
250995 - Programming for Engineers and Scientists
Universitat Politècnica de Catalũnya (UPC)

Assignment 1, Design of a FE program

Simen Lieng - slieng8@gmail.com
Nicolas Andre Caronte Grønland - nagronla@stud.ntnu.no

Contents

1 Introduction 2

2 Methodology 3
2.1 Structuring the inputs . 3
2.2 Defining the mesh . 3
2.3 Defining the amount of integration points 4
2.4 Defining the reference element . 4
2.5 Constructing K and f . 4

2.5.1 Define the Jacobian Matrix . 5
2.5.2 Establish the Ke matrix . 5
2.5.3 Assemble Ke into global K matrix 5
2.5.4 Establish the f e vector . 5
2.5.5 Assemble f e into global f vector . 6

2.6 Applying boundary conditions . 6
2.7 Solving the linear system . 7

3 Dependency graph 7

4 Discussion 8

5 Sources 8

1

1 Introduction

This assignment is the first part of a three-part assigment where the main goal is to code
and beeing able to use a FE program made in MatLAB. The task in the first assigment is
to produce an initial design of the FE program code. This does not include any direct
form for MatLAB codes, and is more like a strategy and explanation of how we choose to
solve the given problem.
The given problem is to make this initial design as flexible as possible. Therefor will the
design consider different possibilities as stated:

• Different domains in both shape and order (1D, 2D and 3D).

• Different elements: 1D bar element. 2D quadrilateral and Triangle elements. 3D
hexahedral and tetrahedral elements.

• Material properties depending on space location.

2

2 Methodology

For our program to solve the linear problem Ku = f , we chose to design one
structure(green) and several functions(blue). Section 3 will show how these are linked
together with each other.

2.1 Structuring the inputs

Structure name: FEinputs
Description: organizes and saves the input parameters
.typeElem returns chosen element type:
1=Bar
2=Quadrilateral
3=Triagnle
4=Hexahedral
5=Tetrahedral
.orderElem returns the chosen order, 1 or 2
.BCs returns chosen boundary conditions
Dirichlet: Prescribed u-values
Neumann: Fluxfunction and boundary

.s returns s(x,y) as function or value

.scalar returns µ as a scalar

2.2 Defining the mesh

Function name: defineMesh
Description: takes the chosen element type and order, defines a
mesh and spits connectivity matrix and coordinates related to every
node.
Inputs: FEinputs.typeElem, FEinputs.orderElem
Outputs: T,X
Uses: none
Used by: none
Comments: The function will only be used once.

3

2.3 Defining the amount of integration points

The amount of integration points is dependent on which element is chosen, as well as the
order of the element. We chose the Gauss Quadrature Rule to evaluate how many
integration points we need for the given element. Gauss quadrature rules are designed to
integrate exactly a polynomial of degree 2n − 1 by choosing n integration points (Gauss
points).

Function name: quadrature
Description: takes the chosen element type and order, defines the
needed amount of integration points and spits coordinates Zg and
weights wg for reference element.
Inputs: FEinputs.typeElem, FEinputs.orderElem
Outputs: Zg, wg

Uses: none
Used by: none
Comments: size of both Zg and wg depend on the amount of inte-
gration points and will be general for all elements.

2.4 Defining the reference element

By using isoparametric mapping, every element in the established mesh could be
described by using one reference element. This reference element is based on the element
shape and order chosen as input.

Function name: referenceElement
Description: takes the chosen element type and order, and spits
shape functions and their derivatives evaluated at Zg. Additionally it
will spit s evaluated at Zg.
Inputs: FEinputs.typeElem, FEinputs.orderElem, FEinputs.s
,Zg

Outputs: N, dN, s
Uses: none
Used by: none
Comments: the outputs are general for all elements.

2.5 Constructing K and f

When the reference element is established, the next step is to construct the K and
f-matrices. This is done element by element in a for-loop containing the following
functuons.

4

2.5.1 Define the Jacobian Matrix

Function name: elementJacobian
Description: takes derivatives of shape functions evaluated at Zg

together with the global coordinats of the nodes and spits inverse of
jacobian and jacobian determinant for an element.
Inputs: dN, X
Outputs: iJ, det(J)
Uses: none
Used by: none
Comments: will be called once for every element(for-loop).

2.5.2 Establish the Ke matrix

Function name: elementK
Description: takes weights, inverse jacobian, derivatives of shape
functions, scalar, the determinant of the jacobian and spits the K-
matrix for each element.
Inputs: FEinputs.scalar, wg, iJ, det(J), dN
Outputs: Ke

Uses: none
Used by: none
Comments: will be called once for every element(for-loop).

2.5.3 Assemble Ke into global K matrix

Function name: AssembleK
Description: takes the K-matrix for each element and its correspond-
ing connectivity matrix to assemble the system K-matrix.
Inputs: Ke, T
Outputs: K
Uses: none
Used by: none
Comments: will be called once for every element(for-loop).

2.5.4 Establish the fe vector

Function name: elementF
Description: takes weights, inverse jacobian, the determinant of the
jacobian, shape functions, s-function and spits the f-matrix for each
element.
Inputs: FEinputs.s, wg, iJ, det(J), N
Outputs: fe

Uses: none
Used by: none
Comments: will be called once for every element(for-loop).

5

2.5.5 Assemble fe into global f vector

Function name: AssembleF
Description: takes the f-matrix for each element and its correspond-
ing connectivity matrix to assemble the system f-matrix
Inputs: fe, T
Outputs: f
Uses: none
Used by: none
Comments: will be called once for every element(for-loop).

2.6 Applying boundary conditions

This program can solve the linear system with either Dirichlet or Neumann boundary
conditions. Corresponding functions will be used depending on the chosen method.

Function name: Dirichlet
Description: takes in the prescribed unknowns ui = α, the system
K-matrix, and the system f-matrix. The column in the K-matrix
corresponding to the prescribed unknowns will be deleted from the
K-matrix and the outputs will be these columns multiplied by α. The
rows corresponding to the prescribed unknowns will also be deleted
from the K-matrix, f-matrix and unknowns.
Inputs: FEinputs.BCs, f , K
Outputs: Dirichlet, Knew, fnew

Uses: none
Used by: none
Comments: Dirichlet is a vector and will be put on the right hand
side of the linear system.

To use the Neumann boundary conditions the following two functions must be looped for
every element on the Neumann boundary.

Function name: elementNeumann
Description: localizes a "new" mesh consisting of the edge of the
elements that intercepts the Neumann boundary q. For every element
along this boundary, there will be computed a integral along its
intersection edge. The integral is solved using shape functions and
a quadrature rule. This spits a vector containing the result of the
integration along the element edge.
Inputs: q, X, T
Outputs: Neuel

Uses: none
Used by: none
Comments: will be called once for every element along the Neumann
boundary (for-loop).

6

Function name: AssembleNeumann
Description: takes the Neuel-vector for each element and its corre-
sponding connectivity matrix to assemble the system Neu-vector.
Inputs: Neuel, T
Outputs: Neu
Uses: none
Used by: none
Comments: will be called once for every element along the Neumann
boundary (for-loop). Neu is a vector and will be put on the right
hand side of the linear system.

2.7 Solving the linear system

When the global linear system is established, the system can be solved by using functions
integrated in the MatLAB software. There will be two possible linear systems depending
on the boundary conditions:

Knewu = fnew − Dirichlet (1)
Ku = f + Neu (2)

3 Dependency graph

Figure 1: Illustration of the dependency between the functions and the structure.

7

4 Discussion

When assessing the solutions we’ve chosen, we think its reasonable to look at our lack of
experience to rather advanced programming. Therefore we chose to divide the program
into several smaller functions, to make the program easier to understand and less
complicate to detect any errors. An alternative solution would have been to make larger
functions with more code, roughly doing the same as a few of ours. This could have given
a more compact and computationally cheaper code. The structure used is only to save
input variables. This is the first time using this kind of data type, and were therefore not
used more than once.

Furthermore, the functions regarding the boundary conditions are prone to some
modification. Our experience with finite element method is limited and we are therefore
not completely sure how to implement these exactly. This is especially true for the
Neumann-part and how to implement or mesh the respective boundary.

Lastly, the functions are each described by a similar box as in the example from the first
MatLAB-presentation. A part of the exercise was to identify if a given function uses some
of the functions in the program. To clarify why none of our functions are either used by
or uses other functions, is because none of them calls directly upon another given function.
This does not mean there is no dependency of the functions, because quite a few uses the
actual output from other functions. The output is saved directly in the MatLAB-program,
and therefore makes it unnecessary to call upon the other functions. The actual
dependency of the functions and the structure can be shown in the dependency graph.

5 Sources

The only sources used for this assignment is the two powerpoints about MatLAB found in
Cimne.

8

	Introduction
	Methodology
	Structuring the inputs
	Defining the mesh
	Defining the amount of integration points
	Defining the reference element
	Constructing K and f
	Define the Jacobian Matrix
	Establish the Ke matrix
	Assemble Ke into global K matrix
	Establish the fe vector
	Assemble fe into global f vector

	Applying boundary conditions
	Solving the linear system

	Dependency graph
	Discussion
	Sources

