
Programmig for Engineers and Scientists

Mart́ı Burcet, Adrià Galofré

March 1st, 2016

1 Problem

The aim of this code is to solve the Poisson
equation:

with a given source term s=0 and a diffusivity
equals v=1.

The code we were asked to develop had to be
able to read different geometries (both 2D and
3D), boundary conditions and solve the problem
with different types of elements.

2 Starting point

In order to start the project it was given to us a
template main code that controls the data and
solved a FEM Poisson problem for a given geom-
etry in 2D. A part of the main code we were also
provided with the necessary programs to solve
this problem that then we extended to different
element types and dimension. These codes are:

• CreateMatrix.m: this program receives
as inputs the information of the element:

shape functions and its derivatives, number
of nodes of the element, position of the in-
tegration points as well as weights for the
numerical integration, matrix of nodal coor-
dinates and matrix of connectivities of the
elements.

• MatEl.m: this function is called inside
the CreateMatrix.m and computes the in-
tegrals of the element stiffness matrices
in the isoparametric domain with the nu-
merical Gauss quadrature correspondent to
the order of the interpolation functions.
This function receives as inputs the ele-
ment nodal coordinates, the shape functions
and derivatives, and the Gauss points and
weights.

• Isopar: the function is called inside the
CreateMatrix.m and evaluates the isopara-
metric transformation from global cartesian
coordinates to local isoparametric coordi-
nates to interpolate the function in the ele-
ment.

• SourceTerm.m: also inside CreateM-
atrix.m the element force vector is com-
puted calling the function SourceTerm.m
that in our case is equal to 0.

• Elements.m: this function contains al-
ready coded the shape functions, shape

1



functions derivatives and integration points
for all the elements that we were asked to
use but in a single file. We have taken ad-
vantage of the already coded functions even
though some were wrong and we had to
changed.

• Element coordinates and connectivi-
ties: for testing reasons we were also pro-
vided with a nodes coordinates matrix as
well as with a connectivities matrix for each
of the elements to implement. The bound-
ary conditions were also given.

3 Description of the main code

3.1 Initial approach

As we have said, we were provided with a
program elements.m that have already coded
the necessary information for all the elements
that we were asked in one file. In the first
moment we thought of split the function in the
subfunctions that it contains (shapefunctions,
shapefunctionsderivs, numberofintegrationpoints,
integrationpoints, integrationweights) and call
each one directly from the main code.

The problem from our point of view of this
approach is that in each of this functions there
should be lots of if commands, what we thought
will make the program run slow. For this reason
we decided to create a function for each of
the element types that provides directly all
the relevant information of the element just
calling it. Doing this we reduced the number of
conditionals in the running and we expected the
program to run faster.

In addition the advantage of this structure

of the code is that it easier to test each of
the functions separately without changing the
main code. This will also be an advantage if
we want to extend the code to more element
types and geometries. In that case the only
thing we should do is to add the function of
the element in the folder and also the nodes co-
ordinates and element connectivities in its folder.

Now we will describe step by strep the differ-
ent functions that our main code call in order to
solve the problem.

3.2 Input files

The first thing done was to implement that the
code can read a mesh and boundary conditions
from an input file, and also to be able to solve
2D/3D geometries. To do so we have extended
a FE given at the initial classes of PES. So the
code needs the next different input files to run:

1. nodes.dat: In this file an array where the
first column is the number identifier of the
node, and the next columns are the x and y
coordinates for 2D geometry or the x,y and
z coordinates for a 3D geometry. These data
files are placed on the folder nodes and have
to be called by screen entering in the main
code.

2. elements.dat: With similar structure of
the nodes.dat file, here, connectivities for
every node are described. The files are
placed in the folder elements and are asked
in the main code by keyboard.

3. group.dat: This kind of file is required for
the boundary conditions. Inside groups of
nodes for inlet and outlet BC are given. The
files are saved in the folder groups and are

2



loaded automatically once detected the ele-
ment type.

3.3 Element functions

Also the use of different 2D or 3D types of
elements was required. So depending on the
nodes.dat and elements.dat and element or
another is used. It means that entering the right
nodes and connectivities is the way to choose an
element to solve the problem. we also give the
opportunity to run the example provided by the
master choosing the element type for a given
geometry.

These element functions give as outputs the
shape funciton matrix, shape function deriva-
tives matrix, the vector of position of the Gauss
points for the numerical integration and the
weights. The next element types were imple-
mented:

1. C2D3: 2D Triangular linear element with
3 nodes, one in each vertex.

2. C2D4: 2D Quadrilateral linear element
with 4 nodes.

3. C2D6: 2D Triangular quadratic element
with 6 nodes.

4. C2D8: 2D 8-noded Quadrilateral quadratic
element.

5. C3D4: 3D 4-noded tetrahedral linear ele-
ment.

6. C3D8: 3D 8-noded hexahedral linear ele-
ment.

7. C3D10: 3D 10-noded tetrahedral
quadratic element.

8. C3D20: 3D 20-noded hexahedral element.

3



3.4 Solving scheme

Once the element is chosen we proceed to solving
the problem. This is done by the following path:
the function CreateMatrix (provided) constructs
the element matrices according to the element
connectivities. At the same time, this function
calls inside the function MatEl that computes
the integrals of the stiffness matrix and force
vector.

The function MatEl was modified to be able
to compute 3D elements, by extending the Jaco-
bian matrix to three coordinates. The function
Isopar does the isoparametric transformation of
the nodes.

Finally in the main code the boundary condi-
tions are introduced (previously loaded from the
.mat files) and the system is solved.

3.5 Writing the output files

Finally the results that in Matlab are given
in the vector Temp are written in a .vtk file
that writes a text file that can be opened and
visualized in Paraview. The writing of these
files is done by the functions geoXXX.m.

4 Testing the code

To test the code and the implementation of the
elements 8 different nodes, elements and group

files corresponding to each element implementa-
tion where tested. All the files correspond to the
next geometry:

4.1 Results

The results obtained with the code are presented
in the next points, with a brief comparison be-
tween them. In Figures ?? and ?? we can see
the comparison between the results obtained
with a mesh of linear triangles and linear
quadrilaterals. We can see that the result
files are well read in Paraview so we can as-
sure that the output files were well implemented.

Regarding the results of the different elements,
we can see that they are equal by looking at the
figures. Both 2D and 3D cases are equally well
executed in Matlab. Even though we havent pre-
sented the quadratic cases, the precision of them
compared to the linear cases aren’t significant.

4



Figure 1: Comparative between linear triangle
and linear quadrilateral.

Figure 2: Comparative between linear tetrahe-
dral and linear hexahedral.

4.2 Running time

In the following table we can see the comparison
of running time of the different elements. We
can see that, in general terms, the quadrilateral
elements are faster than the triangular once. Of
course this is a very small example and the run
time is not significant, but it is always good to
prove that for larger problems. On the other
hand the quadratic approaches are slower than
the linear ones because they use more nodes for
the interpolation. Finally of course 3D meshes
are slower than plane ones as expected.

Element Time (seconds)

C2D3 0.194118

C2D4 0.191742

C2D6 0.495336

C2D8 0.454595

C3D4 1.159373

C3D8 0.780758

C3D10 10.085582

C3D20 5.051605

5 Conclusions

After faced the problem of coding a FEM model
in Matlab we have realised that the structure
of the program is very important because lots
of functions plays a role and it is crucial to
be able to test each one separately. For this
reason we decided to code different programs for
different elements that can be integrated in a
general code. Our structure is easily modifiable
and extended to more complex elements and
geometries because it is only needed to add the
correspondent input files to the folder and allow
the main code to use them.

About the results we have obtained for the ex-
ample problem, the precision for this small prob-
lem is not affected too much by the mesh and
element because the mesh is small enough. An
important conclusion of the comparison between
meshes is that, even for this easy geometry the
element type really affects the computing time.
It is observed that quadrilateral elements are in
general faster than triangular ones, so if possible,
they are recommendable.

5



6 Link

The main code and all the implementationts
can be found in:
https://github.com/adriagalofre/HW1_

Burcet_Marti_Galofre_Adria.git

6

https://github.com/adriagalofre/HW1_Burcet_Marti_Galofre_Adria.git
https://github.com/adriagalofre/HW1_Burcet_Marti_Galofre_Adria.git

	Problem
	Starting point
	Description of the main code
	Initial approach
	Input files
	Element functions
	Solving scheme
	Writing the output files

	Testing the code
	Results
	Running time

	Conclusions
	Link

