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In our code structure, we have opted for a design which relies on distinct functions to 
create and assemble the different components of the linear system Ku = f, which describes 
the PDE. This gives the final script a clean look and allows easy access to the different 
calculations in case of modification, and versatility as these same functions could be used in 
different scripts. 

As a base for our code we have assumed that the problems to be solved are steady 
state and that the solution only depends on the location in space. 

Inputs 
X ( coordinates ) , T ( connectivity ) , equation parameters , Boundary conditions 

 
The inputs that we need for solving the FEM problem considering that our domain 

has already been descretesized. First, we need the X matrix which gives us the coordinates 
of the nodes and the T matrix which gives us the information about the number of elements 
and what nodes each element is made of. The other input data that we need is the data of 
the equation. This data can be the coefficients of the problem for example the k for 
conductivity and the source term of the equation in case it exists. The equation data will be 
saved in a matrix in case it has different properties over the domain, for example if the 
conductivity changes inside the domain. The other needed input is the boundary conditions 
of the given problem. The boundary conditions can be in two forms of Dirichlet and Neuman. 
These boundary conditions are going to be defined on the nodes, so we are going to define 
them as matrices with one column for the node numbers and one column for the value of the 
Neuman and Dirichlet boundary conditions. 
 



Calculating K 
[K] = stiffnessMatrix(X, T, conductivity); 

 
The stiffnessMatrix function gives the global K matrix for triangular or quadrilateral 

elements. Within the function the shape functions, their derivatives and the gauss points for 
the numerical integration are defined for both kinds of element.  
 
Using the dimensions of X and T, this function will determine what kind of element the mesh 
is made of (triangular, quadrilateral, linear, linear square etc.) Each element type and their 
respective reference elements and solutions are separated by a control structure.  
The number of gauss points, their coordinates and their weights are all defined in the 
function and may vary according to the element type. The jacobian is also defined and 
computed within the function. For the numerical integration, the gauss points are defined in 
the reference coordinates, and the integration is performed on the reference element, and 
the jacobian is used to project the results to the real element coordinates. Using the 
reference element and the gauss points, the function creates the elemental K matrices in a 
loop and assembles them before returning the global K matrix. 
 

Calculating f 
[f] = forceVector(source term,body forces, BC) 

At first f will be a zero vector, that has the size of the displacement vector. The 
source term will be integrated and added to the respective position in the force vector. The 
boundary conditions are divided into two parts: Dirichlet and Neumann. The Dirichlet 
boundary conditions are replaced in the displacement vector, and then added to f. This will 
let the code reduce the system to be solved as it is going to delete the relative row and 
column, moving the product of the respective values on the right hand side, with the opposite 
sign. The Neumann boundary conditions are integrated in its given boundary then added to 
f. 

Solving linear system 
Once we have K and f, as well as having replaced the Dirichlet BC in u, we can easily solve 
the linear system by asking MatLab to perform u = inv(K)*f. For this we assume K is easily 
invertible.  

Advantages and disadvantages 

Advantages 
- The stiffnessMatrix function can easily be extended to work for any element type by 

including a switch case and defining the reference element, its shape functions and 
their derivatives. 



- In Script format, the code would be clear and tidy as there would not be too much 
text. 

Disadvantages 
- The main disadvantage of our code is that now it is not able to work with combined 

meshes  (in case there are two element types in one domain)  and in cases it will not 
be able to find the element type if the number of element nodes are similar for two 
cases; for example the case of the second degree triangular element and the linear 
quadrilateral element. This problem can be solved by improving the meshing code so 
the connectivity matrix will have an extra column that will indicate the element type, 
so in this case the function only reads the number in that specific row and identifies 
the element type and calculates the stiffness matrix. 

Conclusion 
In general the code gets the connectivity and coordinate matrices, the equation parameters 
and the boundary conditions as inputs. Then the main code calls the stiffness function and 
giving it the connectivity and coordinate matrices as inputs it gets the global stiffness matrix 
as an output of the function. Afterwards it calls the force vector function and gives it the 
inputs of the boundary conditions and the source term of the equation it gets the force vector 
as an output. Finally having both the global stiffness matrix and the vector of forces by 
applying the Dirichlet boundary condition it reduces the system and solves the problem for 
the needed variable.  


