
	

	
	
	
	
	
	
	
	
	 	

Professor Sergio Zlotnik

Students Marin Enrico

Pan Lei

Rubino Marcello

	

Implementation of a
FEM code

Homework 1 part B

PROGRAMMING FOR ENGINEERS AND SCIENTISTS
2017/18

Barcelona, 19.03.2018

	

	
	

1. Introduction……….……….……….…….……….……….……….……….……….……….……….……….……….	
2. Main	Code…….…….……….……….………….……….……….……….…….….……….…….….……….………..	

2.1 Data……….…….….……….…….….………….…….….……….…….….………….…….….……….…….…..	
2.2 Boundary	Conditions…….….………….…….….………….…….….………….…….….………….………	
2.3 Global	Stiffness	Matrix	…….….………….…….….………….…….….………….…….….………….…..	
2.4 Global	Rhs	vector…………………………………………………………………………………………………..	
2.5 Lagrange	Multiplers………………………………………………………………………………………………	
2.6 Postprocess……..	

3. Functions	……………….……….…….…….……….……….……….……….……….……….……….……….………	 	
3.1 Faces………………….……….……….……….……….……….……….……….……….……….…………………	
3.2 Shape………………….……….……….……….……….……….……….……….……….……….………………..	
3.3 Gaussian	Quadrature…….……….……….……….……….……….……….……….………………………..	
3.4 K	Gauss…….……….……….……….……….……….……….……….……………………………………………..	
3.5 Jacobian	Matrix…….……….……….……….……….……….……….……….………………………………..	
3.6 Derived	Shape	Function…….……….……….……….……….……….……….……….…………………..	
3.7 Element	Matrix…….……….……….……….……….……….……….……….……..…….……….………….	
3.8 Connectivity	Matrix…….……….……….……….……….……….……….……….……..…….……….……	
3.9 Determinant	Jacobian	1D.……….……….……….……	.……….……….……….……………………….	
3.10 Shape	1D…….……….……..…….……….……..…….……….……..…….……….……..…….……….	
3.11 Gaussian	Quadrature1D…….……….……..…….……….……..…….……….……..…….…………	
3.12 Neumann	Integration…….……….……..…….……….……..…….……….……..…….……….……	
3.13 Velocity	Element…….……….……..…….……….……..…….……….……..…….……….…………..	
3.14 Create	VTK…….……….……..…….……….……..…….……….……..…….……….……..…….………	

4. Plot……………….……….…….…….……….……….……….……….……….……….……….……….………………..	 	
5. Improvement	of	the	first	assignment…….……….……..…….……….……..…….……….……..………	
6. Point	to	be	improved……………………….……….……..…….……….……..…….……….……..………	

SUMMARY

p.3	
p.4	
p.4	
p.5	
p.6	
p.6	
p.6	
p.6	
p.7	
p.7	
p.7	
p.7	
p.7	
p.8	
p.8	
p.8	
p.9	
p.9	
p.9	
p.9	
p.9	
p.10	
p.10	
p.12	
p.12	
p.13	
	

	

	 3	

	

1. Introduction	
	
The	purpose	of	 this	work	 is	 to	 implement	an	FE	code	 in	Matlab	 to	 solve	a	 typical	 fluid	dynamic	
problem,	the	definition	of	the	velocity	field	described	by	the	Poisson	equation	in	2D	dimension.		
If	the	flow	is	irrotational,	the	velocity	can	be	expressed	in	terms	of	a	velocity	potential.	The	velocity	
field,	therefore,	is	constructed	from	the	velocity	generated	by	a	scalar	potential	u	generated	by	the	
mass	sources.	
So,	we	have	developed	a	MATLAB	program	to	solve	the	following	Poisson	equation:	
	

! ∙ # $!% = 0)*		+	
!% ∙ , = -																.*			/0	
% = %1												.*			2+	\/0	

	
where	+	is	the	computational	domain,	∂Ω	is	the	boundary,	,	is	the	outward	unit	normal	vector	and	
# $ 	is	a	not	constant	material	property.	
	
One	method	to	solve	the	Poisson	equation	is	the	weak	formulation,	we	derive	it	and	multiply	it	by	
the	weighting	function	6:	

∇6 ∙ # $ ∇% 8Ω = 6-8Γ
:;<

	

We	 need	 to	 find	 a	 space	 of	 functions,	 =1> Ω ,	where	 the	 derivative	 of	 functions	 are	 square	
integrable:	
6 ∈ =1> Ω :	 ∇6 ∙ # $ ∇% 8Ω = 6-8Γ		:;< 					

∀	6 ∈ =1> Ω 	
	
Afterwards,	applying	Galerkin	method	it	is	possible	to	get	the	solution	equation:	
	

Ku = f	
Where:	

FGH = ∇IG ∙ # $ ∇IH 8Ω
<

	

JG = ∇IG ∙ -8Γ
:;

	

	
	
In	 our	 program,	 we	 have	 considered	 three	 types	 of	 elements:	 1-D	 isoparametric	 element,	
isoparametric	quadrilateral	element	and	isoparametric	triangular	element.	The	1-D	isoparametric	
element	is	used	for	calculating	the	integration	of	the	Neumann	boundary	conditions.	
By	combining	the	isoparametric	element	and	Gaussian	quadrature,	we	can	get:	
	
	

∇IG ∙ # $ ∇IH 8Ω = 6K(M(NK)P>∇QRIG(NK)) ∙ (SM(NK)P>∇QRIH(NK))|M(NK)|
UK

KV><
	

	

	 4	

J =
2$
2X

2Y
2X

2$
2Z

2Y
2Z

	

Where	NK	is	the	Gauss	points	for	2-D	elements.	

∇IG ∙ -8Γ
:;

= 6K′(M(NK′)P>∇QRIG(NK′)
UK\

KV>
|M(NK′)|	

	
Where	NK′	is	the	Gauss	points	for	1-D	elements,	M	is	the	Jacobi	Matrix.	

J =
2$
2X

2Y
2X

2$
2Z

2Y
2Z

	

And:	
$ = IG(X, Z)$GU> ;	

							Y = IG(X, Z)YG
U

>
	

	
	

2.Main	code	

2.1	Data	
	

We	loaded	five	datasets	in	our	Matlab	code:	“T3”,	“T6”,	“Q4”,	“Q8”and	“Q9”	which	contain	T,	
connectivity,	and	X,	nodal	coordinates,	matrices.	T	is	referred	to	a	triangular	mesh	analysis,	Q	is	
referred	 to	 a	 quadrilateral	 one	 whereas	 the	 number	 describes	 how	 many	 nodes	 has	 each	
element	of	the	mesh.	
	
We	decided	to	apply	the	second	example	given	in	the	slide	as	a	domain	input:	
	

	
	
	
Other	 data	 implemented	 are	 the	 Neumann	 constant	 “g”,	 given	 by	 the	 example,	 the	 scalar	
variable	“nondes”	equal	to	the	total	number	of	nodes,	the	scalar	variable	“noelem”	equal	to	the	
total	 number	 of	 elements,	 a	matrix	 “k”	with	 a	 number	 of	 rows	 equal	 to	 “noelem”	 and	 two	
columns,	 describing	 the	 material	 property,	 and	 a	 matrix	 “elementInfos”	 made	 by	 T	 and	 X	
matrices	to	describe	all	the	elements.	

	

	 5	

More	 specifically,	 the	matrix	 “k”	 is	 implemented	with	 a	 cycle	 “if-else”	 to	 consider	 both	 the	
constant	condition	and	the	linear	condition;	if	we	are	in	first	case	the	matrix	become	a	vector	of	
ones.	
	
As	 a	 last	 step	 we	 called	 the	 function	 “faces”,	 explained	 in	 the	 next	 paragraph,	 that	 gives	
“elementFaces”,	a	tensor.	It	contains	the	number	of	the	element	in	the	first	index	and	in	the	
second	and	third	the	ID	of	the	faces.	
	
Subsequently	 we	 created	 the	 structure	 of	 the	 mesh	 storing	 together	 the	 data	 loaded	 (X,	
“elementInfos”,	 “elementFaces”)	 and	 assigning	 them	 to	 the	 substructures	
“thisMesh.nodalCoords”,	“thisMesh.elementInfos”	and	“thisMesh.elementFaces”	respectively.	
	
To	 complete	 the	 coding	 of	 the	mesh	 we	 called	 the	 function	 “shape”	 to	 implement	 the	 2D	
dimension	shape	functions	and	their	gradients	with	an	input	equal	to	1.	These	two	matrix	are	
then	stored	and	assigned	to	the	structures	“thisMesh.shapeFunc”	and	“thisMesh.shapeGrad”.	

	

2.2	Boundary	Conditions	
	

Above	all	we	wrote	 the	geometrical	Boundary	Condition	using	 the	Matlab	 function	“find”	 to	
catch	 all	 the	 zeros	 and	 all	 the	 ones	 on	 the	 two	 columns	 from	 the	 matrix	 of	 the	 structure	
“thisMesh.nodalCoords”.	Using	these	indexes	we	achieved	four	vectors	with	21	rows:	x0,	y0,	x1	
and	y1.		
	
After	 that,	we	created	 four	scalar	variables	 to	measure	 the	 length	of	each	side	of	 the	mesh,	
called	“length_nodes”	avoiding	the	double	counting	of	the	mesh’s	corners.		
To	develop	Dirichlet	Boundary	Condition	we	created	a	matrix	“nodeBC_Dir”	with	the	values	of	
x1	and	x0	in	the	first	column	(taking	into	account	the	deleting	of	the	last	member	of	them)	and	a	
second	 column	 made	 by	 “nodeBC_val1”	 and	 “nodeBC_val2”,	 two	 vectors	 that	 express	 the	
formula	given	by	the	hypothesis	% 1, Y = 1 + Y		.	
The	same	method	was	applied	to	write	Neumann	Boundary	Condition	but	considering	y0	and	y1	
values	to	build	“BC_Neu_nodes”	first	column	and	the	value	of	g,	with	the	sign	ask	according	to	
the	hypothesis,	in	the	second	one.	
	
The	next	step	was	 linking	the	nodes	with	Neumann	Boundary	Condition	to	the	faces;	and	to	
achieve	 this	 we	 did	 a	 double	 cycle	 “for”	 and	 a	 single	 “if-else”	 applied	 to	 the	 tensor	
“thisMesh.elementFaces”	 (equal	 to	“elementFaces”):	 the	 first	 cycle	 “for”	 runs	along	 the	 first	
dimension,	the	second	one	runs	along	the	second	dimension	with	and	“if-else”	internal	cycle	
where	it	is	applied	the	function	“ismember”.	This	Matlab	function	checks	if	there	are	Neumann	
Boundary	Conditions	both	in	the	first	and	second	row	of	the	third	dimension	and,	only	if	it	is	
true,	it	is	assigned	the	Neumann	constant	g	in	a	new	third	row	of	the	third	dimension,	if	not	it	is	
assigned	a	zero.	

	
	
	
	

	

	 6	

2.3	Global	Stiffness	Matrix	
	

Initially	 we	 implemented	 a	 new	 squared	 matrix	 K	 of	 zeros	 with	 the	 dimensions	 equal	 to	
“nonodes”,	 then	 we	 called	 three	 functions,	 described	 below,	 within	 a	 cycle	 “for”:	
“gaussianQuadrature”	assigns	different	Gaussian	characteristics	to	the	dataset	according	to	the	
type	of	the	analysis	(linear	with	triangles,	quadratic	with	triangles,	linear	with	quadrilaterals	and	
quadratic	with	quadrilaterals);	“elementMatrix”	calculates	the	element	stiffness	matrix	on	the	
Gaussian	points	 and	 adds	 contributions	 of	 the	 gradient	 of	 shape	 functions	 and	 the	material	
contribution;	 “ConnectivityMatrix”	 creates	 the	 connectivity	matrix	 in	 both	 the	 constant	 and	
hypothesis	of	the	material’s	property.	
Subsequently	it	is	coded	the	final	equation	to	obtain	K:		
K	=	K	+	(Connectivity	Matrix')*(Element	Stiffness	Matrix)*(Connectivity	Matrix)	
Finally,	it	is	plotted	the	sparsity	pattern	with	the	function	“spy”.	

		

2.4	Global	Rhs	vector	
	

As	a	first	step	we	created	the	shape	1D	with	a	function	based	on	the	input	of	Neumann	equal	to	
1,	then	we	initialized	a	vector	characterized	by	a	dimension	equal	to	“nonodes”	and	only	ones	
as	components.	
As	 before	 we	 ran	 three	 functions,	 within	 a	 cycle	 “for”	 along	 each	 element,	 called	
“gaussianQuadrature1D”,	“NeumannIntegration”	and	“ConnectivityMatrix”	to	obtain	the	global	
Rhs	 vector	 “f”.	 It	 is	 important	 to	 notice	 that	 “NeumannIntegration”	 calculates	 the	 local	 rhs	
vector	for	each	element.	

2.5	Lagrange	Multiplers	
	

To	 enlarge	 the	 system,	 we	 created	 a	 new	 scalar	 variable	 “nDir”	 equal	 to	 the	 number	 of	
“nodeBC_Dir”	matrix’s	row.	Subsequently	we	coded	a	new	identity	matrix	“A”	with	a	number	of	
rows	equal	to	“nDir”	and	a	number	of	columns	equal	to	“nonodes”	and,	then,	a	new	vector	“b”	
equal	to	second	column	of	“nodeBC_Dir”.	
With	these	elements	 it	was	possible	 to	create	the	 final	 larger	system	with	a	new	bigger	“K”,	
“Ktot”	matrix,	and	a	bigger	“f”,	“ftot”	vector,	and	find	the	final	solution,	“sol”,	as	a	ratio	between	
“Ktot”	and	“ftot”.	

2.6	Postprocess	
	

The	final	objective	was	the	calculation	of	pressure	vector	and	velocity	matrix,	our	solutions	of	
the	problem.		
Vector	pressure	is	obtained	selecting	only	the	first	part	of	“sol”	vector,	equal	to	the	length	of	
“nonodes”.	
To	 compute	 the	 velocity	 matrix	 we	 created	 a	 cycle	 “for”	 with	 three	 functions,	 after	 the	
initialization.	 “ConnectivityMatrix”	 and	 “gaussianQuadrature”	 are	 used	 before,	 whereas	
“velocityElement”	 is	 it	new	and	 it	 is	used	to	calculate	the	velocity	 field	of	each	element	as	a	
matrix.	
The	final	equation	is:		
velocity	=	velocity	+	(Connectivity	Matrix')*(velocity_elem)	

	

	 7	

	

3. Functions	
	
In	this	paragraph	we	are	going	to	describe	schematically	all	the	functions	implemented	in	the	code.	

3.1	Faces	
	 	

The	inputs	of	the	function	are	“elementInfos”,	“noelem”	and	“matprob”.	
The	output	is	“elementFaces”.	
This	function	is	implemented	to	create	a	tensor	that	describes	the	faces	of	each	element	of	the	
mesh.	It	combines	the	number	of	the	single	element	with	its	ID	in	fact	the	first	dimension	refers	
to	the	element,	the	second	and	third	one	refer	to	the	face	ID.	
It	 contains	 one	 principal	 cycle	 “if-else”	which	 subdivides	 the	 case	 of	 “k”,	material	 property,	
constant	and	linear.	Inside	each	of	these	there	are	four	possible	description	of	the	material’s	
size.	

3.2 Shape	
	

The	input	of	the	function	is	“inputShape”.	
The	outputs	of	the	function	are	“shapeFunc”,	”shapeGrad”.	
This	function	gives	the	2D	dimension	shape	functions	and	their	gradients	in	the	reference	system	
only	if	the	input	shape	is	defined.	
There	 is	 a	 cycle	 “if-else”	 to	 divide	 the	 two	 possibilities	 described	 before,	 and	 the	 shaped	
functions	are	implemented	for	all	the	possible	meshes	(triangular	with	three	nodes,	triangular	
with	six	nodes,	quadrilateral	with	four	nodes	and	quadrilateral	with	nine	nodes).	

	

3.3 Gaussian	Quadrature	
	
The	inputs	of	the	function	are	“elementInfos”,	“el”,	“matprob”.	
The	outputs	of	the	function	are	“GaussPointWeight”,	“GaussPointLocation”,	“GaussNoPoints”.	
This	 function	gives	different	 information	about	 the	Gaussian	Quadrature	to	 the	database	 for	
each	case	of	the	problem.	
There	is	a	cycle	“if-else”	to	divide	the	hypothesis	of	material’s	property	constant	from	the	linear	
one,	and,	inside	this	cycle,	four	different	analyses	are	developed	(linear	with	triangles,	quadratic	
with	triangles,	linear	with	quadrilaterals	and	quadratic	with	quadrilaterals).	
	
	

3.4 KGauss	
	

The	 inputs	 of	 the	 function	 are	 “k0”,	 “k1”,	 “gaussCsi”,	 “gaussEta”,	 “GaussNoPoints”,	
“shapeFunc”,	”nodalCoords”,	“elementInfos”,	“el”.	
The	output	of	the	function	is	“k_gauss”.	
It	is	used	by	“Element	Matrix”.	
This	function	calculates	k(x)	in	each	Gauss	node	taking	into	account	the	shape	functions.	

	

	 8	

There	is	a	cycle	“for”	to	pass	through	each	node	and,	inside,	an	“if”	with	three	“else”	to	select	
the	proper	shape	function.	
	

	

3.5 Jacobian	Matrix	
	

The	 inputs	 of	 the	 function	 are	 “GaussNoPoints”,	 “gaussCsi”,	 “gaussEta”,	 “nodalCoords”,	
“elementInfos”,	“shapeGrad”,	“el”.	
The	outputs	of	the	function	are	“InvJacobianMatrix”,	“DetJacobianMatrix”.	
It	is	used	by	“Element	Matrix”	and	“VelocityElement”.	
It	calculates	the	Jacobian	Matrix,	the	inverse	and	the	determinant	in	the	Gauss	points.	
There	is	a	cycle	“if-else”	to	divide	the	hypothesis	of	material’s	property	constant	from	the	linear	
one.	Inside	this,	there	is	a	loop	“for”	that	passes	through	each	node	of	the	element	with	an	“if”	
and	three	“else”	to	calculate	the	derivative	of	the	shape	functions	in	any	possible	order	of	Gauss	
points.	
	

3.6 Derived	Shape	Functions	
	

Inputs	 of	 the	 function	 are	 “elementInfos”,	 “shapeGrad”,	 “GaussNoPoints”,	 “gaussCsi”	 and	
“gaussEta”.	
The	output	is	“deltaN”.	
It	is	used	by	“elementMatrix”	and	“VelocityElement”.	
This	function	calculates	the	derivatives	of	the	shape	functions	in	the	Gauss	points	and	writes	
them	into	a	matrix.	
As	in	the	Jacobian	Matrix,	there	is	a	cycle	“if-else”	to	divide	the	hypothesis	of	material’s	property	
constant	from	the	linear	one.	Inside	this,	there	is	a	loop	“for”	that	passes	through	each	node	of	
the	element	with	an	“if”	and	three	“else”	to	calculate	the	derivative	of	the	shape	functions	in	
any	possible	order	of	Gauss	points.	
	

	

3.7 Element	Matrix	
	

The	 inputs	 of	 the	 function	 are	 “elementInfos”,	 “nodalCoords”,	 “shapeFunc”,	 “shapeGrad”,	
“GaussPointWeight”,	“GaussPointLocation”,	“GaussNoPoints”,	“el”	and	“matprob”.	
The	output	of	the	function	is	“ElementStiffnessMatrix”.	
It	uses	“jacobianMatrix”,	“derivatedShapeFunctions”,	“kGauss”.	
It	calculates	the	element	stiffness	matrix	on	the	Gaussian	points	and	adds	contributions	of	the	
gradient	of	shape	functions	and	the	material	contribution.	
There	is	a	cycle	“if-else”	to	divide	the	hypothesis	of	material’s	property	constant	from	the	linear	
one,	and,	inside	there	is	another	cycle	“for”	to	calculate	the	matrix	along	each	Gaussian	points.	
	
	
	

	

	 9	

3.8 Connectivity	Matrix	
	

The	inputs	of	the	function	are	“el”,	“elementInfos”,	“nodalCoords”,	“matprob”.	
The	output	of	the	function	is	“Conn”.	
It	creates	the	Connectivity	matrix,	a	square	matrix	of	zeros	and	ones	used	to	represent	a	finite	
graph.	
There	is	a	cycle	“if-else”	to	divide	the	hypothesis	of	material’s	property	constant	from	the	linear	
one	and,	inside,	another	cycle	“for”	to	assign	the	ones	when	two	nodes	are	connected.	
	

3.9 Determinant	Jacobian	1D	
	

The	inputs	are	“sizeN”,	“dN”,	“faceNodesCoords”,	“gaussCsi”.	
The	output	is	“detJac”.	
It	is	used	by	“NeumannIntegration”	function.	
This	function	implements	the	determinant	of	the	Jacobian	for	1D	dimension	Mesh.	
There	is	cycle	“if-else”	to	distinguish	from	a	linear	to	a	quadratic	mesh	analysis.	
	

3.10 Shape	1D	
	
The	input	is	“inputNeumann”.	
The	output	is	“shapeFunc1D”.	
This	function	created	the	shape	functions	and	the	gradients	in	1D	dimension	only	if	the	input	
Neumann	is	defined	with	a	cycle	“if-else”.	

3.11 Gaussian	Quadrature	1D	
	

The	inputs	are	“elementInfos”,	“el”,	“matprob”.	
The	outputs	are	“GaussPointWeight1D”,	“GaussPointLocation1D”,	“GaussNoPoints1D”.	
As	 the	 Gaussian	 Quadrature	 function,	 this	 function	 gives	 different	 information	 about	 the	
Gaussian	Quadrature	to	the	database	for	each	case	of	the	problem	but	in	1D	dimension.	
There	is	a	cycle	“if-else”	to	divide	the	hypothesis	of	material’s	property	constant	from	the	linear	
one,	and,	 inside	this	cycle,	three	different	analyses	are	developed	(two	 linears	with	different	
sizes	and	a	quadratic	one).	

3.12 Neumann	Integration	
	

The	 inputs	 are	 “elementInfos”,	 “elementFaces”,	 “shapeFunc1D”,	 “GaussPointWeight1D”,	
“GaussPointLocation1D”,	“GaussNoPoints1D”,	“el”,	“matprob”.	
The	output	is	“rhsVector_element”.	
It	uses	“DeterminantJacobian1D”.	
This	function	gives	the	local	rhs	vector	for	each	element.	
There	is	a	cycle	“if-else”	to	divide	the	hypothesis	of	material’s	property	constant	from	the	linear	
one,	and,	inside	this	cycle,	are	uploaded	the	right	shape	functions	to	calculate	the	contribution	
of	each	face	inside	the	same	element.	Furthermore,	it	is	computed	a	cycle	“if”	with	three	“else”	
inside	to	add	the	contribution	of	each	face	to	the	nodes	of	the	element.	

	

	 10	

	

3.13 Velocity	Element	

Inputs	 of	 the	 function	 are:	 “el”,	 “pressure”,	 “Conn”,	 “nodalCoords”,	 “elementInfos”,	
“shapeGrad”,	“GaussPointLocation”,	“GaussNoPoints”	and	“matprob”.		

The	output	is	“velocity_elem”.	

It	uses	the	“jacobianMatrix”and	“DerivatedShapeFunctions”.	
We	coded	this	function	to	calculate	the	velocity	field	of	the	domain.	There	are	two	situations	for	
k(x):	constant	or	linear.	Obviously,	in	each	case,	the	result	of	the	velocity	field	is	different.	

3.14 Create	Vtk	
	

The	inputs	of	the	function	are	“nodes”,	“elem”,	“pressure”,	“velocity”,	“presName”,	“velName”.	
The	output	of	the	function	is	“vtk”.	
It	creates	a	“.vtk”	file	to	describe	the	postprocess	as	a	text	file.	

	
	

4. Plots	
	
We	created	four	plots	to	describe	the	results	obtained	in	the	case	of	linear	triangular	analysis:	
	

	
	
It	describes	the	sparsity	pattern	of	the	Global	stiffness	matrix	K,	with	2323	non	zero	elements.	
	
	
	
	
	

	

	 11	

	
	
The	second	figure	is	a	3D	dimensional	plot	of	the	pressure	along	the	domain.	
	

	
	

	
	
The	third	figure	represents	the	velocity	vector	in	the	domain	along	the	spatial	direction	x,	
considering	the	linear	hypothesis.	
	
	
	
	
	
	

	

	 12	

	
	
The	last	figure	describes	the	velocity	vector	in	the	domain	along	the	spatial	direction	y	considering	
the	linear	hypothesis.	It	is	possible	to	notice	that	there	are	negative	and	positive	values	along	y	
axe.	
	

5. Improvement	of	the	first	assignment	
	
We	applied	new	strategies	during	the	writing	of	the	code,	respect	to	the	first	approach,	to	achieve	
a	general	improvement:	
	

• the	 functions	 “imposBC”,	 “compFvector”	 and	 “SolvingSystem”	have	been	added	 into	 the	
main	function	FEM.	The	reason	of	this	modification	is	the	efficiency	and	ordering	of	the	code,	
in	fact	these	three	functions	are	very	short	individually	and	it	is	not	necessary	to	write	them	
separately.		

• We	 have	 added	 three	 functions	 to	 calculate	 Neumann	 boundary	 conditions	 such	 as	
“shape1D”,	“gaussQuadrature”	and	“DeterminantJacobian1D”	

• We	 have	 added	 the	 function	 “velocityElement”	 to	 calculate	 the	 velocity	 along	 x	 and	 y	
directions.	

• We	have	also	added	the	function	“k_gauss”.	This	is	due	to	k(x),	the	property	of	the	material.	
This	characteristic	could	be	a	non-constant	variable,	as	in	our	problem,	which	means	that	
we	need	to	consider	its	changes	on	the	domain.	Therefore,	we	have	written	this	function	to	
calculate	k(x)	in	the	Gauss	points.	

	
	
	
	
	
	
	

	

	 13	

6. Point	to	be	improved	
	
We	noticed	that	with	a	quadratic	analysis	the	solution	does	not	appear	correct	as	we	found	in	the	
linear	case.	Tt	is	possible	to	see	this	evidence	in	the	3D	plot	of	the	pressure	in	the	domain	
(quadrilateral	and	quadratic	analysis):		
	

	

