
Programming for Engineerings and Scientist
Universitat Politecnica de Catalunya

Assignment 2.b

Federico Parisi
Jor Fergus Dal
Nadim Saridar
Aren Khaloian

14-06-2020

Contents

1 Abstract 1

2 Statement 2

3 The Code 4
3.1 Code Changes . 4
3.2 Eigen Library . 4
3.3 Classes . 5

3.3.1 Shape Functions . 5
3.3.2 Stiffness Matrix . 6
3.3.3 Force Vector . 6

3.4 Main . 7
3.4.1 Input/Output . 9

4 Problems 11
4.1 Eigen Problem . 11
4.2 Class and Structure Problems . 11

5 References 12

ii

1. Abstract

In this report it will be described a finite elements (FE) code in C++. There will be shown the definition of
the classes in C++ language, then how they will interact each other in the main code.
Due to problems with the compiler and with some additional functions, we have not been able in writing a
complete working FEM code. This is the reason why in this report, will be reported only the main components.
Moreover, the problems encountered during the development of the above mentioned code are reported in a
specific chapter.

1

2. Statement

In fluid dynamics, potential flow describes the velocity field as the gradient of a scalar function: the velocity
potential. As a result, a potential flow is characterised by an irrotational velocity field, which is a valid
approximation for several applications. In this homework, you have to determine the potential flow around an
object solving the following two-dimensional Poisson problem:

∆u = 0 in Ω,

∇u · n = −1 on Γin = 0 X (0, 1),

∇u · n = 1 on Γout = 1 X (0, 1),

∇u · n = 0 on ∂Ω\(Γin

⋃
Γout,

u(0, 0) = 0

(2.1)

where Ω is the computational domain shown in figure 1, ∂Ω its boundary and n is the outward unit normal
vector. The velocity field is obtained in terms of this potential as:

vx =
∂u

∂x
vy =

∂u

∂y
(2.2)

You have to account for the following features in the code:

• Load the computational mesh from input files

• Use triangular and quadrilateral elements, of degree one and two

• Write the results in a vtk file that can be used to display results in Paraview

• Perform a convergence analysis for the different elements, using as a reference solution the one on the
finer mesh you can compute with

Several meshes are provided to test your code. In particular, for each type of element you are given 5 different
meshes. Note that the i-th mesh has approximately the same number of nodes for all the element’s types and
you can make comparisons of the solutions, running time, accuracy, etc. Please enclose a report describing
your code, how to use it, how you tested it, etc. Take into account that the structure, presentation, readability,
etc. of the program will be evaluated (not only correctness) together with the report.

2

Figure 2.1: Scheme of the Geometry

3

3. The Code

Following the structure explained in the previous assignment, and considering the nature of the C++ language,
the code has been structured in object classes.
These classes are described below and shown the implementation in C++.
Unfortunately we encountered some issues in adding the Eigen library in the Qt creator environment. We
managed to add this library in another environment, called Visual Studio. The problem about this second
compiler is that is not very straight forward to use, and so we didn’t manage to implement the code.
However, in this report we will show the lines of C++ code which define the classes, taking into account the
Eigen cases working.

3.1 Code Changes

From the previous code design, some changes have been done. Instead of having two classes, we now have five.
One major reason for this change is that we decided to use the Eigen library, which already has a very smart
an efficient matrix class definition. This lead us to rethink which classes to include. In particular we now have
a problem class which incorporates the reoccurring variables they are inherited by other classes. Moreover, we
have a shape function/reference element class which gives the relevant shape functions and jacobian matrix.
And finally we now also have a separate class with the boundary conditions.

3.2 Eigen Library

In this section we will explain a little bit the Eigen library and its functions, in order to have an idea of why
the code is hugely more complex to implement without this feature.
This library allows the users to operate within matrices and complex numbers. One of the main differences
between MATLAB language and C++ are some predefined functions. For example Matlab can operate between
matrices without any library implementation needed. On the other hand, C++ needs libraries for everything
is needed to do. For examples it doesn’t support operations between matrices, decompositions etc, if not with
the suited library.
Unfortunately, in a Finite Elements code, the operations are based on operations between matrices. If we think
at the final system to be solved:

Ku = f

in which K is the global stiffness matrix, and it is assembled as a composition of elements matrices. Doing
this without the Eigen library is highly complicated and requires defining our own matrix classes and linear
operations.
This is the reason why we will consider this library working even if it is not. By the way we will not have any
consistent results, so here will be reported only a rough structure of a Finite Element solver.

4

Once this library working, it can be tested.
In Figure 3.1 is shown the error message in Qt creator regarding the missing Eigen library.

Figure 3.1: Eigen library not found

3.3 Classes

In this section are reported the classes as have been thought while designing the code. They are made by a
public part, and a private one.
The public part will be the one related to the data we want to share with other functions, or the ones we need.
The private part will be hidden during the run of the main code, they can be information or processes. These
data will be created and destroyed after being used. This is one of the big advantages of an object oriented
language.
In order to better design the code, it has been created a class called problem in which are stored the problem
variables as the element type, interpolation degree, coordinates and connectivity matrices. These are values
that will be used frequently and so other classes will inherit them. This class is shown here:

Figure 3.2: Problem Class

3.3.1 Shape Functions

In this class are defined the shape functions that will be used during the program execution.

5

Figure 3.3: Shape Functions Class

In the public part will be stored the information related to shape function and its derivatives. In the same part
is going to be defined which kind of elements we are working with, so to create the appropriate matrix. This
assemble function will be in the public part as well, in order to be able to create with an external procedure
the right derivatives and functions. These assemble functions possess all the shape functions and derivatives
for each element case, and by using the elemdim variable, it sets the appropriate values to the matrices of this
class.

3.3.2 Stiffness Matrix

In this class is going to be computed the assembly of the stiffness matrix. In its public section it has the
assemble function, which can be called to assemble the matrix K also defined in the public part. This assemble
function calls the two private functions to assemble and use the jacobian and the gauss points to create the K.
In addition, since it inherits form the ref_elem class, we will have the shape functions at hand too.
The Gauss quadrature function will be formed by two arrays storing the values of the Gauss points, so di-
mensions (k,n) in which k depends on the element and will be computed as before, similarly to the assemble
function. While n is the space dimensions in which we are working on, in our case will be equal to 2. The
second array will be a vector storing the Gauss weights and will have the dimension of k.

Figure 3.4: K-matrix Class

3.3.3 Force Vector

This class takes the values from the boundary structure. In the assemble function, it will be as an input the
number of nodes in which the boundary values are applied.

Figure 3.5: Force Vector Class

6

The boundary class will store the values of the Dirichlet and Neumann conditions. They will be added to the
force vector. This structure is shown below:

Figure 3.6: Boundary Class

3.4 Main

While executing the main, it is firstly called the requested mesh. So it is called a outer file .dat as an input.
Then this file is stored in a variable called fin. The path to the files in interest will be requested from the user
via the console, as well as the element shape and degrees of freedom of the interpolation. We decided to do it
this way as it’s an easy and straight forward way to make the code work for different users.
In order to read the files, a library called from #include < fstream > is needed. This library allows us to call
an external file and copy it in a variable. Then it has to be analyzed and stored all the data inside the .dat
file. These files correspond to the coordinate matrix and the connectivity matrix. By the dimensions of the
matrices stored in these files we can deduct the number of nodes and elements, as well as the number of nodes
per element. Still, this information is directly prompted from the user.
These data are stored in a file that can also be executed in MATLAB, so we did, to visualize the mesh and
to understand how the values are stored in the .dat files. In the following Figures (3.7 and 3.8) are shown the
mesh and the data storage.

7

Figure 3.7: Mesh

[Nodes] [Elements]

Figure 3.8: Data Storage

As can be seen, the data are stored in a matrix form. This means that when calling the above mentioned file

8

in the main code, it is needed to perform a for loop in order to go through all the lines of the document and
store the data in a matrix. The code for this function is reported below.

3.4.1 Input/Output

Figure 3.9: Nodes Assembling

Figure 3.10: Element Assembling

As can be seen from the previous lines of code, the main is asking the user to copy-paste the path of the
required .dat file and to define the interpolation degrees and type of elements, in order to make the code
working properly. There can be easily seen the loop for storing the data into the fin variable. The data is

9

stored directly in the prob_var object so as to be easily accessible. The trash variable just stores the number
of the node and is not used to assemble the coordinate matrix.
After this, all the functions which need to use nodes position or elements type, can be used.
Next, the code creates instances of the stiffness matrix, force vectors and nodal solution. These instances of
the stiffness and force vectors are then assembled using the functions of the respective classes. Then the code
will call the Gauss quadrature functions and the boundary conditions classes in order to finally compute the
global K matrix and solve the problem.
In order to do so, a reduction of the system is needed after applying the Dirichlet BC. Moreover it is needed to
compute the inverse of the K-matrix in order to solve in the same way as the backslash operator in MATLAB.
These functions are all included in Eigen library as operations between matrices.

10

4. Problems

In this section will be reported the problems encountered during the development of the assignment.
Because of the problem mentioned, the code is not complete as writing all the missing parts without being sure
on the previous ones is useless.
The missing parts are only the procedures regarding the main solver, explained in Section 3.4.1.

4.1 Eigen Problem

As said at the beginning, unfortunately the Eigen library has not been loaded in the Qt compiler. This lead
to an impossibility in testing the code. It has been tried to follow various tutorials and the instructions both
of the Qt webpage, as well as the Eigen one, without success.
It has been tried to implement the code from the environment Qt creator, to the Visual Studio one, but because
of the small time, and an undervaluation of the problems, we didn’t manage to use this compiler. On the other
hand, we have noticed that online is available a big amount of material for using this other IDE.

4.2 Class and Structure Problems

Not being able to plug the Eigen library, made impossible to test our classes as they are based on matrices
creation or destruction. As output, all of them have matrix and all of them perform operation between matrices.
We can’t be sure that our classes or structures have been well defined as the code is not running. By the way
we can say that in compiling the code, the errors seem to come from the missing library only, so we believe
that the implementation is right.

11

5. References

• https://www.qt.io/

• https://podgorskiy.com/spblog/304/

• https://www.cimne.com/2437/master-on-numerical-methods-in-engineering-(upc)-a/spring-semestre-2/programming-
for-engineers-and-scientists

• http://eigen.tuxfamily.org/index.php?title=Main-PageCompiler-support

• https://www.youtube.com/watch?v=37QvVrJnwQwt=48s

12

	Abstract
	Statement
	The Code
	Code Changes
	Eigen Library
	Classes
	Shape Functions
	Stiffness Matrix
	Force Vector

	Main
	Input/Output

	Problems
	Eigen Problem
	Class and Structure Problems

	References

