Programming for Engineers and Scientists

Master in Numerical Methods in Engineering

Assignment 2b: “FE Program written in C++”

Professor: Amir Abdulahi
Students: Marcello Rubino — Enrico Marin — Lei Pan

Date: 10 June 2018

UNIVERSITAT POLITECNICA International Centre
DE CATALUNYA CIMNE . e
BARCELONATECH for Numerical Methods in Engineering

30 years

1. Introduction

In this report a C++ program which solves a FE method will be illustrated. In particular, the problem we going to solve
is the equation of potential flow like following:
/Au =0 in Q,
Vu-n=-1 on I}, =0x(0,1),
-< Vurn=1 on [, =1x(01),
Vurn=0 on 9Q \(T;, UTyyu:),
u(0,0)=0

Where the () is the computational domain shown in figure 1, dQ its boundary and n is the outward unit normal
vector. The velocity field is obtained in terms of this potential as:

ou ou
Uy = a Uy = ay

0.8 -~ (- .
06 - A - |
04kt — - = |

(.2 -~~~ J R - -

0 0.2 0.4 0.6 0.8 1

Figure 1. The computational domain

2. Structure of the code (presentation of headers and classes)

The code implemented in C++ is structured in a way that is more usable for many different problems. The classes are

using all the main methods needed for the solution of a Finite Element code. Below a description of each of them will
be illustrated:

2.1 Class Matr
This class represents all the possible main operations that can be done with the matrices such like matrix-vector
products, matrix-matrix product or inverse of a matrix (for the Jacobian). A more user-friendly notation has been

implemented (Matlab kind) to make more easy the implementation of the rest of the code. The interface of the
header file is illustrated below.

#include <stdio.h>
#include "wvec.h"

class Matr
{
protected: // Protected, access only for derived classes
doublexx internalData; // // Entries of the Matrix
int internalRows, internalCols; // Dimensions of the Matrix
public:

// Standard

Matr(); // Default Constructor

Matr(const Matr& otherMatr); // Copy Constructor

Matr(int numRows, int numCols); // Constructor of a matrix of size "internalRows x internalCols"
Matr(int size); // Constructor of a squared matrix of size "size x size"

Matr(charx filename); // Read file and write Constructor/Operator

~Matr(); // Destructor

// Main

int GetNumberOfRows () const; // Declear the function which gets the number of Rows from the matrix

int GetNumberOfColumns() constj // Declear the function which gets the number of Columns from the matrix
double& operator() (int i, int j); // MatLab default indexing (i,j)

// Operations

//overloaded assignment operator

Matré& operator=(const Matr& otherMatr); // Equality of matrices (Assignment)
Matr operator+() const; // + unary (m2 = +ml)

Matr operator-() const; // - unary (m2 = -ml)

Matr operator+(const Matr& ml) constj // Sum of Matrices

Matr operator-(const Matr& ml) const; // Difference of Matrices

Matr operatorx(double a) const; // Product with a scalar

double CalculateDeterminant() const; // Calculate the determinant

double Trace() constj // Calculate the trace of the matrix

// Friendship - usable by others

friend Vec operator(const Matr& m,const Vec& v); // Calculation of m=xv
friend Vec operatorx(const Vec& v,const Matr& m); // Calculation of v=m
friend Matr operatorx(const Matr& m,const Matr& v); // Calculation of m*m
friend Matr Inverse(Matr &m); // Invet the matrix

73

// Interface of friends operators (for the others)
Vec operator*(const Matr& m, const Vec& v);
Vec operator*(const Vec& v, const Matr& m);
Matr operator*(const Matr& m,const Matr& v);

2.2 Class Vec

As seen above class Matr uses another basic class called Vec. This class does all the possible and most important
methods (operations) with the vector. It’s usable everywhere in the code like Matr. In this case too, the Matlab indexing
has been implemented. Below the header is illustrated.

#include <stdio.h>

class Vec

{

protected: // Protected, access only for derived classes
double* internalData; // Components of the vector
int internalSize; // Size of the wvector

public:

// Standard

Vec(); // Default Constructor

Vec(const Vec& otherVec); // Copy Constructor

Vec(int size); // Constructor of a vector of size "size"
~Vec(); // Destructor

// Main

int GetSize() const; // Declear the function which gets the size from the vector

double& operator[](int i); // C++ default indexing

double Read(int i) const; // Declear the function which reads the vector (using C++ default indexing)
double& operator () (int i); // MatLab default indexing

// Operations

Vec& operator={_const Vec& otherVec); // Equality of vectors (Assignment)
Vec operator+() const; // + unary (v2 = +vl1)

Vec operator-() const; // - unary (v2 = -v1)

Vec operator+(const Vec& v1) const; // Sum of Vectors

Vec operator-(const Vec& v1) const; // Difference of Vectors

Vec operatorx(double a) const; // Product with a scalar

double ScalarPr(const Vec& vl,const Vec& v2) const; // Scalar product
double CalculateNorm(int p=2) const; // Norm calculation

// Friendship - usable by others
friend int length(const Vec& v); // Length of vector (friend)

13
int length(const Vec& v); // Interface of length (friend)

#endif // VEC_H

2.3 Class LinearSystem
This class is a basic classes which uses the LU method in order to compute a linear system and compute the solution.

#include "vec.h"
#include "matr.h"

class LinearSystem

{

private:
int mSize; // size of Llinear system
Matr+ mpA; // matrix for linear system
Vec* mpb; // wvector for linear system

// Only allow constructor that specifies matrix and

// vector to be used. Copy constructor 1is private.

LinearSystem(const LinearSystem& otherLinearSystem){};
public:

LinearSystem(const Matr &A, const Vec &b);

/[destructor frees memory allocated
~LinearSystem();

/[Method for solving system
virtual Vec Solve();

13

#endif // SOLVELINEARSYSTEM_H

2.4 Class Solve
This class implements the solve of the linear system of the FE problem. Before using the method from LinearSystem
class, adds to the variables the Lagrangian multipliers coming from the Dirichlet boundary conditions given, in order

to make the global matrix K invertible. Below the interface and the methods are illustrated.

#include "assembleprocess.h"
#include "matr.h"

#include "vec.h"

#include "solvelinearsystem.h"

class Solve : private AssembleProcess

1

public:

Vec SolveSystem(Matr &X,Matr &T,Matr &In,Matr &0ut,Matr &Diric,Vec &InfoTop);
private:

Vec sol;

I3

#endif // SOLVE_H

2.5 Class AssembleProcess

This class implements the assemble process for both the global stiffness matrix K (using the elemental stiffness matrix
K_e computed in class Element and the right hand side vector F. In this case (and this makes the code usable only for
this particular 2D problem, the right hand side vector is completely implemented in this class. In fact, it’s computed by
the assembling of the Neumann integration method done only on Inflow and Outflow elemental. It uses the shape
functions and the first derivatives (1-dimensional) already computed in the correct Gauss points from class

shapeFunctions. Below the interface has been reported:

#include "matr.h"
#include "element.h"
#include "vec.h"

class AssembleProcess: public element

{

public:

Matr globalK(Vec &InfoTop, Matr &X, Matr &T);

Vec globalF(Vec &InfoTop, Matr &X, Matr &T, Matr &In, Matr &0ut);
protected:

Matr K;

Vec fj

s

#endif [/ ASSEMBLEPROCESS_H

2.6 Class Element
Here the elemental stiffness matrix is being computed. It collects information about the kind of the problem (2D or 3D

both are implemented) and the type of elements (collects the correct shape functions and their first derivatives
computed in the Gauss points from class shapeFunctions). Below the header file of the class is illustrated:

#include "gausspoints.h"
#include "meshtopology.h"
#include "shapefunctions.h"
#include "matr.h"

#include "vec.h"

class element : public shapeFunctions
{
public:
Matr ElementMatrix(Vec &InfoTop, Vec& Te, Matr &Xe);
protected:
Matr Ke;
Ti

#endif // ELEMENT_H

2.7 Class shapeFunctions
As already explained this class has methods that calculate the shape Functions and the partial first derivatives at the

correct Gauss points taken from methods in class gaussPoints. Each shape Function and its own partial derivatives
have been reported manually for both linear and quadratic elements, as well as for 2D or 3D case for a possible
future reusability. It does the same calculation for 1 dimension less than the problem one. The interface is the
following:

#include "vec.h"
#include "matr.h"
#include "gausspoints.h"
#include "meshtopology.h"

class shapeFunctions: public gaussPoints
{
protected:
Matr Nj
Matr dNj
Matr Nlow;
Matr dNlow;
public:
Matr CalcShapeFunctions(Vec &InfoTop); // Calculates the shape functions at the given Gauss Points
Matr CalcDerShapeFunctions(Vec &InfoTop); // Calculates the first derivatives shape functions at the given Gauss Points
Matr CalcLowerDimShapeFunctions(Vec &InfoTop); // Calculates the shape functions for Neumann at the given Gauss Points
Matr CalcLowerDimDerShapeFunctions(Vec &InfoTop); // Calculates the first derivatives shape functions for Neumann at the given

s

#endif // SHAPEFUNCTIONS_H

2.8 Class gaussPoints
This class contains the methods linked with the information concerning the Gauss points (such as number of points

needed, the weights, the position in the natural coordinates). Like the previous class, even this class contains any
possible case (2D/3D - linear/quadratic/serendipity) and it gets the right variables depending on the problem. It
computes the same for 1 dimension less than the problem one. Here below the interface:

class gaussPoints
{
protected:
int ngauss;
int order;
Matr PosGauss;
Vec weight_v;
Matr PosGausslLow;
Vec weight_v_Tlow;
public:
Vec GetWeight(Vec &InfoTop);
int GetOrder (Vec& InfoTop);
Matr GetPointLocation(Vec& InfoTop);
Matr GetLowerDimPointLocation(Vec &InfoTop);
Vec GetLowerDimWeight(Vec &InfoTop);
13

#endif // GAUSSPOINTS H

2.9 Class meshTopology

This class does the pre-processing of the problem. It collects the information coming from the mesh and gives the user
the possibility to change a value for the diffusivity coefficient k. Everything, as shown below, is stored into a vector
(InfoTop) which is the main key among all the classes in the code. The first reported is the header file:

#include "vec.h"
#include "matr.h"

class meshTopology

{

public:

static Vec getTopology(Matr &T,Matr &X);
s

#endif // MESHTOPOLOGY_H

Then the more interesting linked .cpp file:

kﬁnclude "meshtopology.h"
#include "matr.h"
#include "vec.h"

#include <iostream:>

using namespace std;

Vec meshTopology::getTopology(Matr &T,Matr &X)

{

Vec info(5);
int Nelem;
int Nnodes;
int Type;
int Dim;

Nelem = T.GetNumberOfRows();
Nnodes = X.GetNumberOfRows();
Type = T.GetNumberOfColumns();
Dim = X.GetNumberOfColumns()-1;
info(1l) = Dim;

info(2) = Type;

info(3) = Nnodes;

info(4) = Nelem;

int kj

cout<<"Please input the diffusion coefficient:"<<endl;
cinz>k;

info(5) = kj

cout<<info(l)<<endl;
cout<<info(2)<<endl;
cout<<info(3)<<endl;
cout<<info(4)<<endl;
cout<<info(5)<<endl;
return info;

}

3. Structure of the code (presentation of the resolving procedure)

In this part of the report a short illustration of how the program works is reported. As known, the program is divided
into Pre-Process, Process and Post-Process.

3.1 Pre-Process
In this step, we have following tasks to do. Firstly, we need to read the continuity matrix T and coordinate matrix X

from the files T.dat and X.dat. After getting the matrix T and X, the next task is dealing with collecting the information
on the geometric properties of the mesh using getTopology from meshTopology class. Then the code deals with the
Neumann boundary conditions. In order to achieve this, we put the Neumann boundary conditions’ information,
including the continuity matrix and the coordinate matrix of Neumann boundary conditions, into the matrices In and
Out, since we are supposed to divide the Neumann boundary into inflow and outflow containing the Neumann
boundary conditions’ values on the corresponding notes. The last task is the imposing the Dirichlet boundary
conditions using the matrix Dirich, which will be solved by using Lagrange multiplier method in the processing part.

3.2 Process

The main part of the code uses the SolveSystem method from Solve class. The input are all the data get so far (X, T,
InfoTop, In, Out, Dirich). The following flowchart will make more understandable how the central part of the code
works (information about each class has been reported above). The output is the vector sol, which is shorten to the
actual solution u.

TS ok [T [
T S L.
] ‘ 1 S U,
— R (| \
T SYStEMIV |
At Y A)
st
> YO
\ g
Lite
wl=| | H
TLEWE WAL !

HATR

e
Ct

A TONCTIoNS, |7
\
14
SR
PAN]
\
B

—4—

In this flowchart it’s possible to see how the problem is solved. In the chart, the information are given from the
class/method below calling to the method/class above. The arrows mean “call” action.The class uses the internal
information from the class below (using the incapsulation mnethod in C++).

3.3 Post-Process

In this part the code does the writing of a vtk file once known the connectivity matrix T, the coordinate matrix X and
the solution vector of u.

4. Conclusions and Problems faced in the implementation

During the testing of the code the program aborts with no expectation during the process of solving the linear system.
This made it not possible to figure out the solution, evaluate the velocity field, plot the results with ParaView and make
a convergence analysis on different mashed given to us. However, this code represents a good start for a deeper
development, using also 3D problems of the Poisson equation case.

