
Homework 1. Part a.
Programming in Science and Engineering

Nino Guzmán: ninogdo@ciencias.unam.mx

David Encalada: daviden007@hotmail.com

Manousos Galanakis: manousosgalanakis@gmail.com

Shridharan Suresh: shridharan25@gmail.com

March 2020

1 Introduction
First, we give a quite brief introduction to what the Finite Element Method (FEM) consists in.
The FEM is a numerical method to approximate a solution using a discrete problem instead of the
continuous one. It has been used on different fields and disciplines [1]. Here we explain the general
idea of the method and the process to follow for their implementation.

We begin with a partial differential equation restricted to a boundary value problem. The first step
will be to obtain the weak form of the problem, typically through the weighted residuals method,
and then find a new problem to solve. Afterwards, we discretise the weak form, choosing the proper
test functions and the desired shape functions. This will give us a system of equations to be solved.
If the initial PDE problem is linear then we will get a liner system of equations. Then, as a final
step, we must analyse our solution in order to obtain convergence, consistency and accuracy of the
implemented method and obtain the final solution. All of this done in the postprocess stage, as
we will mention later on. We can see a scheme of this procedure in Fig. (1).

Figure 1: Scheme of FEM procedure.

The goal of this report is to give the complete structure for implementing a MATLAB code
that uses the Finite Element Method to solve partial differential equations.
First of all, we want to distinguish three main parts of the code: preprocess, process and
postprocess.

1



• PREPROCESS
In this step we create the necessary elements for the code in order to solve it numerically. In
here we create two main functions: referenceElement() and createMesh() and one more
that will have the physical information materialProperties()

• PROCESS
In this second part, we create the system of equations and it is solved after imposing boundary
conditions. We must say that depending on the type of boundary conditions we can impose
it directly (no additional function) or through out some new function. The more general case
would be create a function to impose them, here we present two functions for each case of
boundary condition: dirichletBC() and neumannBC(). Specifically we create the matrix
K and the RHS vector ~f . All this through out the function computeSystem().

• POSTPROCESS
In the third step, we analyse our solution either numerically and physically. The convergence
of the implemented method is obtained using a new function computeError() and finally
plot the solution using a function plotSolution() with regard to interpret the results.

The whole process and the functions involved in each step are shown in Fig. (2) and each one
is explained in the following sections.

Figure 2: FEM procedure divided in preprocess, process and postprocess.

2 List of Data Structures
A data structure is a way of collecting and organising data in such a way that we can perform
operations on these data in an effective way. We select these data structures based on which type
of operation is required. There are some built-in data structures such as integer, character etc,
called as Primitive Data Structures. And there are other complex data structures such as array,
list etc, that are user-defined to store large data.

As for FE code design we define multiple variables that are of the same data type we have listed
below the different data structures that are needed:

• Integer

• Character

• Array

• List

• Float

• Mesh

2



3 FEM implementation process

3.1 Preprocess
In this section, we show the functions that are implemented only in the preprocess but that can
be used in several parts of the code.

referenceElement()

Inputs

• Dimension

• Type of element

• Degree of interpolation

Outputs

• Shape functions

• Gauss points coordinates and values

• Weights of corresponding Gauss points

• Nodes coordinates of shape functions

• Jacobian (derivatives of shape func-
tions)

Description Implements the reference element in 1D, 2D or
3D, depending on the degree of interpolation
and the type of element.

Comments Depending on the dimension we will have dif-
ferent type of arrays as the output.

3



createMesh()

Inputs

• Dimension

• Domain coordinates

• Number of elements (*)

• Type of element

Outputs

• Nodes coordinates

• Connectivity matrix

Description Implements the mesh in 1D, 2D or 3D, using
different types of elements.

Comments (*) Depending on the dimension, we must de-
fine number of nodes in each degree of free-
dom. In here we could also define the length
between each node.

materialProperties()

Inputs

• Mesh (nodes coordinates)

Outputs

• Prescribed values on the desired nodes

Description It fixed the values of the material properties
that could depend on space.

Comments The type of output array will depend on the
dimension and the material properties.

3.2 Process
In this section is where the main computations are made. We construct the linear system (or
nonlinear if it is the case) and we solve it numerically using some specific quadrature. We list
below the functions used in this part:

4



computeSystem()

Inputs

• Mesh (specifically the nodes coordinates
~X and the connectivity matrix K

• Reference element outputs: IP coordi-
nates, IP weights, Jacobian, number of
nodes, number of elements.

• Source term (*)

• Material properties

Outputs

• Global matrix K

• RHS vector ~f

Description It creates the system to be solved taking into
account material properties.

Comments We consider this function is the core of the
FEM. The quadrature used to approximate
the integrals can be implemented directly in-
side this part of the code or through some new
function. The boundary conditions are im-
posed after creating the system of equations.
(*) The source term can be computed directly
here or using another function, depending on
the complexity. It is common to be constant
or zero.

dirichletBC()

Inputs

• Nodes coordinates

Outputs

• Nodes over the boundary

• Nodal values over the boundary nodes

Description This functions find the nodes over the bound-
ary in 1D, 2D or 3D and it fixes the known
values over these nodes.

Comments Depending on the complexity of the mesh and
the dimension this function could be elimi-
nated and instead imposing the DBC directly.

5



neumannBC()

Inputs

• Nodes coordinates

• Material properties

• Reference element outputs: IP coordi-
nates, IP weights, Jacobian, number of
nodes, number of elements.

Outputs

• Nodes over the boundary

• Nodal values over the boundary nodes
(*)

Description This function computes a contour integral
where Neumann boundary conditions are im-
posed.

Comments To compute the Neumann boundary condi-
tions we must use a quadrature to solve
the integral, as we mentioned before we
could solve directly or use another func-
tion to call a specific quadrature. Once
the integral is computed over the bound-
ary it will contribute to the RHS vector ~f .
(*) In this case these values are the ones found
solving the integral.

systemSolution()

Inputs

• Matrix K and RHS vector ~f

• Nodes over the boundary

• Nodal values over the boundary nodes

Outputs

• Nodal values of the solution u

Description This function first imposes boundary condi-
tions and then solves the system and computes
the solution.

Comments The necessary modifications to K and ~f to im-
pose BC are made inside this function. More-
over, it will depend on the complexity of the
problem if we create this function or solve the
system directly.

6



3.3 Postprocess
The postprocess’ goal is to analyse the solution we found in the previous stage. This includes
plot the solution and interpret the results to see if it makes sense. On the other hand, we also
must analyse how good the implemented method was, i.e., we must check the convergence of the
method. The functions used in this part are:

plotSolution()

Inputs

• Mesh

• Solution u

Outputs

• plot of the solution over the domain

Description Plots the solution over the domain.

Comments It will be helpful to plot different solutions
for several values of the specific parameters
or material properties in order to analyse the
results.

computeError()

Inputs

• Solution u

• Mesh

Outputs

• Total error

Description This function computes the error of the ap-
proximated solution either comparing with the
analytic solution or approximating it some-
how. It is done element by element.

Comments We could use this function to compute the L2

and the H1 norms and analyse if the method
is behaving as expected.

4 Dependence graph
The scheme of the dependence of the functions is shown in the Fig. (3). First, the grid is defined
with the function createMesh() and inside the function referenceElement() are all the prop-
erties to solve numerically the integrals that will leave us to the system of equations. The matrix
K and the RHS vector ~f is computed using computeSystem(). The corresponding boundary
conditions are computed in neumannBC() and dirichletBC(). The system is solved by sys-
temSolution(), the function modifies K and ~f according to the BC. Finally, the results can

7



be analysed using plotSolution() and computeError() to see if the method is implemented
correctly and make sense physically speaking.

 

 

systemSolution

dirichletBC createMesh

neumannBC

createMesh

referenceElement

ComputeSystem

createMesh

referenceElement

plotSolution createMesh

computeError

systemSolution dirichletBC

createMesh

ComputeSystem

createMesh Material

referenceElement

neumannBC createMesh
plotSolution createMesh

computeError

Figure 3: Scheme of function dependence.

Other alternative follows a similar scheme. The difference is to create a function that assigns
the physical properties, that might depend on space, to the elements to compute matrix K. In the
alternative scheme the dirichletBC() function calls computeSystem() and neumannBC().

 

 

systemSolution

dirichletBC createMesh

neumannBC

createMesh

referenceElement

ComputeSystem

createMesh

referenceElement

plotSolution createMesh

computeError

systemSolution dirichletBC

createMesh

ComputeSystem

createMesh Material

referenceElement

neumannBC createMesh
plotSolution createMesh

computeError

Figure 4: Alternative scheme.

5 Conclusions
We decided to divide the process in three stages in order to clarify how to implement the code.
Although this help us to define the functions and structures needed for the implementation, we
still need to improve some points in our design.

Some advantages of this design are the following: first of all, this design splits the procedure
in three main stages which makes easier to define the tasks inside each one. The design is general.
It is supposed to work for several dimensions and different physical problems taking into account
several parameters and material properties. Moreover, this design includes an analysis either the
physical aspects and the numerical ones which would be useful to improve if needed.

Although we consider our design is quite general and robust, we still have to list some specifi-
cations that can be done. The first thing to point out, is that we lack a function that could
compute several quadratures for 1D, 2D or 3D, besides we could also improve how the BC are
imposed, perhaps creating a new function. Finally, we could also create a set of functions that can
solve nonlinear system of equations, because this design is constructed mainly for linear problems.

8



References
[1] O.C. Zienkiewicz, R.L. Taylor & J.Z. Zhu , The Finite Element Method: Its Basis and

Fundamentals, Sixth edition (2005)

9


	Introduction
	List of Data Structures
	FEM implementation process
	Preprocess
	Process
	Postprocess

	Dependence graph
	Conclusions

