
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Master on Numerical Methods in Engineering

HOMEWORK 1

Course: Programming for Engineers and Scientists

Name: Yonatan Lisne Luque Apaza

April 2017

2

1. Introduction
This report accompanies the finite element solver, developed in matlab, for the Poisson equation

in two dimensions under a domain of [0 1] x [0 1] with an obstacle. The solver can resolve other

domains by varying the GetBoundary.m function.

The general characteristics of the program are shown in addition to the convergence analysis for

the homework meshes.

2. Finite Element for Poisson Equation in 2D

2.1. Poisson Equation
The nomenclature of the variables is the same in the program. The governing equation is given by:

 ()

 ̅

 ()

2.2. Weak form

∫ () ()

 ∫

 ∫

 ∫ ()

 ∫ ()

For Galerkin formulation:

 ∑

 ∑()

 ()

Is obtained:

∫ () (())

 ∫

 ∫

 ∫ ()

For each element:

()
 ∫ (

()
) (

()
)

 ()
 ∫

()

()

()

()
 ∫

()

 ()
 ∫

()
()

()

()

3

2.3. Matrix form
Considering:

 () [
()

()

()]

 ()

[

()

()

()

()

()

()
]

 ()

[

()

()

()
]

Is obtained:

[]() () () () () ()

 () ()

[

()

()

()

()

()

()

]

Introducing local coordinates:

()

()

[

()

()

()

()

()

()

]

()

() [

()

()

()

]

The Jacobian matrix for two and one dimension:

 ()

[

]

() ()

()
 [

]

()
 ()

Is obtained:

 () (())
()

The matrix and vector in interior and boundary:

 ()
()

()

 ()
()

()
()

4

Matrix form and quadrature integration with point and weights of each element:

() ∫ (())

(()) | ()|

()

 ∑

 () (
()
())

(()()) |

()
()
|

()
 ∫ (()) (()) |

()
|

()

 ∑ ()(
()
()
) (()()) |

()

()
|

() ∫ (()) | ()|

()

 ∑

(()())
 () |

()
()
|

()
 ∫ (()) () |

()
|

()

 ∑

(()())
 (()

 () ()
) |

()

()
|

Obtain vector
()

 is not necessary. Because we will eliminate the equations where value are

previously established, and replace this value in the rest of equations.

Finally values are obtained as an average of the adjoining elements in each node.

()() [

]

()

 () () (())
() ()

3. Matlab Solver
The program can be started in MainSolver.m where you will be asked to enter the names of the

files containing the nodes and elements, and then ask if you want to set different conditions to

the preset parameters, which match the homework:

If you select the parameters by default, the program will start SolverDefault.m, Which has a

similar procedure if other parameters are established. The results will be generated with the

name Solution.vtk.

The HWsolver.m function solve all the meshes of the homework.

5

3.1. Standard solution process
All solutions follow the standard process Shown in Figure 1. It starts with reading the files

containing the mesh, and then you get the boundary elements with the GetBoundary.m.

After obtaining all the information of the mesh and selecting the appropriate reference element,

the global matrix is assembled with the FEM_System.m function.

Then, the Neumann conditions for each of the boundary of this type are applied through the

SetNeumanBoundary.m function.

The last condition to apply is the Dirichlet type with the SetDirichletBoundary.m function.

Finally the linear system is solved and the solution is exported with ToParaview.m function.

Figure 1: Standard solution process schema

3.2. Main functions

3.2.1. FEM_System

In this function we obtain the values of the global assembly of all the
() matrices and

()

vectors, according to the matrix form presented.

FEM_System.m

↖ K Global Matrix of K

↖ f Global Vector of f

↘ X Nodal coordinates

↘ T Connectivities

↘ referenceElement Reference element for 2D

↘ D D parameter (function of ‘x’ and ‘y’)

↘ Q Q parameter (function of ‘x’ and ‘y’)
Table 1: Input and Output of function

gaussLegendre1D

quadrature

shapeFunctions1D

shapeFunctions

ReferenceElement1D

ReferenceElement

X,T,E,Nref,N11,

elementType,

elementDegree

importMesh

GetBoundary

Disk FEM_System

SetNeumannBoundary

K,f

K,f

SetDirichletBoundary

D,Q

GetNodeDirichlet

qn,alpha,Phiq

Nd, Pd

Phid

Kd, fd, Nd, Nnd, Pd

Solver linear System

Phi

GetGradient

DPhi

ToParaview

Disk

writeReport

 SolverDefault scheme

6

Figure 2: FEM_System.m code

3.2.2. SetNeumannBoundary

This function adds
()

 and
()

 values of all the elements to the global assembly, according to

the matrix form presented.

SetNeumannBoundary.m

↖ K Global Matrix of K

↖ f Global Vector of f

↘ K Global Matrix of K

↘ f Global Vector of f

↘ X Nodal coordinates

↘ E Conectivities [nBound n1' n2' .. ne']

↘ nBoundary Numero of boundary to set

↘ referenceElement Reference element for 1D

↘ qn qn parameter (function of 'x' and 'y')

↘ alpha alpha parameter (function of 'x' and 'y')

↘ Phiq Phiq parameter (function of 'x' and 'y')
Table 2: Input and Output of function

7

Figure 3: SetNeumannBoundary.m code

3.2.3. SetDirichletBoundary

This function reduces the size of the matrix and global vector at the preset values and replaces

these values in the rest of equations.

SetDirichletBoundary.m

↖ Kd Global Matrix of K with Dirchlet cond.

↖ fd Global Vector of f with Dirchlet cond.

↖ Nd Nodes with Dirchlet cond.

↖ Nnd Nodes without Dirchlet cond.

↖ Pd Phi values in nodes Nd

↘ K Global Matrix of K

↘ f Global Vector of f

↘ Nd Numero of boundary to set

↘ Pd Phi value (function of 'x' and 'y')
Table 3: Input and Output of function

8

Figure 4: SetDirichletBoundary.m code

4. Homework Meshes Solution

4.1. Solution
The solution of the meshes was made with HWsolver.m function.This function starts

SolverDefault.m function for each of the homework meshes.

The SolverDefault.m function has preset the parameters of the homework, which are:

The domain parameters:

The boundaries y = 0, y = 1 and obstacle as Neumann type with parameters:

The boundaries x = 0 as Neumann type with parameters:

9

The boundaries x = 1 as Neumann type with parameters:

Default the reference point is () .

The solver displays a report like the one in Figure 5 where:

 () : Time needed to read the input.

 () : Time to get boundary.

 () : Time to assemble the global system.

 () : Time for apply boundary conditions.

 () : Time used to solve lineal system.

 () : Time used to write solution.

 () : Phi value in (1, 1).

Figure 5: Solver homework report

Solution files can be found in the same location as the meshes, Solution.vtk, Which we can post-

process with Paraview software. Reports are also saved in the same folder named report.txt.

Figure 6 shows a post processing by Paraview with the scalar variables Phi, pres (pres = -velo.velo

/ 2) and velo vector variable.

10

Figure 6: Post-processing with Paraview of PES_2D_quad_quad/mesh5.

4.2. Time solution
The times shown in the report, figure 5, are plotted by type of elements and are shown in figure 7.

The tendency of behavior of processing time with respect to the amount of nodes can be

approximated according to Table 4.

The greater time difference can be observed for t4 which corresponds to the time of application

of the boundary conditions, the trend shows more time for the second order elements.

11

Figure 7: processing time by number of nodes.

Element
type

t1 t2 t3 t4 t5 t6

≈ C.n^A ≈ C.n^A ≈ C.n^A ≈ C.n^A ≈ C.n^A ≈ C.n^A

C A C A C A C A C A C A

Tri6 4.87E-06 1.07 2.27E-07 2.14 2.82E-04 1.10 5.76E-04 1.12 1.19E-08 2.17 6.39E-05 1.05

Tri3 2.14E-05 0.94 3.03E-06 2.04 1.03E-03 1.04 1.82E-03 0.67 1.11E-05 1.34 1.54E-04 0.99

Quad8 1.07E-05 0.99 4.07E-07 2.07 5.27E-04 1.04 9.60E-04 1.06 2.31E-08 2.10 9.41E-05 1.01

Quad4 4.28E-05 0.84 1.97E-06 2.00 6.73E-04 1.05 2.64E-03 0.61 4.58E-06 1.42 1.26E-04 0.99

Table 4: Trend of processing time behavior.

4.3. Error of solution
Taken as the reference solution, the mesh 5 of the elements quad8 can estimate the relative error

by comparing the () values. The behavior of this error with respect to the number of nodes

can be observed in figure 8 and table 5.

The fall of the error in the elements type Quad8 is much faster than the rest of elements followed

by Tri6.

12

Figure 8: Relative error by number of nodes.

error

Element type
≈ C.nA

C A

Tri6 4.53 -1.71

Tri3 1.07 -0.93

Quad8 52.46 -2.21

Quad4 1.07 -1.02

Table 5: Error behavior.

