
Master’s Degree Numerical
Methods in Engineering

Programming for Engineering and Scientists

Homework 2.b: Design of a FE code in C++

Author:
Luis Ángel Avilés Murcia
luis.angel.aviles@upc.edu
Mariano Tomás Fernandez
m.tomasfernandez@gmail.com
Shardool Kulkarni
shardoolkulkarni1996@gmail.com

Professor:
Sergio Zlotnik

June 15, 2020
Academic Year 2019-2020

Programming for Engineering and Scientists Avilés Murcia, Fernandez, Kulkarni

Contents

1 Introduction 1

2 Design of the Code 1
2.1 Changes to the presented design . 1

2.1.1 Classes . 1
2.1.2 Structures . 1

2.2 External Libraries . 2
2.3 Selection of the coding software . 2
2.4 Analysed cases . 2
2.5 Things to improve in our code . 2
2.6 How the code works . 2

3 Results 2
3.1 Results triangular mesh . 2
3.2 Convergence . 5

4 Conclusions 5

2

Programming for Engineering and Scientists Avilés Murcia, Fernandez, Kulkarni

1 Introduction
In this assignment we develop a Finite Element Method code in C++ to solve a 2-dimension Poisson
problem, with the conditions shown in Equation (1).

∆u = 0, in Ω
∇ · u · n = −1, on Γin = 0x(0, 1)
∇ · u · n = 1, on Γout = 1x(0, 1)
∇ · u · n = 0, on ∂Γ\Γin ∪ Γout

u(0, 0) = 0

(1)

where Ω is the computational domain, ∂Ω its boundary, and n is the outward normal vector.

The velocity field is obtained from potential such as

vx = ∂u

∂x
vy = ∂u

∂y
(2)

Figure 1: Domain Geometry

The idea of this assignment is to follow the structure depicted in the previous assignment (2.a), mention
the changes introduced, and explain the reason for each of these.

2 Design of the Code

2.1 Changes to the presented design
2.1.1 Classes

From the different classes mentioned in the design of the code, only quadrature, element stiffness and
shape function class were implemented. The fem solver and the global matrix classes were condensed
into the main loop. Each of the classes used both Public and Private variables, class element stiffness
has a constructor to initialise the variables that need the class.

2.1.2 Structures

Datatype of structures were used to perform certain operations. Constraint structure classifies the Neu-
mann boundary conditions on the problem and element is a structure for accessing the connectivity of
individual elements. Apart from these, specialised functions are implemented which perform specific tasks,
such as applying the boundary conditions and calculation of the stiffness matrix among others.

1

Programming for Engineering and Scientists Avilés Murcia, Fernandez, Kulkarni

2.2 External Libraries
Eigen was used to define vectors and matrices, and perform all the linear algebra operations extensively
throughout the code. We use the <isstream.h> which is a header providing the standard input and combined
input/output stream classes. Within this, we use the ifstream class to read the mesh data files.

2.3 Selection of the coding software
We preferred to use the community version of Visual Studio Code instead of the Qt Creator for student,
given the first is a light program code oriented program with several debuggers and tons of information
available on the internet. The visual studio project interface makes it much easier to track all the header
files, external dependencies and source files to name same. Visual Studio also offers easy integration with
Eigen on Windows. All the code for the project was done in a single file, leading to an extensive code.

2.4 Analysed cases
Due to lack of time, the code can solve the problem only for linear triangular elements. Other mesh
conditions can be extended adding conditionals to the element shape (triangular or quadrilateral) and its
degree of interpolation (linear and quadratic elements). Extending the finite element code from matlab
to C++ was not an easy task and several differences came into light while doing it. The problems we
experienced throughout the code took us valuable time which avoid us from implementing more general
mesh conditions.

2.5 Things to improve in our code
We recognize the limitations of our code and for that reason, the following improvements can be imple-
mented:

• Extend the code to quadrilateral elements

• Add quadratic element interpolation

• Remove the lines to compute the stiffness matrix from the main code and become a class with two
methods, element.stiffness and element.force per element.

• Implement a class to read the external files of nodes and connectivities.

• Code a class to extract the boundaries from the meshes.

• Create a class to assembly the global stiffness matrix.

• Implement the class solver, to take all the matrices and vector and solve the system.

2.6 How the code works
The code is Visual Studio project, so it needs to be open as a project in Visual Studio using the .sln file.
It is necessary to add the Eigen libraries to the project directory. Inside the code the route to the meshes
are local, so surely it is necessary to change the path to the place where the Meshes folder is located. If is
the first time opening VS it is necessary to build the project in the Build menu, then the program can be
run with the start button.

3 Results

3.1 Results triangular mesh
As mentioned before the code runs only for linear triangular elements, therefore these results are reported.
From the results, we observe general agreement for different mesh sizes from coarse to fine. The results for
the coarsest and the finest mesh are presented below in Figure 2 and Figure 5. In Figure 4 the streamlines
are merged along with the results.

2

Programming for Engineering and Scientists Avilés Murcia, Fernandez, Kulkarni

Given the fact that the obtained results are saved into a .vtk file, as we have done for the Matlab part
and the incapacity of the software to plot the results, the paraview software was used to plot them. The
results show an expected result of potential flow around a cylinder, the streamlines show symmetry around
the cavity. We can also see the stagnation point at around y = 0.5 both in Figure 4 and Figure 5.

Figure 2: Solution u for coarsest Mesh: 275 nodes

Figure 3: Solution u for finest mesh: 4787 nodes

3

Programming for Engineering and Scientists Avilés Murcia, Fernandez, Kulkarni

Figure 4: The streamlines for Coarse mesh

Figure 5: Streamlines for fine mesh

4

Programming for Engineering and Scientists Avilés Murcia, Fernandez, Kulkarni

3.2 Convergence
The convergence analysis was performed considering the finest mesh as the ’exact’ solution, we look at
the L∞ norm, the difference in absolute values of the maximum solution values, we observe that the error
decreases as we increase the number of elements. A linear decrease is expected as we are dealing with
linear triangular elements, and the trend line in Figure 6 shows an R2 of about 95% which matches the
expectations.

y = -3E-06x + 0.0384
R² = 0.9556

0.028

0.03

0.032

0.034

0.036

0.038

0 500 1000 1500 2000 2500 3000

[M
ax

(|
u|

)
-M

ax
(|

u_
ex

|)
]/

M
ax

(|
u_

ex
|)

Number of Nodes

Figure 6: Converging Error for linear Triangular elements

4 Conclusions
In this assignment a C++ Finite Element Method code was developed in order to analyse a Laplacian
problem in two-dimensions. Even though some difficulties were encountered when implementing different
element shapes and order of interpolation, the implemented version of the linear triangular elements shown
credible results.

Moreover, when analysing the convergence of these results it is seen that the L∞ norm of the error is
reduced for finer meshes as expected. In this way, the code is said to be limited to a certain type of element
but properly working.

Further improvements can be implemented to work with liner and quadratic quadrilateral and triangular
quadratic elements.

5

	Introduction
	Design of the Code
	Changes to the presented design
	Classes
	Structures

	External Libraries
	Selection of the coding software
	Analysed cases
	Things to improve in our code
	How the code works

	Results
	Results triangular mesh
	Convergence

	Conclusions

