
Homework 1
Programming for Engineers

Corbella Coll, Xavier
xcorbellacoll@gmail.com

Komala Sheshachala, Sanjay
sanjayks01@gmail.com

February 29, 2016

https://github.com/sanjayks01/Homework1.git

Abstract

A steady-state scalar diffusion equation is solved with inlet, out-
let and homogeneus essential boundary conditions as defined in the
problem statement. A single MATLAB code capable of solving the
problem for given 2D/3D geometry using tri/quad or tetra/hexa ele-
ments is developed. As an additional feature, coupling with prepro-
cessing capabilities of GiD is introduced, enabling the user to input
desired geometry with user-defined boundary conditions. This also
allows for mesh refinement up to desired level of solution accuracy
based on which a convergence study was performed to comment on
the accuracy of the solution.

1 Introduction
Scalar diffusion is observed in many physical phenomena such as spatial
temperature distribution, mass diffusion, etc. We solve the problem nu-
merically using FEM with MATLAB as our tool. The equations governing
the physics are given below:

∇ · (µ∇u) = s in Ω (1)
u = 1 on Γinlet (2)
u = 1 on Γoutlet (3)

(µ∇u) · n = 0 otherwise (4)

1

https://github.com/sanjayks01/Homework1.git


Figure 1: Geometry and boundary conditions

Source term s = 0 and diffusivity µ = 1 are given. The geometry with
boundary conditions for the given problem are shown in Fig. 1.

In this document, we begin with describing the code structure and the
versioning strategy followed. We then elucidate the method of using the
code. We then move on to detail the testing procedure followed, the chal-
lenges encountered and overcome. In the final section, we make the code
more versatile by providing additional GiD integration. We explain how
GiD was utilized to expand the preprocess capability for the MATLAB
solver and use it to comment on solution accuracy with mesh refinement.

2 Code Development
This section deals with explaining the main structure of the code. Al-
though the additional features of GiD integration is explained mainly in
the succeeding section, we briefly explain how it is linked to the main code
here. Also, we guide you through the work-flow of the code, highlighting
the challenges encountered while formulating it and how it was overcome.

2.1 Code description and usage

The main file is ’main.m’. This functions ask for the name of the input
files provided by the user input for the specific problem to be solved and
outputs a .vtk file that can be read by Paraview for post-processing. The
name of the input files accounting for the meshes and boundary conditions
provided in the statement of the problem are the following:

1. C2D3: Continuum 2D element with 3 dof (linear triangle)

2. C2D6: Continuum 2D element with 6 dof (quadratic triangle)

3. C2D4: Continuum 2D element with 4 dof (linear quad)

2



4. C2D8: Continuum 2D element with 8 dof (quadratic quad)

5. C3D4: Continuum 3D element with 4 dof (linear tetrahedra)

6. C3D10: Continuum 3D element with 10 dof (quadratic tetrahedra)

7. C3D8: Continuum 3D element with 8 dof (linear hexahedra)

8. C3D20: Continuum 3D element with 20 dof (quadratic hexahedra)

Every problem needs 4 input files: a file containing the connectiv-
ity matrix (‘elem_filename’), another containing the coordinates of the
nodes (’nodes_filename’) and two more containing the nodes where Dirich-
let boundary conditions are imposed (’inlet_filename.dat’ for inlet, ’out-
let_filename.dat’ for outlet). The input files for the problems defined above
are contained in the ’Model’ subfolder. Nodal coordinates, connectivity,
nodes of the input and output boundaries are obtained from these files
which are of plain-text format.

After asking for the name of the input files, the program reads them,
extracts the information related to the number and type of elements, num-
ber of nodes and dimensions of the problem. Once the element type to be
used is known, the code calls the suitable Matlab function containing the
reference element data. These functions can be found in the ‘Elements’
subfolder. They are labelled according to the dimension and number of
nodes and contain the coordinates and weights of the Gauss points, values
of shape functions and shape function derivatives, which are required for
computing the stiffness matrix and force vector. It is to be noted that the
variable ‘type’ is required for writing the .vtk file for Paraview, and not
necessary for computing the solution.

These input data are used to define the general system of equations
without boundary conditions. To do so, the function ‘CreateMatrix.m’ is
called. This function builds the elemental contributions calling the func-
tions ’MatEl2D.m’ for 2D or ‘MatEl3D.m’ for 3D problems, and then as-
sembles the global system.

After that, the boundary conditions are implemented and the linear sys-
tem is ready to be solved. After solving the system, the results are written
onto a .vtk file using the template files ‘geo2D_vtk.m’ and ‘geo3D_vtk.m’.
The structure of these files were determined from the desired output file
from the solver required for Paraview.

For other user generated (using GiD) preprocess files containing mesh
data with boundary conditions, the subfolder ‘GiD’ has selected examples
which where created using GiD. The implementation and utilisation of a
’GiD’ problem type is explained further in section 3.

Hence the program performs the calculations for problem geometry and
user-defined geometry and boundary conditions. The ‘main.m’ file gives

3



a one click solution in the form of .vtk file that can be visualized using
Paraview. For the sake of convenience, we have included all the .vtk files
generated for the different cases for ready solution visualization. They are
placed in the ’Paraview’ subfolder.

2.2 Code versioning and testing

The code was versioned and tested using ’github’. The versioning strategy
followed is as indicated below:

1. The solution was first solved for 2D cases (problems beginning with
C2). This included adding new geometry files and boundary condition
files from the files provided in the statement of the problem. Also
the Matlab functions to account for the shape functions and shape
functions derivatives for each of the element types required to solve
the problems provided were designed. The generic ‘geo2D_vtk.m’
file had to be designed to create the output files for the various 2D
cases.

2. The solution was extended to 3D cases (problems beginning with C3).
This required adding the files for input, reference element files and
the ‘geo3D_vtk.m’ file for 3D cases.

3. The next addition was the GiD files and examples. Also tweaking the
code for troubleshooting (correcting the incorrect definition of shape
functions for C2D6)

4. Code beautification to improve readability and adding comments to
code block to improve understanding was carried out. Files were
organized into relevant folders for easy segregation.

5. In the final stage, files related to convergence study of GiD examples
were added.

Testing was carried out before each commit to github. This eliminated
carrying forward bugs in the code. This was done by running the examples
to make sure correct results were obtained.

Several challenges were encountered and overcome during the project.
They turned into meaningful learning outcomes for the authors. These can
be summarized as below:

1. To generate the vtk files, we had to write a generic program ‘geo2D_vtk.m’
and ‘geo3D_vtk.m’ which required us to learn the vtk documentation
of Paraview.

4



2. The code organization required ‘cleaning’ of input files to make them
ready for use in the code. This showed us the importance of code
interoperability and how this can be a big bottleneck in huge projects.

3. Creation of Elements with specific format of output of variables such
as shape function, its derivative, Gauss point definition required to
study the solver requirement of these variables. Learning this gave
deep insight into the working of the solver as a whole.

4. As the project grew in size, we learnt to organization and versioning
is key for an smooth execution of tasks.

5. Addition of GiD problemtype was a problem extension that provided
us with an opportunity to enhance our experience with GiD and
appreciate its utility as a preprocess tool.

3 Additional Capabilities

3.1 Pre-process: GiD

The Matlab code developed can be easily used to solve for the steady-state
scalar equation when having the 4 required input data files. However,
generating these files for a new model is quite hard, especially when a high
number of nodes must be used. This problem can be solved using a pre-
process software that can create a geometry, apply the boundary conditions,
mesh the domain following the parameters given by the user and then write
all this information into the input files used by the Matlab code. One of
the softwares that can do this is GiD. GiD is a pre/post-processor that can
be customized to be used for different solvers, and presents a wide range
of possibilities and features.

In this work, a simple GiD problem type was implemented. This prob-
lem type is included in the github folder, and its name is Homework1.gid.
In order to be used, it must be copied into the "problemtypes" folder in
the GiD installation folder.

This problem type can be used to generate the data files that will be read
by the solver for 2D and 3D geometries with simple boundary conditions
(1 inlet, 1 outlet and homogeneous natural boundary conditions).

To solve a problem using GiD and the solver implemented in Matlab,
the next steps must be followed:

1. Create a 2D or 3D geometry.

2. Apply boundary conditions: Inlet and outlet.

3. Select the type of element and its size and mesh the domain.

5



Figure 2: Location of the point x=0,y=0

4. Click the "Calculate" button and GiD will automatically write the
input files for the solver.

5. Copy the input file to the Solver’s folder and solve the problem using
the Matlab code.

3.2 Convergence study

The GiD problem type implemented was used to study the convergence
of the different elements for 2D problems (linear and quadratic triangles
and quadrilaterals). To do so, a steady-state diffusion problem was solved
in the same domain as before (see Fig. 1 ), and the solution obtained at
x=0,y=0 (see Fig. 2) was compared for different element types and sizes.
The results obtained are depicted in Fig. 3 and Fig. 4. The relative errors
are computed with respect to the results obtained using quadratic triangles
and 80563 nodes.
The convergence plots show that the accuracy obtained with second order
elements is better than for linear elements, especially for finer meshes. If
comparing the linear elements, the errors obtained with the 4-node quadri-
lateral are larger than those obtained using 3-node triangles. The same
behaviour is observed for quadratic elements: The accuracy obtained with
the 8-node quadrilateral is lower than the accuracy of the 6-node triangle.
The order of convergence can be approximated as the slope of the logarith-
mic plot. As is shown in the figures, the average slope obtained with the
linear elements is around 0.8, so they can be considered as linear. For the
8-node quadrilateral, the average slope obtained is 1.5, while for the 6-node
triangles it is 1.8, almost second order.

6



Figure 3: Relative error vs Element Size

Figure 4: Relative error vs number of nodes

7



4 Results for the given models
The results obtained with the 8 different meshes given are depicted here.
The results obtained for all the cases look similar.

Figure 5: u for linear triangles

8



Figure 6: u for linear quad

9



Figure 7: u for 6-node triangles

10



Figure 8: u for 8-nodes quads

11



Figure 9: u for linear tetrahedras

12



Figure 10: u for linear hexahedras

13



Figure 11: u for 10-node tetrahedras

14



Figure 12: u for 20-nodes hexahedras

15


	Introduction
	Code Development
	Code description and usage
	Code versioning and testing

	Additional Capabilities
	Pre-process: GiD
	Convergence study

	Results for the given models

