Programming for Engineerings and Scientist
Universitat Politecnica de Catalunya

Assignment 2.a

Federico Parisi
Jor Fergus Dal
Nadim Saridar
Aren Khaloian

20-05-2020

Contents

1 Abstract
2 The Code
2.1 Structureo e

2.2 Inputs
2.3 Classes

2.3.1 Reference Elements e
2.3.2 Matrices and Vectors e e e e
2.4 Post-Process e e

ii

W W N NN NN

1. Abstract

In this report we will describe the design of a finite elements (FE) code in C++. Taking into account the type
of programming language, there will be described the main features that an Object Oriented code should have.

Thus, we will briefly describe the aim of the code and its structure, focusing on the definition of the main
classes and their interaction.

2. The Code

2.1 Structure

Being an Object Oriented (OO) language, all the code works on an interaction between classes. Each class is
defined by the data and the functions that will give, as an output, the data needed in order to make the whole
code work.

The linear system to be solved is Ku = f, which describes the PDE. This gives the final script a clean look and
allows easy access to the different calculations in case of modification, and versatility as these same functions
could be used in different scripts. This is a peculiarity of OO languages. As a base for our code we have
assumed that the problems to be solved are steady state and that the solution only depends on the location in
space.

2.2 Inputs

The inputs needed are the same as the MATLAB FEM code. It will be needed the X (coordinates) , T (
connectivity) , equation parameters , Boundary conditions.

2.3 Classes

In a OO program, classes are useful to be defined for data structures that are frequently used or of which there
will be several instances. For the FEM this means the principal components of the method which have specific
values and interact in meaningful ways. In a FEM we can categorize the components into two object classes,
elements and matrices.

2.3.1 Reference Elements

In this class, we are going to be define all the elements and the related parameters. These parameters will be
the shape functions, the type of element, the degree of freedom of each element, the Gauss Points with their
weights and the Jacobian.

As input, the object will receive the degree of the element, the type (quadrilateral, linear, triangular etc) and
the dimensions. As output it will give all those information stored, relative to the element needed.

The different kinds of elements will be defined as subclasses of the Reference Element class, and hence will
inherit basic features common to all. Then the element specific to the problem will be created from one of
these subclasses with the information read from the dimensions of X and T.

2.3.2 Matrices and Vectors

As a general class we define the matrix data structure. In this class we have the number of columns and rows
of the matrix. From this class we define several subclass matrices like the stiffness matrix, the force vector and
the nodal solutions which inherit the main matrix structure but also add their unique features and methods.
The five objects of this class would be the coordinate matrix (X), connectivity matrix (T), stiffness matrix (K),
force vector (f), and the nodal solutions (u).

X, the coordinate matrix is defined by the values given as an input to the code. From its dimensions we
can extract information on the number of nodes in our mesh.

T, the connectivity matrix is defined by values given as an input, and from its dimensions we know how
many elements our mesh had and how many nodes per element, which gives us the element class inherit to the
problem.

K, the stiffness matrix reads and copies the number of rows of X to create its dimensions. Next it
extracts values from the given element class of the problem, like Gauss points and the Jacobian, in order to
assemble.

f, the force vector uses the entry values of the boundary conditions and problem statement to assemble.

u, the nodal solution has integrated methods which read the values of f and K in order to solve the
linear system and give the final results.

2.4 Post-Process

The solution field will be stored inside the class defined before. To show it, can be implemented a Matplotlib
library. On the other hand, it can be written a .vtk file in order to export the results in Paraview, in the same
way as done in the MATLAB written code.

	Abstract
	The Code
	Structure
	Inputs
	Classes
	Reference Elements
	Matrices and Vectors

	Post-Process

