
PES - Homework 1

Students:
Lei Pan

Marcello Rubino
Enrico Marin

1) INPUT DATA (in this section we describe the tables containing the input data)

-​The first input data that need to be used are about the geometrical and material informations.
In order to do this the first element is the matrix ​nodalCoordinates​. Inside, for each row, which
defines each node, coordinates X and Y are written.

-​Now we can focus on each element. Inside the table ​elementInfos​, for each row that describes
the Id of the element, there are the informations about the connectivity of the nodes. There are
10 columns: the first 4 of them are about the Id of the master nodes that shows the nodes of the
element, written in counterclockwise order. If the element is triangular, the fourth row contains 0,
otherwise, obviously, contains the fourth node’s Id. If the element is linear, the column 5-6-7-8-9
are 0 (it means that there are no extra nodes inside the faces of the elements); otherwise, in
case of quadratic element, we need to fill these columns as well (still following the
counterclockwise order, starting from the node on the face 1 (nodesId 1-2) and the last one
referring to the central node of the element; if triangular, the 8th and 9th columns, as well as the
4th one, contain 0). The last column contains the material Id number, since the material
properties are included in one more table called ​materials ​which contains, for each row (material
kind), the ​𝜇​ parameter (in case it’s needed more than one).

-​Concerning the BCs (Boundary Conditions) a table called ​BCkind contains, for each row that
refers to the BC Id number (there can be more than one), in the first column the letters ​N or ​D​, in
case of Neumann or Dirichlet BC, while the second column contains the BC value. A table
called ​faceBC gives informations about what BC is imposed on the faces of the mesh: so, for
each face there can be two different BCs at the same time. The first column is referred to the
element Id number and the second to the face Id number of that specific element (1 for nodes
1-2 link, 2 for nodes 2-3, 3 for nodes 3-1 (or 3-4 in case of quadrilateral element), 4 for nodes
4-1 in case of quadrilateral element). The third column contains the first BC Id number (can be
either N or D), and the forth one contains the possible extra BC (in the sense that if the first one
is a N condition, then the second one for the same face must be a D one). If there is no extra
BC the fourth cell contains 0. A last table ​nodeBC contains the nodal BCs, which can be only of
Dirichlet kind: the first column contains the node Id number while the second one contains the
BC Id number.

-​The last input data refer to the shape functions that the program will use to interpolate nodal
values.A table called ​shapeFunc contains 4 rows (in order: triangular-linear,

triangular-quadratic, quadrilateral-linear, quadrilateral-quadratic) and 8 colums (in case of
simpler problems than quadrilateral-quadratic some of them can be null). In each cell there is
the shape function referred to the reference element for every reference node. In ​shapeGrad​,
as vectors of two components, there are the gradiente of the shape functions.
All these tables are stored inside a ​structure​ called ​thisMesh​, following this order:
thisMesh.nodalCoords​ (​nodalCoordinates​)
thisMesh.elementInfos​ (​elementInfos​)
thisMesh.faceBC​ (​faceBC​)
thisMesh.nodeBC​ (​nodeBC​)
thisMesh.shapeFunc​ (​shapeFunc​)
thisMesh.shapeGrad​ (​shapeGrad​)

2) ​ELEMENT MATRIX

LOOP “FOR” ON EACH ELEMENT (NoElem = no. of rOws in ​thisMesh.elementInfos​)

gaussianQuadrature

INPUT: ​thisMesh.elementInfos
OUTPUT: ​GaussPointWeight - GaussPointLocation - GaussNoPoints

Description: checks which problem is needed to be solved (ex.: “triangle-linear”), and gives as
outputs informations about the ​gaussianQuadrature

Uses: none
Used by:​ jacobianMatrix - derivatedShapeFunctions - elementMatrix

Comments:
Possible element shape are:
1. Triangles
2. Quadrilaterals
Possible kinds of interpolation problems are:
1. Linear
2. Quadratic

jacobianMatrix

INPUT: ​GaussPointLocation - thisMesh.nodalCoords - thisMesh.elementInfos

OUTPUT:​ JacobianMatrix - DetJacobianMatrix

Description: gets informations about the gaussian points locations inside the reference element
and evaluates the Jacobian and its determinant, by knowing the internal coordinates of the
nodes of the element. Then evaluates this two quantities in gaussian points.

Uses: ​gaussianQuadrature
Used by: ​elementMatrix

Comments:
Already knows what kind of problem is solving because has informations from
gaussianQuadrature

derivatedShapeFunctions

INPUT: ​thisMesh.shapeGrad - GaussPointLocation
OUTPUT: ​DerShapeFunctions

Description: evaluates the position of the gauss points, and, knowing the kind of problem, gets
from the table ​thisMesh.shapeGrad all the gradients of the shape functions linked to the
reference nodes. Finally calculates the values on the Gauss points.

Uses: ​gaussianQuadrature
Used by: ​elementMatrix

Comments:
none

elementMatrix

INPUT: ​thisMesh.elementInfos - GaussPointWeight - Jacobian Matrix - DetJacobianMatrix
- DerShapeFunction - GaussNoPoints
OUTPUT: ​elementStiffnessMatrix

Description: making a loop on integration points, calculates the contribution to the element
stiffness matrix and sum all of them. From ​thisMesh.elementInfos​, gets informations about the
material through the ​𝜇 ​parameter.

Uses:​ gaussianQuadrature - jacobianMatrix - derivatedShapeFunctions

Used by: ​assemblyProcess

Comments:
none

assemblyProcess

INPUT: ​elementStiffnessMatrix - thisMesh.elementInfos - thisMesh.nodalCoords
OUTPUT: ​globalStiffnessMatrix

Description: gets informations about the location of the element and creates the assembly by
using the matricial product T​T​KT and adds the contribution to the global matrix element by
element.
Uses: ​elementMatrix
Used by: none

Comments:
none

END OF LOOP ON ELEMENTS

3) ​BOUNDARY CONDITIONS

ImposBC​(chose either Dirichlet or Neumann Boundary Conditions)

In order to solve the system, we need to impose the suitable boundary conditions including
Dirichlet and Neumann Boundary Conditions.

INPUT:​thisMesh.faceBC​-​thisMesh.nodeBC
OUTPUT: the ​BCmatrix

Description: The function ​imposBC​ can impose the boundary conditions on the corresponding
element nodes and element faces and then give the ​BCmatrix which can be be used in solving
the equation system.

Uses:​thisMesh.faceBC​-​thisMesh.nodeBC
Used by: ​SolvingSystem

4) ​SOLVING THE SYSTEM OF EQUATIONS

After imposing the boundary conditions, we can get the system of equations which could be
solved by numerical solutions like direct method or iterative method.

 ​CompFvector

We have already got the ​globalStiffnessMatrix, the next step is to compute the RHS of the
equation. And it is ​CompFvector.

 INPUT: ​thisMesh.shapeFunc-gaussianQuadrature
OUTPUT:​Fvector

Uses:​thisMesh.shapeFunc-GaussPointWeight - GaussPointLocation - GaussNoPoints
Used by: ​SolvingSystem

 ​Description: The function ​ComFvector​ can compute the RHS of the system of equations.

SolvingSystem

After getting the ​globalStiffnessMatrix​, ​Fvector ​and imposing the boundary conditions, we
have completed building the system of equations.

INPUT:​globalStiffnessMatrix​-​Fvector-BCmatrix
OUTPUT:​resultVector

Description: After solving the system of equations, we get the final result ​resultVector.

5) ​FINAL​ ​PROPOSE

Our program can solve the problems of 1D and 2D. And we can extend our program to make it
capable of solving the 3D problems. We need to extend the coordinates, the
gaussianQuadrature, the shape functions and the method used to solve the system of equations
to make it more efficient.

