
Homework 2 - Part A
Programming in Science and Engineering

Nino Guzmán: ninogdo@ciencias.unam.mx

May 2020

1 Introduction
The object-oriented programming (OOP) is useful for the implementation of large and complex
programs, and it allow us to extend the program in a natural and easy way. Moreover, it maximize
the reuse of the code and it has a nice integration between theory and implementation.

In this work we are going to give the general structure of a FEM program that will be imple-
mented afterwards in C++ language. We are going to discuss the general features of this approach
and compare it with the implementation done in the previous assignments.

Let us recall the some definitions that will clarify the proposed structure:

Class: It is a user-defined data type, which holds its own data members and member functions,
which can be accessed and used by creating an instance of that class.

Object: It is an instance of a class. When this happens then memory is allocated.

The implementation is going to exploid the features of classes in the OOP:

1. Encapsulation: It is used to show only the essential information about the data, hiding details
or implementation using abstraction.

2. Polymorphism: It allows to group and use different objects from derived classes and give
them same interface.

3. Inheritance: It refers to new classes that inherits methods and data templates from other
classes.

2 List of classes
The classes proposed afterwards can be divided into three main groups, depending on their main
objectives, that are: FEM classes, Numerical classes and Analysis classes, similar to what it is
proposed in [1].

2.1 FEM classes
The list of classes proposed in this section are basically the same that are found in the literarute.
The Node class will represent a discrete point in the space with the number of degrees of freedom
(nDOF) as the main attribute along their coordinates. In order to take into account the dimension
of the problem we could use the constructors of the Node class.

1



Class Node
Attributes

• nDOF

• nodes coordinates

Methods

• getNodeCoordinates()

• getLocalNumbering()

• getnDOF()

• evaluateVariable()

• fixValue()

The Element class will performe basically the main computations of the matrices derived from
the discretization. For this we present only the method computeMatrix() but we must keep in mind
that this can be done to any kind of matrix (stiffness, mass, damping ...). This class will play the
role of the reference element so it is going to be related with the Node, Shape, IntegrationPoint,
Material and Domain classes.

Class Element
Attributes

• Type of element

• Dimension

• Numbering

• Interpolation

• Number of nodes

• Number of DOF

Methods

• getNodes()

• getNodesCoordinates()

• getnDOF()

• computeMatrix()

• computeSourceterm()

• computeBoundaryConditions()

The Shape will contain the geometric and interpolation aspects of the element. It can be de-
fined in an abstract way such that their derived classes contain the information about the dimension
(1D,2D, 3D), the interpolation order, the basis functions, their derivatives and the Jacobian.

Class Shape
Attributes

• Dimension

• Interpolation order

• Basis functions

• Jacobian

• Number of integration points

Methods

• evaluateShapeFunctions()

• evaluateDerivatives()

• computeJacobian()

The IntegrationPoint class holds the parametric coordinates and the corresponding weights
in order to compute the numerical integration.

Class IntegrationPoint
Attributes

• Parametric coordinates

• Weights

Methods

• computeQuadrature()

• evaluteAtIP()

The Material class will contain the information about some properties of the material that
are going to be evaluated at the nodes.

2



Class Material
Attributes

• Property

• Nodes

• Number of DOF

Methods

• evaluateProperty()

The BoundaryConditions are imposed at the nodes in some specific part of the domain. The
derived classes will carry the methods depending on the type of boundary conditions we have. Two
main BC are consider Dirichlet, Neumann but we can extend it as needed. For instance add
Robin conditions.

Class BoundaryConditions
Attributes

• Type of boundary conditions

Methods

• getBC()

Class Dirichlet
Attributes

• Nodes

• Number of DOF

Methods

• setValues()

Class Neumann
Attributes

• Nodes

• Number of DOF

Methods

• setRelation()

• computeContributionMatrix()

• computeContributionSourceterm()

The Domain class will contain the rest of the FEM classes. We can acces to the component of
the Domain through their methods.

Class Domain
Atributes

• Number of Elements

• Number of Nodes in elements

• Element numbering

• Nodes numbering

• Physical coordinates

Methods

• addElement()

• removeElement()

• getNodes()

• getElement()

• getBoundaryNodes()

2.2 Analysis classes
The Analysis classes will perform a similar analysis of what is done in the postprocess in the
previous assignments. It will compute the convergence of the method.It can also perform the
smoothing.

Class Error
Atributes

• Numerical solution

• Analytical solution

• Number of DOF

Methods

• computeError()

3



2.3 Numerical classes
Finally the Numerical classes will perform the main computations in order to solve the linear (or
non-linear) system of equations.

Class LinearSoE
Atributes

• Matrices

• Source term

• Unknown

Methods

• solveSystem()

3 Diagrams
In this section we present the hierarchy diagram along the inheritance diagrams using the classes
proposed before. We also proposed an alternative scheme adding some classes and their corre-
sponding diagram.

Let us explain the type of relations between the classes:

1. knows-a This relation exhibits the knowledge between objects from different classes. It is
represented by a line between two classes (–).

2. is-a. This relations exhibits inheritance, and it consists when a class (descendent) can be
derived from another class (ancestor). It is represented by a line ending in a triangle (4).
For instance, class Element is inherited by class Domain.

3. has-a. This relation represent an aggregation, and it consists when a class is made up from
objects from other classes. It is represented by a line ending in a diamond symbol (♦).

In the first diagram (1) we show the inheritance and the hierarchy diagram using the classes
previously mentioned.

FEM

Element

Domain

Nodes

Shape Integration Point Material

Analysis Numerical

Error LinearSoE

Boundary
Conditions

Dirichlet

Neumann

Figure 1: Hierarchy diagram showing inheritance and aggregation.

In the second diagram (2) we consider an additional Model class that will help pus to construct
the model, as it is proposed in [2]. This class is defined in an abstract way and has no implemen-
tation. In this alternative we also consider additional boundary conditions and the Smoothing
class within the Analysis classes.

4



Class Model
Attributes

• Type of model

Methods

• buildModel()

FEM

Element

Domain

Nodes

Shape Integration Point Material

Analysis Numerical

Error LinearSoE

Boundary
Conditions

Dirichlet

Neumann

Model

Robin

Smoothing

creates

Figure 2: Hierarchy diagram showing inheritance and aggregation with additional classes

4 Conclusions
In this work we presented a design for finite element analysis using an object-oriented programming.

The proposed design is manly based on the one proposed [2], nevertheless we use some other
classes mentioned in [1] and [3]. We think that a good property to this proposal is that it clarifies
some aspects about the definition of the classes done in [2] and it is more flexible. The way in which
is designed makes it easyly comparable with the previous implementations done in MATLAB.
We also consider a second alternative adding some classes that can be useful according to the
considered problem.

Some drawback about our design are: first, we could loss some consistency when we consider
additional classes, or when we modify the cited approaches, so we must keep in mind this issue
when we perform the implementation. Second, as it is exposed in the literature, [1], [2], [3], [4] they
consider some specific aspect about the physical model, mainly about mechanical (elastic) mod-
els. In our approach we lack this information. And finally we lack some specifications about the
attributes and methods in the classes, but this will be done when we present the implementation
details.

5



References
[1] F. McKenna, Object-Oriented Finite Element Programming: Frameworks for Analysis, Algo-

rithms and Parallel computing , (1997)

[2] L. F. Martha, E. P. Junior An Object-Oriented Framework for Finite Element Program-
ming, (2002)

[3] T. Zimmermann, Y. Dubois-Pelerin & P. Bomme Object-oriented finite element program-
ming: I. Governing principles, (1991)

[4] T. Zimmermann, Y. Dubois-Pelerin Object-oriented finite element programming: III. An
efficient implementation in C++ , (1992)

6


	Introduction
	List of classes
	FEM classes
	Analysis classes
	Numerical classes

	Diagrams
	Conclusions

