (linear and quadratic).

Although graphic results were obtained for all of the meshes, no di�erence can be appreciated graphi-
cally, therefore only two examples are included.

Left: results for 2D quadratic linear elements; Right: results for 3D hexaedral linear elements

Using the function tic-toc of Matlab, the execution time was evaluated, producing the following results:

2D_ TRI_ LIN 0.056 sec 3D_ TET_ LIN 0.516 sec

2D_ TRI_ QUAD 0.149 sec 3D_ TET_ QUAD 4.308 sec

2D_ QUAD_ LIN 0.068 sec 3D_ HEXA_ LIN 0.355 sec

2D_ QUAD_ QUAD 0.189 sec 3D_ HEXA_ QUAD 1.941 sec
Calculation time

To compare the results another mesh, much denser than the evaluated ones, was used as reference for
obtaining the relative error.
Taking advantage that Paraview is able to interpolate the results from the given node values, three
points were used to compare results:

4



Table 4.1: Relative errors, reference mesh: 48.744 tetrahedral linear elements
Problem Type Point 1 (-25,-5) Point 2 (-5,5) Point 3 (-5,25)

Ref 3D tet lin 0,04499 Relative error 0,48364 Relative error 0,96662 Relative error
1 2D tri lin 0,04146 7,83% 0,48607 0,50% 0,96950 0,30%
2 2D tri quad 0,04569 1,56% 0,48097 0,55% 0,96478 0,19%
3 2D quad lin 0,04333 3,68% 0,48393 0,06% 0,96756 0,10%
4 2D quad quad 0,04489 0,21% 0,48185 0,37% 0,96562 0,10%
5 3D tet lin 0,04170 7,31% 0,48624 0,54% 0,96960 0,31%
6 3D tet quad 0,04375 2,74% 0,48497 0,27% 0,96797 0,14%
7 3D hex lin 0,04506 0,17% 0,48235 0,27% 0,96584 0,08%
8 3D hex quad 0,04501 0,04% 0,48266 0,20% 0,96613 0,05%

Points used for comparison

They were chosen in those positions to see the e�ect that the shape of the boundary produces on the
result precision.

It can be observed that the results have bigger error when a point near the curved boundary is
evaluated. Specially linear triangles and tetrahedral elements present important di�erences as the
values of the temperature are further from the reference.

4.2 Study of the rate of convergence

In order to guarantee that the solutions provided are correct is important to check that the solution
is converging. To do so, meshes were repeatedly re�ned and for each average size h the relative error
was computed, using as reference the results of the �nest mesh within the same type of elements.

The variable of interest is the temperature at point 3, and the study was only carried out for 2D
elements, mainly because the 3D comparison would be incomplete as the external preprocessor used
(GiD) had problems meshing with linear and quadratic hexahedral.

5



10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−0.1

10
0.1

10
0.3

10
−5

10
−4

10
−3

10
−2

10
−1

Mean mesh size h

R
el

at
iv

e 
er

ro
r

 

 

Linear triangles
Quadratic triangles
Linear quadrilaterals
Quadratic quadrilaterals

Mesh convergence study

Taking a look on the completeness of the shape functions for all the elements under study, the expected
rate of convergence is O(h2) and O(h3) for linear and quadratic shape functions respectively. Also
quadrilateral are expected to have fairly better convergence due to the fact that their shape functions
include some high order terms.

After carrying out the simulations, it can be observed in the picture above that while all types of
element have a tendency to converge, the rate at which they do it is not the expected one(all of them
present a slope of ∼1.5). This fact could be explained by the existence of noise sources product of the
curved geometry or the accuracy of the solver.

5 Challenges encountered

There were several challenges to be sorted. First, the understanding of the basic algorithm for a simple
case of rectangular 2D geometry with linear rectangular elements.

Then, extending the program to work also in 3D and all of the element types described bellow. It is
important to remark that the original �les had errors in the functions shapefunctions.m and shapefunc-
tionsderiv.m, which lead to incoherent results. Their identi�cation and corrections took a considerable
amount of time.

Also, a GiD problem type was developed. A new model with the same geometry was created and
denser meshes were obtained in order to obtain the reference to calculate the relative error, for �nally
performing the mesh dependency study. The latest has not been carried out for hexahedral elements
as GiD presented problems meshing it.

Finally, it was also coded a routine to compute the exact number of non-zeros values that the sti�ness
matrix would have so that an exact allocation could take place.

6 Further work

Some of the improvements that can be implemented in the code are:

6



• Change the method for applying the Dirichlet BC. Using Lagrange multipliers method sets
the Boundary conditions as additional equations making the system bigger than the original.
Applying other methods as system reduction would probably add up to a better performance.

• Implement an iterative solver for large systems of equations, as the current way for solving the
system of equations is the Matlab operator backslash which relies on direct methods. At some
point during the coding it was tried to implement the conjugate gradient method, and although
it gave acceptable results, its lack of performance in time and memory consumption made it be
discarded.

• Adding computations in parallel. Taking advantage of the matlabpool commands some improve-
ments in performance could be done through the use of parallel computations. Although this
may be easier for computing the sti�ness matrix as it can be split in concurrent operations,
applying parallelization in the solving process is far from our capabilities at he time being.

• Extending the comparison of the element types to one considering the elapsed time.

• Incorporate a source term handling in the program.

7 Conclusions

In this work a simple FEM code for solving Laplace's problem with 2D quadrilateral elements was
studied, understood and further extended to other types of elements. Also some performance im-
provements, such as the implementation of sparse sti�ness matrices to reduce memory allocation, were
carried out.

A GiD problemtype was developed to perform a convergence study with di�erent types of elements
and mesh densities. From its result, it became evident that the convergence rate was not the expected
one, although all the elements do show convergence; which guarantees that the solution obtained after
re�ning the mesh tends to the exact solution.

Finally, its important to note that the project was carried out using Git and Github, which proved to
be an outstanding tool for version control and collaborative work.

7


	Introduction
	Code description
	Main program - part 1
	Calculation of number of integration points
	Position of Gauss points in normalized coordinate system and integration weights
	Shape functions and their derivatives
	System resulting of discretizing the weak form
	Main program - part 2
	Post-process

	How of use the program
	Testing and comparison
	Results of the supplied meshes
	Study of the rate of convergence

	Challenges encountered
	Further work
	Conclusions

