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1. Introduction 

The following report shows the implementation of MatLab code for different iterative (and non-iterative) schemes for the 

resolution of the heat transfer equation in one-dimensional domain (i.e. [0,1]): the equation shows the following 

structure: 

 −� ������ = � 

In which k represents the thermal diffusivity coefficient, u is the solution of the problem (which corresponds to the 

temperature in the domain, and f is the source term which is physically a volumetric heat source). The model implemented 

and shown below are the following: 

• Single domain problem model 

• Two sub-independent problems model 

• Monolithic scheme model 

• Interation-by-subdomain Dirichlet-Neumann iterative model 

• Relaxation scheme with fixed parameter model 

• Aitken relaxation scheme model 

 

2. Single domain problem 

In this first case the whole problem is studied in a whole single domain [0,1], discretized in 100 elements. This corresponds 

to a typical FE code without any particular method. In this case the fixed parameters at the boundaries are the value of 

the u (precisely u=0 in both x=0 and x=1). This will mean that the temperature will be 0 in both boundaries. The source 

term is set to 1. Few studies on some parameters have been computed. 

2.1 – Different values of the diffusivity k 

The first one consists in the change of the thermal diffusivity k and plot the results in a complete graph. As shown in figure 

1, the value of the diffusivity varies significantly: the main effect is the reduction of the temperature seen (as expected, 

due to the symmetry of the problem) in the middle. This is physically consistent because it shows the particularities of the 

metals (high values of the diffusivity) to dissipate the heat given from the external world (the f) much more easily than 

wood or rubber. 

 

 

 

 

 

 

 

 

 

Figure 1 - Unique domain - different diffusivity k values 



 

2.2 – Different values of the source term f 

The second study is the effect of increasing the volumetric heat source f. The figure 2 below represents this effect, and 

varies the value of the source between 1 and 16, while keeping constant the diffusivity k to 1. In this case the situation is 

different: the material modeled is the same, while the external heat is set by the scientist. Increasing the heat shows an 

increase of the internal temperature, since a bigger quantity of the heat must be dissipated inside the domain through a 

higher value of the temperature. 

 

Figure 2 - Unique domain – different source terms f 

2.3 – Convergence of the problem – Number of elements 

The last discussion in this model is a numerical study: increasing the number of the elements which discretize the domain 

it’s possible to make a convergence analysis and see the good results given by a finer mesh. In fact, as shown in figure 3, 

the increase of the number of element shows a more precise solution for the same problem and gets closer to the 

analytical solution given by the parabolic equation: 

	 =  − �2� 
� + �2� 
 

Which shows the maximum value (as already reported) in the middle of the domain (x=0.5): 

	|���.� =  − ��� 0.5� + ��� 0.5 = 0.125 (if k=f=1) 

 

Figure 3 - Unique domain - different numbers of elements 



 

The convergence analysis has been done in terms of the relative error between the maximum value of the temperature 

for the coarse-discretized problem (for symmetry reasons the value of the elements is odd), compared to the analytical 

solution. On the x-axis the mesh size has been reported. As expected, both figure 4 and 5 (logarithmic reproduction) show 

that the convergence is satisfied and a good solution is acquired already for 100 elements. 

 

Figure 4 - Unique domain – Convergence Analysis  Figure 5 – Unique domain – Convergence Analysis (logarithmic scale) 

 

3. Two sub-independent problems 

In this case the domain [0,1] has been split in two subdomains: the first one goes between 0 and 0.25 and has 25 elements, 

while the second is between 0.25 and 1, and presents 75 elements. In this problem the coefficients kappa and the source 

term for both subdomains are set to 1. The Dirichlet boundary conditions are given to the extremal nodes of the old big 

domain (u=0 in x=0, left value for the left sbd; u=0 in x=1, right value for the right sbd). The rest of the boundary conditions 

(Neumann or interface Dirichlet) are not set. The result, as shown in figure 6, presents a big jump at the interface point, 

due to the fact that each subdomain solves its own problem with only one B.C. and doesn’t care of conditions 

(Transmission) coming from the other subdomain. 

 

Figure 6 - Independent subdomains 

 



 

4. Monolithic scheme 

4.1 – Theoretical considerations 

In this particular scheme the domain, partitioned into two subdomains (which have the same size as properties described 

before), is characterized by a big stiffness matrix K and rhs vector f, simply coming from the assembly of the two 

subdomains interacting. This is the case in which the coupling is done by enforcing a Neumann-Neumann coupling 

approach. In this case we have the first subdomain which shows the following weak form: 

������
 , �� �	���
  !" −# ���, �� �	���
 $%&'()�*+( = # ���, � $!"  

The Neumann – Neumann coupling consists in the following fact: 

− �� �	���
 +  �� �	���
 = 0 

And this can be insert in the equation for the second subdomain: 

������
 , �� �	���
  !� −# ���, −�� �	���
 $%&'()�*+( = # ��� , � $!�  

Since the meshes match at the interface and the interpolation space Vh used in this approach is the same, we obtain this 

equality: 

−# ��� , −�� ��",�� $%&'()�*+( = # ���, �� ��",�� $%&'()�*+(=  -�.",�� , �� ��",�� /!" − # ���, � $!" 

So we can rewrite the equation for the problem in the second subdomain: 

������
 , �� �	���
  !� + ������
 , �� �	���
  !" = # ���, � $!" + # ��� , � $!� 

Which means that the two subdomains can be assembled into a big global problem, defined by the following stiffness 

matrix structure: 

 

And the following right hand side global vector: 

 



 

In which the yellow parts are linked to the nodes in the first subdomain, the red to the second subdomain while the orange 

part to the interface. This scheme is well visible in the HP_SolveMonolithic.m Matlab function (figure 7 )in which, before 

solving the global problem, the program assembles the two subdomains, considering twice the contribution for the 

interface node (npoin1 position) coming from the two subdomains as explained by theory above: 

 

Figure 7 - Matlab code for HP_SolveMonolithic.m 

4.2 – Solutions computed in the scheme 

As shown in figure 8 the solution is the same of the unique domain problem shown in figure 1. Here the two subdomains 

solutions are visible in two different colors and the values for k and f are equal to 1 in both subdomains. 

 

Figure 8 – Monolithic scheme – k1 = k2 = 1 

If one of the two subdomains has a different value for the diffusivity, the solution is much different. In fact, the growth of 

the temperature in the subdomain that has the smaller diffusivity tends to be much slower, while the subdomain with big 

diffusivity has a higher change of the temperature along the space. This creates a jump for the derivatives visible at the 

interface. It’s important to say that the second transmission condition (Neumann-Neumann) is always satisfied, since the 



 

derivatives, if scaled (multiplied) for a same value of the diffusivity, would get the smooth shape for the previous case, so 

the normal flux has a continuity. In figure 9 and 10 there are the monolithic solutions respectively for k1 = 4 and k2 = 1, 

and k1 = 1 and k2 = 4. The values of the temperature reached in the second case are smaller since the biggest subdomain 

has the biggest diffusivity k. 

 

Figure 9 – Monolithic scheme – k1 = 4, k2 = 1  Figure 10 – Monolithic scheme – k1 = 1, k2 = 4 

5. Iteration-by-subdomain scheme (Dirichlet-Neumann) 

In this more sophisticated case, the scheme represents an iterative method between the two subdomains: the first 

subdomain solve a Neumann problem and sends the solution at the interface to the second subdomain, which takes this 

value as a Dirichlet boundary condition (it solves a Dirichlet problem). Then, the second subdomain sends the value of the 

flux calculated at the interface, which will be collected by the first subdomain, which will solve again a Neumann problem 

(and so on…). 

5.1 – Constant diffusivity k = 1 in the whole domain 

In this case both subdomains present a k = 1 and a source f = 1. The solution of this problem, is not reported as a figure, 

since it’s the same that can be seen in figure 8 for the Monolithic case. More interesting is the evaluation of the error at 

the interface during the iterations, and plot this against the number of iterations computed during the solving process. 

The figure 11 and 12 show the results in normal and logarithmic scale. It’s possible to see that, without any relaxation 

method, the pure D-N scheme needs many iterations before converging to the solution.  

 

Figure 11 – Dirichlet–Neumann, k1=k2=1 – Conv. Analysis   Figure 12 – Dirichlet–Neumann, k1=k2=1 – Conv. Analysis (log. scale) 



 

5.2 – Diffusivity k1 = 100*k2 

The same scheme has been used for a big difference in terms of diffusivity in the two subdomains. The first study shows 

a value for the first subdomain equal to 100, while k2 remains equal to 1. In this case, the solution is a stressed case for 

the one shown in figure 9 (in this case the growth of the temperature on the left is very much slow, and almost 

imperceptible) [figure 13].  

 

Figure 13 – Dirichlet–Neumann – k1 = 100, k2 = 1 

As for the convergence analysis, it’s interesting to see that the convergence in this particular case is much faster than the 

previous case (much below, an analytical explanation will be illustrated). The figures 14 and 15 confirm this fact (the 

number of iterations are equal to 3). 

 

Figure 14 – Dirichlet–Neumann, k1=100 / k2=1 – Conv. Analysis  Figure 15 – Dirichlet–Neumann, k1=100 / k2=1  – Conv. Analysis (log. scale) 

5.3 – Diffusivity k1 = (1/100)*k2 

If one inverts this position and gives 100 to the diffusivity in the second subdomain (which makes the Dirichlet problem) 

and gives 1 to k1 the situation is completely different: in this case the iterative scheme is completely unstable from the 

very beginning and the solution doesn’t converge. In figure 16, the solution proposed is the one found in the secon 

iteration, which is the first iteration in which the solution blows up and does not converge anymore. The reason will be 

explained below the graphics.  



 

 

Figure 16 – Dirichlet–Neumann – k1 = 1, k2 = 100 

The convergence analysis shows a huge value of the error which remains constant and does not decrease. This behavior 

is visible in both Cartesian and logarithmic plots (figure 17 and 18).  

 

Figure 16 – Dirichlet–Neumann, k1=1 / k2=100 – Conv. Analysis  Figure 17 – Dirichlet–Neumann, k1=1 / k2=100  – Conv. Analysis (log. scale) 

5.4 – Theoretical explaination 

 

Given the Dirichlet-Neumann scheme (sequential (Gauss-Seidel) case): 

⎩⎪⎨
⎪⎧ −�� ���"4��� = ��                     56 Ω�	� = 0                              86 �Ω�\Γ���� ��"4�� = −�� ���4;"��             86 Γ��

       < −�� ����4��� = ��      56 Ω�	� = 0                  86 �Ω�\Γ��	�% = 	�%             86 Γ��
  

 

 

If the attention is paid in the left subdomain, the continuity of fluxes, as reported: 



 

�� �	�%�
 = −�� �	�%=��
  

Will make the program evaluate the spatial first derivative on the interface from the first subdomain point-of-view: �	�%�
 = − ����
�	�%=��
  

When the diffusion in subdomain 1 is equal to 100, and the same is equal to 1 on the subdomain 2, it means that k1 >> k2, 

or, in the same way that 
���"  is very small, or at the limit, →  0K, this makes the left term decrease very fast and the 

convergence is reached very soon since the scheme becomes much more stable than the constant k over the whole 

domain. 

On the other hand, when the diffusion in subdomain 1 is equal to 1, and the same is equal to 100 on the subdomain 2, it 

means that k1 << k2, or, in the same way that 
���"  is very big, or at the limit, → +∞, this makes the left term increase 

instantaneously and the convergence cannot be reached since the scheme becomes unstable. 

6. Relaxation scheme with fixed parameter ω 
In order to decrease significantly the total number of iterations, a relaxation scheme is implemented to the classic IBS 

scheme. In this case, the Dirichlet B.C. on the interface for the second subdomain problem (Dirichlet problem) is relaxed 

using the transmission condition and the interface value evaluated at the previous iteration, this will make a faster 

convergence in the computational process.  	O��% = P ∙ 	O��% + (1 − P) ∙ 	O��%=� 

6.1 – Diffusivity constant k = 1 in the whole domain (different ω) 

In this case, different values for ω (which remains constant) have been given: if ω is equal to 0, as shown in figure 18, 

makes a disconnection of the transmission condition for the second subdomain, since there is no connection between the 

two subdomains. In this particular case, the whole process converges to a solution in one iteration because it’s similar to 

a normal FE independent scheme. Except for the last figures, here the value of the diffusivity term k is = 1 in both sbds. 

 

Figure 18 – Simple relaxation method (ω = 0) 

 

For a small value of the ω (0.1) the number of iterations computed are very big (around 60). The figures 19 and 20 show 

this problematic case, in which the relaxation is not actuated since the value of its coefficient is too small. 



 

 

 

Figure 19 – Simple relaxation method (ω = 0.1) – Conv. Analysis       Figure 20 – Simple relaxation method (ω = 0.1) – Conv. Analysis (log. scale) 

 

Increasing the value of ω to 0.25, the situation is much nicer, but still not optimal. Again the relaxation is not helping the 

convergence (# iterations = 26) [figures 21-22].  

 

 

Figure 21 – Simple relaxation method (ω = 0.25) – Conv. Analysis       Figure 22 – Simple relaxation method (ω = 0.25) – Conv. Analysis (log. scale) 

 

For ω equal to 0.5 it’s possible to recover almost the same situation given in the D-N IBS scheme (# iterations = 12). The 

figures 23 and 24 contain less points. 



 

 

Figure 23 – Simple relaxation method (ω = 0.5) – Conv. Analysis       Figure 24 – Simple relaxation method (ω = 0.5) – Conv. Analysis (log. scale) 

 

It’s expected to get an optimal solution if ω is equal to 0.75. In fact, the solution converges in 4 iterations, and this 

represents an optimal solution if one uses a relaxation method (figures 25 and 26). 

 

 

Figure 25 – Simple relaxation method (ω = 0.75) – Conv. Analysis       Figure 26 – Simple relaxation method (ω = 0.75) – Conv. Analysis (log. scale) 

 

Arriving to the value of 1, the relaxation mode becomes again the classic Dirichlet-Neumann IBS scheme (# iterations = 

13). This is confirmed if one looks at the figures 27 and 28, which show its convergence analysis. 



 

 

Figure 27 – Simple relaxation method (ω = 1) – Conv. Analysis       Figure 28 – Simple relaxation method (ω = 1) – Conv. Analysis (log. scale) 

 

6.2 – Diffusivity k1 = (1/100)*k2 (optimal ω = 0.75)  

As conclusion is possible to see that the relaxation method creates a faster solution in this case for a parameter ω around 

0.75. Still this doesn’t confirm that the method is stable always. In fact, for the problematic case in which k1 << k2 the 

solution is not reached, and the number of iterations blows up (figures 29-30-31). 

 

Figure 29 – Simple relaxation method (ω = 0.75) – k1 = 1, k2 =100 

The jump seen in this figure (29) is due to the structure of the relaxation methods, which don’t completely take the 

whole value coming from the left, but only a partition (0.75); this is the first total iteration in which the value of uΓ21 for 

the previous iteration is equal to 0. 

The figures 30 and 31 show the impossibility to reach convergence for this problem. Need of a different relaxation  

method (Aitken).  

 



 

 

 

Figure 30 – Simple relaxation method (ω = 0.75) – Conv. Analysis       Figure 31 – Simple relaxation method (ω = 0.75) – Conv. Analysis (log. scale) 

[special case in which k1 = 1 and k2 = 100] 

 

7. Aitken Relaxation scheme 

The Aitken relaxation scheme represents a good solution which stabilizes many problematic codes. In this case, the value 

of the relaxation parameter ω is not constant except for the first two iterations. In the following iterations the 

computation for the ω is a combination of the values at the interface in both subdomains coming until from two iterations 

before: this means that the scheme provides at least 3 iterations in order to converge, but it converges very fast: 

P = 	O��%=� − 	O��%=�(	O��%=� − 	O��%=�) + (	O��% − 	O��%=�) 

7.1 – Diffusivity constant k = 1 in the whole domain 

Computing the general case in which in both subdomains the diffusivity k = 1, it’s possible to see (in figures 32 and 33) 

that the number of iterations is very low (= 5). The advantage of this method is that the choice of initial ω is free (except 

for 0 – wrong!), and the system search and finds the correct and optimal value of ω at each iteration. 

 

Figure 32 – Aitken relaxation method (k = 1) – Conv. Analysis       Figure 33 – Aitken relaxation method (k = 1) – Conv. Analysis (log. scale) 



 

7.2 – Diffusivity k1 = (1/100)*k2 

Once computed the second option (in which k1 = 1 and k2 = 100) it’s possible to see that in this case the system converges, 

and it’s found useful for this problematic cases. The number of iterations remains very small (5) and this means that this 

method is very adaptive. The solution and the convergence analysis are shown in figures 34, 35 and 36. 

 

Figure 34 – Aitken relaxation method  – k1 = 1, k2 =100 

 

 

Figure 35 – Aitken relaxation method (k1 = 1, k2 = 100) – Conv. An. //// Figure 36 – Aitken relaxation method (k1 = 1, k2 = 100) – Conv. An. (log. scale) 

8. Conclusions 

As seen for this particular problem (Heat transfer problem), the advantage given by the classic iterative schemes are not 

so underlined for particular extremal cases. Solutions like Aitken can be a good advantage and make the system converge 

fast and for any case. As for a Monolithic scheme, it’s possible to see that the system is larger than the others and this, 

sometimes, is a disadvantage for bigger and more complicated problems. The need of an iterative scheme for big problems 

is very much recommended (with sophisticated method like Aitken if needed). 



 

9. Annex of the codes 

A] Unique Domain – FEM 

A1. Change value of k 

clc 

close all 

clear variables 
  

%Domain 

Data.inix = 0; 

Data.endx = 1; 

Data.nelem = 100; 
  
%Physical 

kappa_vector = [1,2,4,8,16]; 

Data.source = 1; 
  

%Boundary conditions 

%Dirichlet 

Data.FixLeft = 1; 

Data.LeftValue = 0; 

Data.FixRight = 1; 

Data.RightValue = 0; 

%Neumann 

Data.FixFluxesLeft = 0; 

Data.LeftFluxes = 0; 

Data.FixFluxesRight = 0; 

Data.RightFluxes = 25; 
  

for i=1:length(kappa_vector) 

Data.kappa = kappa_vector(i); 

%Initialization 

HeatProblem = HP_Initialize(Data); 
  

%Building 

HeatProblem = HP_Build(HeatProblem); 
  
%Solving 

HeatProblem = HP_Solve(HeatProblem); 
  

%Plotting 

HP_Plot(HeatProblem,1,1); 

legendInfo{i} = sprintf('Solution u with kappa = %u',kappa_vector(i)); 

end 

legend(legendInfo,'Location','best'); % Legend 

title('Heat Problem - Unique domain') % Title 

 

A2. Change value of f 

clc 

close all 

clear variables 

  

%Domain 

Data.inix = 0; 

Data.endx = 1; 

Data.nelem = 100; 

  

%Physical 

Data.kappa = 1; 

source_vector = [1,2,4,8,16]; 

  

%Boundary conditions 

%Dirichlet 

Data.FixLeft = 1; 

Data.LeftValue = 0; 

Data.FixRight = 1; 

Data.RightValue = 0; 

%Neumann 

Data.FixFluxesLeft = 0; 

Data.LeftFluxes = 0; 

Data.FixFluxesRight = 1; 



 

Data.RightFluxes = 25; 

  

for i=1:length(source_vector) 

Data.source = source_vector(i); 

%Initialization 

HeatProblem = HP_Initialize(Data); 

  

%Building 

HeatProblem = HP_Build(HeatProblem); 

  

%Solving 

HeatProblem = HP_Solve(HeatProblem); 

  

%Plotting 

HP_Plot(HeatProblem,1,1); 

legendInfo{i} = sprintf('Solution u with f = %u',source_vector(i)); 

end 

legend(legendInfo,'Location','best'); % Legend 

title('Heat Problem - Unique domain') % Title 

 

A3. Change number of elements  - convergence 

clc 

close all 

clear variables 

  

%Domain 

Data.inix = 0; 

Data.endx = 1; 

nelem_vector =  [3 5 7 9 11 13 15 51 99]; 

  

%Physical 

Data.kappa = 4; 

Data.source = 10; 

  

%Boundary conditions 

%Dirichlet 

Data.FixLeft = 1; 

Data.LeftValue = 0; 

Data.FixRight = 1; 

Data.RightValue = 0; 

%Neumann 

Data.FixFluxesLeft = 0; 

Data.LeftFluxes = 0; 

Data.FixFluxesRight = 1; 

Data.RightFluxes = 25; 

  

for i=1:length(nelem_vector) 

Data.nelem = nelem_vector(i); 

%Initialization 

HeatProblem = HP_Initialize(Data); 

  

%Building 

HeatProblem = HP_Build(HeatProblem); 

  

%Solving 

HeatProblem = HP_Solve(HeatProblem); 

  

%Plotting 

HP_Plot(HeatProblem,1,1); 

legendInfo{i} = sprintf('Solution u with nelem = %u',nelem_vector(i)); 

  

Tmax(i) = max(HeatProblem.Solution.U); % Calculating the maximum value of the temperature 

end 

legend(legendInfo,'Location','best'); % Legend 

title('Heat Problem - Unique domain') % Title 

  

% Temperature max - analytical 

T_an = -

Data.source/(2*Data.kappa)*((Data.endx+Data.inix)/2)^2+Data.source/(2*Data.kappa)*((Data.endx+Data.inix)/2); 

err = abs(T_an - Tmax); % Error 

size_mesh = 1./nelem_vector; % Size of the mesh 

  

figure(2) % Plot Convergence - Cartesian 

hold on 



 

plot(size_mesh(1:end-1),err(1:end-1),'linewidth',1,'color','r','marker','o'); 

grid on 

xlabel('Size Mesh','fontsize',11); 

ylabel('Error','fontsize',11); 

title('Heat Problem - Unique domain - Convergence Error Analysis') 

  

figure(3) % Plot Convergence - LogLog 

loglog(size_mesh(1:end-1),err(1:end-1),'linewidth',1,'color','r','marker','o'); 

grid on 

xlabel('log(Size Mesh)','fontsize',11); 

ylabel('log(Error)','fontsize',11); 

title('Heat Problem - Unique domain - Convergence Error Analysis (logaritmic scale)') 

 

B] Independent Subdomains – FEM 

clc 

close all 

clear variables 

  

%SubDomain1 

Data.inix = 0; 

Data.endx = 0.25; 

Data.nelem = 25; 

  

%SubDomain2 

Data2.inix = 0.25; 

Data2.endx = 1; 

Data2.nelem = 75; 

  

%Physical 

Data.kappa = 1; 

Data.source = 1; 

Data2.kappa = 1; 

Data2.source = 1; 

  

%Boundary conditions 

%Dirichlet 

%Subdomain1 

Data.FixLeft = 1; 

Data.LeftValue = 0; 

Data.FixRight = 0; 

Data.RightValue = 0; 

  

%Subdomain2 

Data2.FixLeft = 0; 

Data2.LeftValue = 0; 

Data2.FixRight = 1; 

Data2.RightValue = 0; 

  

%Neumann 

%Subdomain1 

Data.FixFluxesLeft = 0; 

Data.LeftFluxes = 0; 

Data.FixFluxesRight = 0; 

Data.RightFluxes = 0; 

  

%Subdomain2 

Data2.FixFluxesLeft = 0; 

Data2.LeftFluxes = 0; 

Data2.FixFluxesRight = 0; 

Data2.RightFluxes = 0; 

  

%Problem 1 

HeatProblem = HP_Initialize(Data); %Initialization 

HeatProblem = HP_Build(HeatProblem); %Building 

HeatProblem = HP_Solve(HeatProblem); %Solving 

  

%Problem 2 

HeatProblem2 = HP_Initialize(Data2); %Initialization 

HeatProblem2 = HP_Build(HeatProblem2); %Building 

HeatProblem2 = HP_Solve(HeatProblem2); %Solving 

  

%Plotting 

HP_Plot(HeatProblem,1,1); %Plot Problem1 

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure) 

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northeast'); % Legend 

title('Heat Problem - Independent subdomains (no t.c.)') % Title 



 

C] Monolithic Scheme 

clc 

close all 

clear variables 

  

%SubDomain1 

Data.inix = 0; 

Data.endx = 0.25; 

Data.nelem = 25; 

  

%SubDomain2 

Data2.inix = 0.25; 

Data2.endx = 1; 

Data2.nelem = 75; 

  

%Physical 

Data.kappa = 1; 

Data.source = 1; 

Data2.kappa = 4; 

Data2.source = 1; 

  

%Boundary conditions 

%Dirichlet 

%Subdomain1 

Data.FixLeft = 1; 

Data.LeftValue = 0; 

Data.FixRight = 0; 

Data.RightValue = 0; 

  

%Subdomain2 

Data2.FixLeft = 0; 

Data2.LeftValue = 0; 

Data2.FixRight = 1; 

Data2.RightValue = 0; 

  

%Neumann 

%Subdomain1 

Data.FixFluxesLeft = 0; 

Data.LeftFluxes = 0; 

Data.FixFluxesRight = 0; 

Data.RightFluxes = 0; 

  

%Subdomain2 

Data2.FixFluxesLeft = 0; 

Data2.LeftFluxes = 0; 

Data2.FixFluxesRight = 0; 

Data2.RightFluxes = 0; 

  

%Problem 1 

HeatProblem = HP_Initialize(Data); %Initialization 

HeatProblem = HP_Build(HeatProblem); %Building 

  

%Problem 2 

HeatProblem2 = HP_Initialize(Data2); %Initialization 

HeatProblem2 = HP_Build(HeatProblem2); %Building 

  

%Solve and plot 

[HeatProblem,HeatProblem2] = HP_SolveMonolithic(HeatProblem,HeatProblem2); %Solving the monolithic 

HP_Plot(HeatProblem,1,1); %Plot Problem1 

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure) 

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northeast'); % Legend 

title('Heat Problem - Monolithic (k1 = 1 and k2 = 4)') % Title 

 

D] IBS Dirichlet-Neumann Scheme 

clc 

close all 

clear variables 

  

% Problem 1 

% Geometry 

Data.inix = 0; 

Data.endx = 0.25; 

Data.nelem = 25; 



 

% Physical properties 

Data.kappa = 1; 

Data.source = 1; 

% Boundary conditions - Dirichlet  

Data.FixLeft = 1; % 0: do not fix, 1: fix 

Data.LeftValue = 0; 

Data.FixRight = 0; 

Data.RightValue = 0; 

% Boundary conditions - Neumann 

Data.FixFluxesLeft = 0; 

Data.LeftFluxes = 0; 

Data.FixFluxesRight = 1; 

Data.RightFluxes = 0; 

  

% Problem 2 

% Geometry 

Data2.inix = 0.25; 

Data2.endx = 1; 

Data2.nelem = 75; 

% Physical properties 

Data2.kappa = 1; 

Data2.source = 1; 

% Boundary conditions - Dirichlet  

Data2.FixLeft = 1; % 0: do not fix, 1: fix 

Data2.LeftValue = 0; 

Data2.FixRight = 1; 

Data2.RightValue = 0; 

% Boundary conditions - Neumann 

Data2.FixFluxesLeft = 0; 

Data2.LeftFluxes = 0; 

Data2.FixFluxesRight = 0; 

Data2.RightFluxes = 0; 

  

% Initialization 

uGamma12_1 = 0; 

  

% Cycle data initialization 

i = 1; % Iteration Counter initialization 

imax = 100; % Maximum iterations 

err = 100; % Error initialization 

tol = 10^-3; % Tolerance 

  

while (i < imax && err > tol) 

     

    % Problem 1 

    HeatProblem = HP_Initialize(Data); % Initialization 

    HeatProblem = HP_Build(HeatProblem); % Building 

    HeatProblem = HP_Solve(HeatProblem); % Solving 

     

    Data2.LeftValue = HeatProblem.Solution.uRight; 

     

    % Problem 2 

    HeatProblem2 = HP_Initialize(Data2); % Initialization 

    HeatProblem2 = HP_Build(HeatProblem2); % Building 

    HeatProblem2 = HP_Solve(HeatProblem2); % Solving 

     

    % Updating the flux going to Sbd 1 (for the following step) 

    Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft; 

     

    % Error calculation 

    err = abs(abs(HeatProblem.Solution.uRight - uGamma12_1)/uGamma12_1)*100; 

    fprintf('The current error is: %f\n',err); 

    err_vector(i) = err; 

     

    % Recalculating the interface value (Sbd 1) for the following step (it will be i-1 in the next iteration) 

    uGamma12_1 = HeatProblem.Solution.uRight; 

     

    % Incrementation of the iteration index 

    i = i + 1; 

end 

  

% Plotting 

HP_Plot(HeatProblem,1,1); %Plot Problem1 

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure) 

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northwest'); % Legend 

title('Heat Problem - Interation by subdomain (Neumann-Dirichlet) k_1 = 100k_2') % Title 

  

figure(2) % Plot of the convergence - Cartesian 



 

hold on 

plot(1:i-1,err_vector,'linewidth',1,'color','r','marker','o'); 

grid on 

xlabel('Iterations (#)','fontsize',12); 

ylabel('Error for u at \Gamma_1_2','fontsize',12); 

title('Heat Problem - IBS - Neumann-Dirichlet - Convergence Error Analysis') 

  

figure(3) % Plot of the convergence - LogLog 

%hold on 

loglog(1:i-1,err_vector,'linewidth',1,'color','r','marker','o'); 

grid on 

xlabel('log(Iterations (#))','fontsize',12); 

ylabel('log(Error for u at \Gamma_1_2 )','fontsize',12); 

title('Heat Problem - IBS - Neumann-Dirichlet - Convergence Error Analysis - Logarithmic scale') 

 

E] Relaxation Scheme with constant ω 

clc 

close all 

clear variables 

  

% Problem 1 

% Geometry 

Data.inix = 0; 

Data.endx = 0.25; 

Data.nelem = 25; 

% Physical properties 

Data.kappa = 1; 

Data.source = 1; 

% Boundary conditions - Dirichlet  

Data.FixLeft = 1; % 0: do not fix, 1: fix 

Data.LeftValue = 0; 

Data.FixRight = 0; 

Data.RightValue = 0; 

% Boundary conditions - Neumann 

Data.FixFluxesLeft = 0; 

Data.LeftFluxes = 0; 

Data.FixFluxesRight = 1; 

Data.RightFluxes = 0; 

  

% Problem 2 

% Geometry 

Data2.inix = 0.25; 

Data2.endx = 1; 

Data2.nelem = 75; 

% Physical properties 

Data2.kappa = 100; 

Data2.source = 1; 

% Boundary conditions - Dirichlet  

Data2.FixLeft = 1; % 0: do not fix, 1: fix 

Data2.LeftValue = 0; 

Data2.FixRight = 1; 

Data2.RightValue = 0; 

% Boundary conditions - Neumann 

Data2.FixFluxesLeft = 0; 

Data2.LeftFluxes = 0; 

Data2.FixFluxesRight = 0; 

Data2.RightFluxes = 0; 

  

% Initialization 

w = 0.75; % Initial relaxation 

uGamma21_1 = 0; %Initial Sbd 2 interface value at i-1 / = 0 

uGamma21_2 = 0; %Initial Sbd 2 interface value at i-2 / = 0 

uGamma12_1 = 0; %Initial Sbd 1 interface value at i-1 / = 0 

  

% Cycle data initialization 

i = 1; % Iteration Counter initialization 

imax = 100; % Maximum iterations 

err = 100; % Error initialization 

tol = 10^-3; % Tolerance 

  

  

% Cycle "while" 

 while (i < imax && err > tol) 

     



 

    % Problem 1 

    HeatProblem = HP_Initialize(Data); % Initialization 

    HeatProblem = HP_Build(HeatProblem); % Building 

    HeatProblem = HP_Solve(HeatProblem); % Solving 

     

     

    % Calculation of uGamma21 at the current iteration 

    Data2.LeftValue = w*HeatProblem.Solution.uRight + (1-w)*uGamma21_1; 

     

    % Updating the interface values from the Sbd 2 

    uGamma21_2 = uGamma21_1; % the i-1 becomes i-2 for the following step 

    uGamma21_1 = Data2.LeftValue; % the i becomes i-1 for the following step 

     

    % Problem 2 

    HeatProblem2 = HP_Initialize(Data2); % Initialization 

    HeatProblem2 = HP_Build(HeatProblem2); % Building 

    HeatProblem2 = HP_Solve(HeatProblem2); % Solving 

     

    % Updating the flux going to Sbd 1 (for the following step) 

    Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft; 

     

    % Error calculation 

    err = abs(abs(HeatProblem.Solution.uRight - uGamma12_1)/uGamma12_1)*100; 

    fprintf('The current error is: %f\n',err); 

    err_vector(i) = err; 

     

    % Recalculating the interface value (Sbd 1) for the following step (it will be i-1 in the next iteration) 

    uGamma12_1 = HeatProblem.Solution.uRight; 

     

    % Incrementation of the iteration index 

    i = i + 1; 

     

 end 

  

% Plotting 

HP_Plot(HeatProblem,1,1); %Plot Problem1 

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure) 

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northeast'); % Legend 

title('Heat Problem - relaxation scheme with a constant w') % Title 

  

figure(2) % Plot of the convergence - Cartesian 

hold on 

plot(1:i-1,err_vector,'linewidth',1,'color','r','marker','o'); 

grid on 

xlabel('Iterations (#)','fontsize',12); 

ylabel('Error for u at \Gamma_1_2','fontsize',12); 

title(['Heat Problem - relaxation scheme with a constant w = ',num2str(w),' - Convergence Error Analysis']) 

  

figure(3) % Plot of the convergence - LogLog 

%hold on 

loglog(1:i-1,err_vector,'linewidth',1,'color','r','marker','o'); 

grid on 

xlabel('log(Iterations (#))','fontsize',12); 

ylabel('log(Error for u at \Gamma_1_2 )','fontsize',12); 

title(['Heat Problem - relaxation scheme with a constant w = ',num2str(w),' - Convergence Error Analysis - 

Logarithmic scale']) 

 

F] Aitken Relaxation Scheme 

clc 

close all 

clear variables 

  

% Problem 1 

% Geometry 

Data.inix = 0; 

Data.endx = 0.25; 

Data.nelem = 25; 

% Physical properties 

Data.kappa = 1; 

Data.source = 1; 

% Boundary conditions - Dirichlet  

Data.FixLeft = 1; % 0: do not fix, 1: fix 

Data.LeftValue = 0; 

Data.FixRight = 0; 



 

Data.RightValue = 0; 

% Boundary conditions - Neumann 

Data.FixFluxesLeft = 0; 

Data.LeftFluxes = 0; 

Data.FixFluxesRight = 1; 

Data.RightFluxes = 0; 

  

% Problem 2 

% Geometry 

Data2.inix = 0.25; 

Data2.endx = 1; 

Data2.nelem = 75; 

% Physical properties 

Data2.kappa = 100; 

Data2.source = 1; 

% Boundary conditions - Dirichlet  

Data2.FixLeft = 1; % 0: do not fix, 1: fix 

Data2.LeftValue = 0; 

Data2.FixRight = 1; 

Data2.RightValue = 0; 

% Boundary conditions - Neumann 

Data2.FixFluxesLeft = 0; 

Data2.LeftFluxes = 0; 

Data2.FixFluxesRight = 0; 

Data2.RightFluxes = 0; 

  

% Initialization 

w = 1; % Initial relaxation 

uGamma21_1 = 0; %Initial Sbd 2 interface value at i-1 / = 0 

uGamma21_2 = 0; %Initial Sbd 2 interface value at i-2 / = 0 

uGamma12_1 = 0; %Initial Sbd 1 interface value at i-1 / = 0 

  

% Cycle data initialization 

i = 1; % Iteration Counter initialization 

imax = 100; % Maximum iterations 

err = 100; % Error initialization 

tol = 10^-3; % Tolerance 

  

% Cycle "while" 

 while (i < imax && err > tol) 

  

    % Problem 1 

    HeatProblem = HP_Initialize(Data); % Initialization 

    HeatProblem = HP_Build(HeatProblem); % Building 

    HeatProblem = HP_Solve(HeatProblem); % Solving 

     

    % Calculation of Aitken relaxation (if iter counter is > 2) 

    if i > 2 

        w = (uGamma21_2 - uGamma21_1)/(uGamma21_2 - uGamma21_1 + HeatProblem.Solution.uRight - uGamma12_1); 

    end 

     

    % Calculation of uGamma21 at the current iteration 

    Data2.LeftValue = w*HeatProblem.Solution.uRight + (1-w)*uGamma21_1; 

     

    % Updating the interface values from the Sbd 2 

    uGamma21_2 = uGamma21_1; % the i-1 becomes i-2 for the following step 

    uGamma21_1 = Data2.LeftValue; % the i becomes i-1 for the following step 

     

    % Problem 2 

    HeatProblem2 = HP_Initialize(Data2); % Initialization 

    HeatProblem2 = HP_Build(HeatProblem2); % Building 

    HeatProblem2 = HP_Solve(HeatProblem2); % Solving 

     

    % Updating the flux going to Sbd 1 (for the following step) 

    Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft; 

     

    % Error calculation 

    err = abs(abs(HeatProblem.Solution.uRight - uGamma12_1)/uGamma12_1)*100; 

    fprintf('The current error is: %f\n',err); 

    err_vector(i) = err; 

     

    % Recalculating the interface value (Sbd 1) for the following step (it will be i-1 in the next iteration) 

    uGamma12_1 = HeatProblem.Solution.uRight; 

     

    % Incrementation of the iteration index 

    i = i + 1; 

     

 end 



 

  

% Plotting 

HP_Plot(HeatProblem,1,1); %Plot Problem1 

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure) 

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northeast'); % Legend 

title('Heat Problem - Aitken relaxation scheme') % Title 

  

figure(2) % Plot of the convergence - Cartesian 

plot(1:i-1,err_vector,'linewidth',1,'color','r','marker','o'); 

grid on 

xlabel('Iterations (#)','fontsize',12); 

ylabel('Error for u at \Gamma_1_2','fontsize',12); 

title('Heat Problem - Aitken relaxation scheme - Convergence Error Analysis') 

  

figure(3) % Plot of the convergence - LogLog 

%hold on 

loglog(1:i-1,err_vector,'linewidth',1,'color','r','marker','o'); 

grid on 

xlabel('log(Iterations (#))','fontsize',12); 

ylabel('log(Error for u at \Gamma_1_2 )','fontsize',12); 

title('Heat Problem - Aitken relaxation scheme - Convergence Error Analysis - Logarithmic scale') 

 

G] Change in HP_Plot.m  

function HP_Plot(HeatProblem,n,fignum) 

  

    figure(fignum) 

    hold on 

    if n == 1 %number of sbd 

    plot(HeatProblem.Solution.coord,HeatProblem.Solution.U,'linewidth',1); 

    elseif n == 2 %number of sbd 

    plot(HeatProblem.Solution.coord,HeatProblem.Solution.U,'linewidth',1,'color','r'); 

    end 

    xlabel('Coordinate x','fontsize',11); 

    ylabel('Temperature','fontsize',11); 

end 

 

 

 


