

Programming for Engineers and Scientists

Master in Numerical Methods in Engineering

Assignment 2b: “FE Program written in C++”

Professor: Amir Abdulahi

Students: Marcello Rubino – Enrico Marin – Lei Pan

Date: 10 June 2018

1. Introduction

In this report a C++ program which solves a FE method will be illustrated. In particular, the problem we going to solve

is the equation of potential flow like following:

∆u = 0 in Ω,

 ∇u ∙ � = −1 on Γ�� = 0 × �0,1�,

 ∇u ∙ � = 1 on Γ��� = 1 × �0,1�,

 ∇u ∙ � = 0 on �Ω \�Γ�� ∪ Γ����,

u�0,0� = 0

Where the Ω is the computational domain shown in figure 1, �Ω its boundary and � is the outward unit normal

vector. The velocity field is obtained in terms of this potential as:

�� =
��

��
 � =

��

�!

Figure 1. The computational domain

2. Structure of the code (presentation of headers and classes)

The code implemented in C++ is structured in a way that is more usable for many different problems. The classes are

using all the main methods needed for the solution of a Finite Element code. Below a description of each of them will

be illustrated:

2.1 Class Matr

This class represents all the possible main operations that can be done with the matrices such like matrix-vector

products, matrix-matrix product or inverse of a matrix (for the Jacobian). A more user-friendly notation has been

implemented (Matlab kind) to make more easy the implementation of the rest of the code. The interface of the

header file is illustrated below.

2.2 Class Vec

As seen above class Matr uses another basic class called Vec. This class does all the possible and most important

methods (operations) with the vector. It’s usable everywhere in the code like Matr. In this case too, the Matlab indexing

has been implemented. Below the header is illustrated.

2.3 Class LinearSystem

This class is a basic classes which uses the LU method in order to compute a linear system and compute the solution.

2.4 Class Solve

This class implements the solve of the linear system of the FE problem. Before using the method from LinearSystem

class, adds to the variables the Lagrangian multipliers coming from the Dirichlet boundary conditions given, in order

to make the global matrix K invertible. Below the interface and the methods are illustrated.

2.5 Class AssembleProcess

This class implements the assemble process for both the global stiffness matrix K (using the elemental stiffness matrix

K_e computed in class Element and the right hand side vector F. In this case (and this makes the code usable only for

this particular 2D problem, the right hand side vector is completely implemented in this class. In fact, it’s computed by

the assembling of the Neumann integration method done only on Inflow and Outflow elemental. It uses the shape

functions and the first derivatives (1-dimensional) already computed in the correct Gauss points from class

shapeFunctions. Below the interface has been reported:

2.6 Class Element

Here the elemental stiffness matrix is being computed. It collects information about the kind of the problem (2D or 3D

both are implemented) and the type of elements (collects the correct shape functions and their first derivatives

computed in the Gauss points from class shapeFunctions). Below the header file of the class is illustrated:

2.7 Class shapeFunctions

As already explained this class has methods that calculate the shape Functions and the partial first derivatives at the

correct Gauss points taken from methods in class gaussPoints. Each shape Function and its own partial derivatives

have been reported manually for both linear and quadratic elements, as well as for 2D or 3D case for a possible

future reusability. It does the same calculation for 1 dimension less than the problem one. The interface is the

following:

2.8 Class gaussPoints

This class contains the methods linked with the information concerning the Gauss points (such as number of points

needed, the weights, the position in the natural coordinates). Like the previous class, even this class contains any

possible case (2D/3D – linear/quadratic/serendipity) and it gets the right variables depending on the problem. It

computes the same for 1 dimension less than the problem one. Here below the interface:

2.9 Class meshTopology

This class does the pre-processing of the problem. It collects the information coming from the mesh and gives the user

the possibility to change a value for the diffusivity coefficient k. Everything, as shown below, is stored into a vector

(InfoTop) which is the main key among all the classes in the code. The first reported is the header file:

Then the more interesting linked .cpp file:

3. Structure of the code (presentation of the resolving procedure)

In this part of the report a short illustration of how the program works is reported. As known, the program is divided

into Pre-Process, Process and Post-Process.

3.1 Pre-Process

In this step, we have following tasks to do. Firstly, we need to read the continuity matrix T and coordinate matrix X

from the files T.dat and X.dat. After getting the matrix T and X, the next task is dealing with collecting the information

on the geometric properties of the mesh using getTopology from meshTopology class. Then the code deals with the

Neumann boundary conditions. In order to achieve this, we put the Neumann boundary conditions’ information,

including the continuity matrix and the coordinate matrix of Neumann boundary conditions, into the matrices In and

Out, since we are supposed to divide the Neumann boundary into inflow and outflow containing the Neumann

boundary conditions’ values on the corresponding notes. The last task is the imposing the Dirichlet boundary

conditions using the matrix Dirich, which will be solved by using Lagrange multiplier method in the processing part.

3.2 Process

The main part of the code uses the SolveSystem method from Solve class. The input are all the data get so far (X, T,

InfoTop, In, Out, Dirich). The following flowchart will make more understandable how the central part of the code

works (information about each class has been reported above). The output is the vector sol, which is shorten to the

actual solution u.

In this flowchart it’s possible to see how the problem is solved. In the chart, the information are given from the

class/method below calling to the method/class above. The arrows mean “call” action.The class uses the internal

information from the class below (using the incapsulation mnethod in C++).

3.3 Post-Process

In this part the code does the writing of a vtk file once known the connectivity matrix T, the coordinate matrix X and

the solution vector of u.

4. Conclusions and Problems faced in the implementation

During the testing of the code the program aborts with no expectation during the process of solving the linear system.

This made it not possible to figure out the solution, evaluate the velocity field, plot the results with ParaView and make

a convergence analysis on different mashed given to us. However, this code represents a good start for a deeper

development, using also 3D problems of the Poisson equation case.

