

Coupled Problems

Master in Numerical Methods in Engineering

Numerical Homework

Iterative schemes for coupling in space

Head Professor: Ramón Codina

Student: Marcello Rubino

Date: 6 June 2018

1. Introduction

The following report shows the implementation of MatLab code for different iterative (and non-iterative) schemes for the

resolution of the heat transfer equation in one-dimensional domain (i.e. [0,1]): the equation shows the following

structure:

 −� ������ = �

In which k represents the thermal diffusivity coefficient, u is the solution of the problem (which corresponds to the

temperature in the domain, and f is the source term which is physically a volumetric heat source). The model implemented

and shown below are the following:

• Single domain problem model

• Two sub-independent problems model

• Monolithic scheme model

• Interation-by-subdomain Dirichlet-Neumann iterative model

• Relaxation scheme with fixed parameter model

• Aitken relaxation scheme model

2. Single domain problem

In this first case the whole problem is studied in a whole single domain [0,1], discretized in 100 elements. This corresponds

to a typical FE code without any particular method. In this case the fixed parameters at the boundaries are the value of

the u (precisely u=0 in both x=0 and x=1). This will mean that the temperature will be 0 in both boundaries. The source

term is set to 1. Few studies on some parameters have been computed.

2.1 – Different values of the diffusivity k

The first one consists in the change of the thermal diffusivity k and plot the results in a complete graph. As shown in figure

1, the value of the diffusivity varies significantly: the main effect is the reduction of the temperature seen (as expected,

due to the symmetry of the problem) in the middle. This is physically consistent because it shows the particularities of the

metals (high values of the diffusivity) to dissipate the heat given from the external world (the f) much more easily than

wood or rubber.

Figure 1 - Unique domain - different diffusivity k values

2.2 – Different values of the source term f

The second study is the effect of increasing the volumetric heat source f. The figure 2 below represents this effect, and

varies the value of the source between 1 and 16, while keeping constant the diffusivity k to 1. In this case the situation is

different: the material modeled is the same, while the external heat is set by the scientist. Increasing the heat shows an

increase of the internal temperature, since a bigger quantity of the heat must be dissipated inside the domain through a

higher value of the temperature.

Figure 2 - Unique domain – different source terms f

2.3 – Convergence of the problem – Number of elements

The last discussion in this model is a numerical study: increasing the number of the elements which discretize the domain

it’s possible to make a convergence analysis and see the good results given by a finer mesh. In fact, as shown in figure 3,

the increase of the number of element shows a more precise solution for the same problem and gets closer to the

analytical solution given by the parabolic equation:

	 = − �2�
� + �2�

Which shows the maximum value (as already reported) in the middle of the domain (x=0.5):

	|���.� = − ��� 0.5� + ��� 0.5 = 0.125 (if k=f=1)

Figure 3 - Unique domain - different numbers of elements

The convergence analysis has been done in terms of the relative error between the maximum value of the temperature

for the coarse-discretized problem (for symmetry reasons the value of the elements is odd), compared to the analytical

solution. On the x-axis the mesh size has been reported. As expected, both figure 4 and 5 (logarithmic reproduction) show

that the convergence is satisfied and a good solution is acquired already for 100 elements.

Figure 4 - Unique domain – Convergence Analysis Figure 5 – Unique domain – Convergence Analysis (logarithmic scale)

3. Two sub-independent problems

In this case the domain [0,1] has been split in two subdomains: the first one goes between 0 and 0.25 and has 25 elements,

while the second is between 0.25 and 1, and presents 75 elements. In this problem the coefficients kappa and the source

term for both subdomains are set to 1. The Dirichlet boundary conditions are given to the extremal nodes of the old big

domain (u=0 in x=0, left value for the left sbd; u=0 in x=1, right value for the right sbd). The rest of the boundary conditions

(Neumann or interface Dirichlet) are not set. The result, as shown in figure 6, presents a big jump at the interface point,

due to the fact that each subdomain solves its own problem with only one B.C. and doesn’t care of conditions

(Transmission) coming from the other subdomain.

Figure 6 - Independent subdomains

4. Monolithic scheme

4.1 – Theoretical considerations

In this particular scheme the domain, partitioned into two subdomains (which have the same size as properties described

before), is characterized by a big stiffness matrix K and rhs vector f, simply coming from the assembly of the two

subdomains interacting. This is the case in which the coupling is done by enforcing a Neumann-Neumann coupling

approach. In this case we have the first subdomain which shows the following weak form:

������
 , �� �	���
 !" −# ���, �� �	���
 $%&'()�*+(= # ���, � $!"

The Neumann – Neumann coupling consists in the following fact:

− �� �	���
 + �� �	���
 = 0

And this can be insert in the equation for the second subdomain:

������
 , �� �	���
 !� −# ���, −�� �	���
 $%&'()�*+(= # ��� , � $!�

Since the meshes match at the interface and the interpolation space Vh used in this approach is the same, we obtain this

equality:

−# ��� , −�� ��",�� $%&'()�*+(= # ���, �� ��",�� $%&'()�*+(= -�.",�� , �� ��",�� /!" − # ���, � $!"

So we can rewrite the equation for the problem in the second subdomain:

������
 , �� �	���
 !� + ������
 , �� �	���
 !" = # ���, � $!" + # ��� , � $!�

Which means that the two subdomains can be assembled into a big global problem, defined by the following stiffness

matrix structure:

And the following right hand side global vector:

In which the yellow parts are linked to the nodes in the first subdomain, the red to the second subdomain while the orange

part to the interface. This scheme is well visible in the HP_SolveMonolithic.m Matlab function (figure 7)in which, before

solving the global problem, the program assembles the two subdomains, considering twice the contribution for the

interface node (npoin1 position) coming from the two subdomains as explained by theory above:

Figure 7 - Matlab code for HP_SolveMonolithic.m

4.2 – Solutions computed in the scheme

As shown in figure 8 the solution is the same of the unique domain problem shown in figure 1. Here the two subdomains

solutions are visible in two different colors and the values for k and f are equal to 1 in both subdomains.

Figure 8 – Monolithic scheme – k1 = k2 = 1

If one of the two subdomains has a different value for the diffusivity, the solution is much different. In fact, the growth of

the temperature in the subdomain that has the smaller diffusivity tends to be much slower, while the subdomain with big

diffusivity has a higher change of the temperature along the space. This creates a jump for the derivatives visible at the

interface. It’s important to say that the second transmission condition (Neumann-Neumann) is always satisfied, since the

derivatives, if scaled (multiplied) for a same value of the diffusivity, would get the smooth shape for the previous case, so

the normal flux has a continuity. In figure 9 and 10 there are the monolithic solutions respectively for k1 = 4 and k2 = 1,

and k1 = 1 and k2 = 4. The values of the temperature reached in the second case are smaller since the biggest subdomain

has the biggest diffusivity k.

Figure 9 – Monolithic scheme – k1 = 4, k2 = 1 Figure 10 – Monolithic scheme – k1 = 1, k2 = 4

5. Iteration-by-subdomain scheme (Dirichlet-Neumann)

In this more sophisticated case, the scheme represents an iterative method between the two subdomains: the first

subdomain solve a Neumann problem and sends the solution at the interface to the second subdomain, which takes this

value as a Dirichlet boundary condition (it solves a Dirichlet problem). Then, the second subdomain sends the value of the

flux calculated at the interface, which will be collected by the first subdomain, which will solve again a Neumann problem

(and so on…).

5.1 – Constant diffusivity k = 1 in the whole domain

In this case both subdomains present a k = 1 and a source f = 1. The solution of this problem, is not reported as a figure,

since it’s the same that can be seen in figure 8 for the Monolithic case. More interesting is the evaluation of the error at

the interface during the iterations, and plot this against the number of iterations computed during the solving process.

The figure 11 and 12 show the results in normal and logarithmic scale. It’s possible to see that, without any relaxation

method, the pure D-N scheme needs many iterations before converging to the solution.

Figure 11 – Dirichlet–Neumann, k1=k2=1 – Conv. Analysis Figure 12 – Dirichlet–Neumann, k1=k2=1 – Conv. Analysis (log. scale)

5.2 – Diffusivity k1 = 100*k2

The same scheme has been used for a big difference in terms of diffusivity in the two subdomains. The first study shows

a value for the first subdomain equal to 100, while k2 remains equal to 1. In this case, the solution is a stressed case for

the one shown in figure 9 (in this case the growth of the temperature on the left is very much slow, and almost

imperceptible) [figure 13].

Figure 13 – Dirichlet–Neumann – k1 = 100, k2 = 1

As for the convergence analysis, it’s interesting to see that the convergence in this particular case is much faster than the

previous case (much below, an analytical explanation will be illustrated). The figures 14 and 15 confirm this fact (the

number of iterations are equal to 3).

Figure 14 – Dirichlet–Neumann, k1=100 / k2=1 – Conv. Analysis Figure 15 – Dirichlet–Neumann, k1=100 / k2=1 – Conv. Analysis (log. scale)

5.3 – Diffusivity k1 = (1/100)*k2

If one inverts this position and gives 100 to the diffusivity in the second subdomain (which makes the Dirichlet problem)

and gives 1 to k1 the situation is completely different: in this case the iterative scheme is completely unstable from the

very beginning and the solution doesn’t converge. In figure 16, the solution proposed is the one found in the secon

iteration, which is the first iteration in which the solution blows up and does not converge anymore. The reason will be

explained below the graphics.

Figure 16 – Dirichlet–Neumann – k1 = 1, k2 = 100

The convergence analysis shows a huge value of the error which remains constant and does not decrease. This behavior

is visible in both Cartesian and logarithmic plots (figure 17 and 18).

Figure 16 – Dirichlet–Neumann, k1=1 / k2=100 – Conv. Analysis Figure 17 – Dirichlet–Neumann, k1=1 / k2=100 – Conv. Analysis (log. scale)

5.4 – Theoretical explaination

Given the Dirichlet-Neumann scheme (sequential (Gauss-Seidel) case):

⎩⎪⎨
⎪⎧ −�� ���"4��� = �� 56 Ω�	� = 0 86 �Ω�\Γ���� ��"4�� = −�� ���4;"�� 86 Γ��

 < −�� ����4��� = �� 56 Ω�	� = 0 86 �Ω�\Γ��	�% = 	�% 86 Γ��

If the attention is paid in the left subdomain, the continuity of fluxes, as reported:

�� �	�%�
 = −�� �	�%=��

Will make the program evaluate the spatial first derivative on the interface from the first subdomain point-of-view: �	�%�
 = − ����
�	�%=��

When the diffusion in subdomain 1 is equal to 100, and the same is equal to 1 on the subdomain 2, it means that k1 >> k2,

or, in the same way that
���" is very small, or at the limit, → 0K, this makes the left term decrease very fast and the

convergence is reached very soon since the scheme becomes much more stable than the constant k over the whole

domain.

On the other hand, when the diffusion in subdomain 1 is equal to 1, and the same is equal to 100 on the subdomain 2, it

means that k1 << k2, or, in the same way that
���" is very big, or at the limit, → +∞, this makes the left term increase

instantaneously and the convergence cannot be reached since the scheme becomes unstable.

6. Relaxation scheme with fixed parameter ω
In order to decrease significantly the total number of iterations, a relaxation scheme is implemented to the classic IBS

scheme. In this case, the Dirichlet B.C. on the interface for the second subdomain problem (Dirichlet problem) is relaxed

using the transmission condition and the interface value evaluated at the previous iteration, this will make a faster

convergence in the computational process. 	O��% = P ∙ 	O��% + (1 − P) ∙ 	O��%=�

6.1 – Diffusivity constant k = 1 in the whole domain (different ω)

In this case, different values for ω (which remains constant) have been given: if ω is equal to 0, as shown in figure 18,

makes a disconnection of the transmission condition for the second subdomain, since there is no connection between the

two subdomains. In this particular case, the whole process converges to a solution in one iteration because it’s similar to

a normal FE independent scheme. Except for the last figures, here the value of the diffusivity term k is = 1 in both sbds.

Figure 18 – Simple relaxation method (ω = 0)

For a small value of the ω (0.1) the number of iterations computed are very big (around 60). The figures 19 and 20 show

this problematic case, in which the relaxation is not actuated since the value of its coefficient is too small.

Figure 19 – Simple relaxation method (ω = 0.1) – Conv. Analysis Figure 20 – Simple relaxation method (ω = 0.1) – Conv. Analysis (log. scale)

Increasing the value of ω to 0.25, the situation is much nicer, but still not optimal. Again the relaxation is not helping the

convergence (# iterations = 26) [figures 21-22].

Figure 21 – Simple relaxation method (ω = 0.25) – Conv. Analysis Figure 22 – Simple relaxation method (ω = 0.25) – Conv. Analysis (log. scale)

For ω equal to 0.5 it’s possible to recover almost the same situation given in the D-N IBS scheme (# iterations = 12). The

figures 23 and 24 contain less points.

Figure 23 – Simple relaxation method (ω = 0.5) – Conv. Analysis Figure 24 – Simple relaxation method (ω = 0.5) – Conv. Analysis (log. scale)

It’s expected to get an optimal solution if ω is equal to 0.75. In fact, the solution converges in 4 iterations, and this

represents an optimal solution if one uses a relaxation method (figures 25 and 26).

Figure 25 – Simple relaxation method (ω = 0.75) – Conv. Analysis Figure 26 – Simple relaxation method (ω = 0.75) – Conv. Analysis (log. scale)

Arriving to the value of 1, the relaxation mode becomes again the classic Dirichlet-Neumann IBS scheme (# iterations =

13). This is confirmed if one looks at the figures 27 and 28, which show its convergence analysis.

Figure 27 – Simple relaxation method (ω = 1) – Conv. Analysis Figure 28 – Simple relaxation method (ω = 1) – Conv. Analysis (log. scale)

6.2 – Diffusivity k1 = (1/100)*k2 (optimal ω = 0.75)

As conclusion is possible to see that the relaxation method creates a faster solution in this case for a parameter ω around

0.75. Still this doesn’t confirm that the method is stable always. In fact, for the problematic case in which k1 << k2 the

solution is not reached, and the number of iterations blows up (figures 29-30-31).

Figure 29 – Simple relaxation method (ω = 0.75) – k1 = 1, k2 =100

The jump seen in this figure (29) is due to the structure of the relaxation methods, which don’t completely take the

whole value coming from the left, but only a partition (0.75); this is the first total iteration in which the value of uΓ21 for

the previous iteration is equal to 0.

The figures 30 and 31 show the impossibility to reach convergence for this problem. Need of a different relaxation

method (Aitken).

Figure 30 – Simple relaxation method (ω = 0.75) – Conv. Analysis Figure 31 – Simple relaxation method (ω = 0.75) – Conv. Analysis (log. scale)

[special case in which k1 = 1 and k2 = 100]

7. Aitken Relaxation scheme

The Aitken relaxation scheme represents a good solution which stabilizes many problematic codes. In this case, the value

of the relaxation parameter ω is not constant except for the first two iterations. In the following iterations the

computation for the ω is a combination of the values at the interface in both subdomains coming until from two iterations

before: this means that the scheme provides at least 3 iterations in order to converge, but it converges very fast:

P = 	O��%=� − 	O��%=�(O��%=� − 	O��%=�) + (O��% − 	O��%=�)

7.1 – Diffusivity constant k = 1 in the whole domain

Computing the general case in which in both subdomains the diffusivity k = 1, it’s possible to see (in figures 32 and 33)

that the number of iterations is very low (= 5). The advantage of this method is that the choice of initial ω is free (except

for 0 – wrong!), and the system search and finds the correct and optimal value of ω at each iteration.

Figure 32 – Aitken relaxation method (k = 1) – Conv. Analysis Figure 33 – Aitken relaxation method (k = 1) – Conv. Analysis (log. scale)

7.2 – Diffusivity k1 = (1/100)*k2

Once computed the second option (in which k1 = 1 and k2 = 100) it’s possible to see that in this case the system converges,

and it’s found useful for this problematic cases. The number of iterations remains very small (5) and this means that this

method is very adaptive. The solution and the convergence analysis are shown in figures 34, 35 and 36.

Figure 34 – Aitken relaxation method – k1 = 1, k2 =100

Figure 35 – Aitken relaxation method (k1 = 1, k2 = 100) – Conv. An. //// Figure 36 – Aitken relaxation method (k1 = 1, k2 = 100) – Conv. An. (log. scale)

8. Conclusions

As seen for this particular problem (Heat transfer problem), the advantage given by the classic iterative schemes are not

so underlined for particular extremal cases. Solutions like Aitken can be a good advantage and make the system converge

fast and for any case. As for a Monolithic scheme, it’s possible to see that the system is larger than the others and this,

sometimes, is a disadvantage for bigger and more complicated problems. The need of an iterative scheme for big problems

is very much recommended (with sophisticated method like Aitken if needed).

9. Annex of the codes

A] Unique Domain – FEM

A1. Change value of k

clc

close all

clear variables

%Domain

Data.inix = 0;

Data.endx = 1;

Data.nelem = 100;

%Physical

kappa_vector = [1,2,4,8,16];

Data.source = 1;

%Boundary conditions

%Dirichlet

Data.FixLeft = 1;

Data.LeftValue = 0;

Data.FixRight = 1;

Data.RightValue = 0;

%Neumann

Data.FixFluxesLeft = 0;

Data.LeftFluxes = 0;

Data.FixFluxesRight = 0;

Data.RightFluxes = 25;

for i=1:length(kappa_vector)

Data.kappa = kappa_vector(i);

%Initialization

HeatProblem = HP_Initialize(Data);

%Building

HeatProblem = HP_Build(HeatProblem);

%Solving

HeatProblem = HP_Solve(HeatProblem);

%Plotting

HP_Plot(HeatProblem,1,1);

legendInfo{i} = sprintf('Solution u with kappa = %u',kappa_vector(i));

end

legend(legendInfo,'Location','best'); % Legend

title('Heat Problem - Unique domain') % Title

A2. Change value of f

clc

close all

clear variables

%Domain

Data.inix = 0;

Data.endx = 1;

Data.nelem = 100;

%Physical

Data.kappa = 1;

source_vector = [1,2,4,8,16];

%Boundary conditions

%Dirichlet

Data.FixLeft = 1;

Data.LeftValue = 0;

Data.FixRight = 1;

Data.RightValue = 0;

%Neumann

Data.FixFluxesLeft = 0;

Data.LeftFluxes = 0;

Data.FixFluxesRight = 1;

Data.RightFluxes = 25;

for i=1:length(source_vector)

Data.source = source_vector(i);

%Initialization

HeatProblem = HP_Initialize(Data);

%Building

HeatProblem = HP_Build(HeatProblem);

%Solving

HeatProblem = HP_Solve(HeatProblem);

%Plotting

HP_Plot(HeatProblem,1,1);

legendInfo{i} = sprintf('Solution u with f = %u',source_vector(i));

end

legend(legendInfo,'Location','best'); % Legend

title('Heat Problem - Unique domain') % Title

A3. Change number of elements - convergence

clc

close all

clear variables

%Domain

Data.inix = 0;

Data.endx = 1;

nelem_vector = [3 5 7 9 11 13 15 51 99];

%Physical

Data.kappa = 4;

Data.source = 10;

%Boundary conditions

%Dirichlet

Data.FixLeft = 1;

Data.LeftValue = 0;

Data.FixRight = 1;

Data.RightValue = 0;

%Neumann

Data.FixFluxesLeft = 0;

Data.LeftFluxes = 0;

Data.FixFluxesRight = 1;

Data.RightFluxes = 25;

for i=1:length(nelem_vector)

Data.nelem = nelem_vector(i);

%Initialization

HeatProblem = HP_Initialize(Data);

%Building

HeatProblem = HP_Build(HeatProblem);

%Solving

HeatProblem = HP_Solve(HeatProblem);

%Plotting

HP_Plot(HeatProblem,1,1);

legendInfo{i} = sprintf('Solution u with nelem = %u',nelem_vector(i));

Tmax(i) = max(HeatProblem.Solution.U); % Calculating the maximum value of the temperature

end

legend(legendInfo,'Location','best'); % Legend

title('Heat Problem - Unique domain') % Title

% Temperature max - analytical

T_an = -

Data.source/(2*Data.kappa)*((Data.endx+Data.inix)/2)^2+Data.source/(2*Data.kappa)*((Data.endx+Data.inix)/2);

err = abs(T_an - Tmax); % Error

size_mesh = 1./nelem_vector; % Size of the mesh

figure(2) % Plot Convergence - Cartesian

hold on

plot(size_mesh(1:end-1),err(1:end-1),'linewidth',1,'color','r','marker','o');

grid on

xlabel('Size Mesh','fontsize',11);

ylabel('Error','fontsize',11);

title('Heat Problem - Unique domain - Convergence Error Analysis')

figure(3) % Plot Convergence - LogLog

loglog(size_mesh(1:end-1),err(1:end-1),'linewidth',1,'color','r','marker','o');

grid on

xlabel('log(Size Mesh)','fontsize',11);

ylabel('log(Error)','fontsize',11);

title('Heat Problem - Unique domain - Convergence Error Analysis (logaritmic scale)')

B] Independent Subdomains – FEM

clc

close all

clear variables

%SubDomain1

Data.inix = 0;

Data.endx = 0.25;

Data.nelem = 25;

%SubDomain2

Data2.inix = 0.25;

Data2.endx = 1;

Data2.nelem = 75;

%Physical

Data.kappa = 1;

Data.source = 1;

Data2.kappa = 1;

Data2.source = 1;

%Boundary conditions

%Dirichlet

%Subdomain1

Data.FixLeft = 1;

Data.LeftValue = 0;

Data.FixRight = 0;

Data.RightValue = 0;

%Subdomain2

Data2.FixLeft = 0;

Data2.LeftValue = 0;

Data2.FixRight = 1;

Data2.RightValue = 0;

%Neumann

%Subdomain1

Data.FixFluxesLeft = 0;

Data.LeftFluxes = 0;

Data.FixFluxesRight = 0;

Data.RightFluxes = 0;

%Subdomain2

Data2.FixFluxesLeft = 0;

Data2.LeftFluxes = 0;

Data2.FixFluxesRight = 0;

Data2.RightFluxes = 0;

%Problem 1

HeatProblem = HP_Initialize(Data); %Initialization

HeatProblem = HP_Build(HeatProblem); %Building

HeatProblem = HP_Solve(HeatProblem); %Solving

%Problem 2

HeatProblem2 = HP_Initialize(Data2); %Initialization

HeatProblem2 = HP_Build(HeatProblem2); %Building

HeatProblem2 = HP_Solve(HeatProblem2); %Solving

%Plotting

HP_Plot(HeatProblem,1,1); %Plot Problem1

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure)

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northeast'); % Legend

title('Heat Problem - Independent subdomains (no t.c.)') % Title

C] Monolithic Scheme

clc

close all

clear variables

%SubDomain1

Data.inix = 0;

Data.endx = 0.25;

Data.nelem = 25;

%SubDomain2

Data2.inix = 0.25;

Data2.endx = 1;

Data2.nelem = 75;

%Physical

Data.kappa = 1;

Data.source = 1;

Data2.kappa = 4;

Data2.source = 1;

%Boundary conditions

%Dirichlet

%Subdomain1

Data.FixLeft = 1;

Data.LeftValue = 0;

Data.FixRight = 0;

Data.RightValue = 0;

%Subdomain2

Data2.FixLeft = 0;

Data2.LeftValue = 0;

Data2.FixRight = 1;

Data2.RightValue = 0;

%Neumann

%Subdomain1

Data.FixFluxesLeft = 0;

Data.LeftFluxes = 0;

Data.FixFluxesRight = 0;

Data.RightFluxes = 0;

%Subdomain2

Data2.FixFluxesLeft = 0;

Data2.LeftFluxes = 0;

Data2.FixFluxesRight = 0;

Data2.RightFluxes = 0;

%Problem 1

HeatProblem = HP_Initialize(Data); %Initialization

HeatProblem = HP_Build(HeatProblem); %Building

%Problem 2

HeatProblem2 = HP_Initialize(Data2); %Initialization

HeatProblem2 = HP_Build(HeatProblem2); %Building

%Solve and plot

[HeatProblem,HeatProblem2] = HP_SolveMonolithic(HeatProblem,HeatProblem2); %Solving the monolithic

HP_Plot(HeatProblem,1,1); %Plot Problem1

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure)

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northeast'); % Legend

title('Heat Problem - Monolithic (k1 = 1 and k2 = 4)') % Title

D] IBS Dirichlet-Neumann Scheme

clc

close all

clear variables

% Problem 1

% Geometry

Data.inix = 0;

Data.endx = 0.25;

Data.nelem = 25;

% Physical properties

Data.kappa = 1;

Data.source = 1;

% Boundary conditions - Dirichlet

Data.FixLeft = 1; % 0: do not fix, 1: fix

Data.LeftValue = 0;

Data.FixRight = 0;

Data.RightValue = 0;

% Boundary conditions - Neumann

Data.FixFluxesLeft = 0;

Data.LeftFluxes = 0;

Data.FixFluxesRight = 1;

Data.RightFluxes = 0;

% Problem 2

% Geometry

Data2.inix = 0.25;

Data2.endx = 1;

Data2.nelem = 75;

% Physical properties

Data2.kappa = 1;

Data2.source = 1;

% Boundary conditions - Dirichlet

Data2.FixLeft = 1; % 0: do not fix, 1: fix

Data2.LeftValue = 0;

Data2.FixRight = 1;

Data2.RightValue = 0;

% Boundary conditions - Neumann

Data2.FixFluxesLeft = 0;

Data2.LeftFluxes = 0;

Data2.FixFluxesRight = 0;

Data2.RightFluxes = 0;

% Initialization

uGamma12_1 = 0;

% Cycle data initialization

i = 1; % Iteration Counter initialization

imax = 100; % Maximum iterations

err = 100; % Error initialization

tol = 10^-3; % Tolerance

while (i < imax && err > tol)

 % Problem 1

 HeatProblem = HP_Initialize(Data); % Initialization

 HeatProblem = HP_Build(HeatProblem); % Building

 HeatProblem = HP_Solve(HeatProblem); % Solving

 Data2.LeftValue = HeatProblem.Solution.uRight;

 % Problem 2

 HeatProblem2 = HP_Initialize(Data2); % Initialization

 HeatProblem2 = HP_Build(HeatProblem2); % Building

 HeatProblem2 = HP_Solve(HeatProblem2); % Solving

 % Updating the flux going to Sbd 1 (for the following step)

 Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft;

 % Error calculation

 err = abs(abs(HeatProblem.Solution.uRight - uGamma12_1)/uGamma12_1)*100;

 fprintf('The current error is: %f\n',err);

 err_vector(i) = err;

 % Recalculating the interface value (Sbd 1) for the following step (it will be i-1 in the next iteration)

 uGamma12_1 = HeatProblem.Solution.uRight;

 % Incrementation of the iteration index

 i = i + 1;

end

% Plotting

HP_Plot(HeatProblem,1,1); %Plot Problem1

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure)

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northwest'); % Legend

title('Heat Problem - Interation by subdomain (Neumann-Dirichlet) k_1 = 100k_2') % Title

figure(2) % Plot of the convergence - Cartesian

hold on

plot(1:i-1,err_vector,'linewidth',1,'color','r','marker','o');

grid on

xlabel('Iterations (#)','fontsize',12);

ylabel('Error for u at \Gamma_1_2','fontsize',12);

title('Heat Problem - IBS - Neumann-Dirichlet - Convergence Error Analysis')

figure(3) % Plot of the convergence - LogLog

%hold on

loglog(1:i-1,err_vector,'linewidth',1,'color','r','marker','o');

grid on

xlabel('log(Iterations (#))','fontsize',12);

ylabel('log(Error for u at \Gamma_1_2)','fontsize',12);

title('Heat Problem - IBS - Neumann-Dirichlet - Convergence Error Analysis - Logarithmic scale')

E] Relaxation Scheme with constant ω

clc

close all

clear variables

% Problem 1

% Geometry

Data.inix = 0;

Data.endx = 0.25;

Data.nelem = 25;

% Physical properties

Data.kappa = 1;

Data.source = 1;

% Boundary conditions - Dirichlet

Data.FixLeft = 1; % 0: do not fix, 1: fix

Data.LeftValue = 0;

Data.FixRight = 0;

Data.RightValue = 0;

% Boundary conditions - Neumann

Data.FixFluxesLeft = 0;

Data.LeftFluxes = 0;

Data.FixFluxesRight = 1;

Data.RightFluxes = 0;

% Problem 2

% Geometry

Data2.inix = 0.25;

Data2.endx = 1;

Data2.nelem = 75;

% Physical properties

Data2.kappa = 100;

Data2.source = 1;

% Boundary conditions - Dirichlet

Data2.FixLeft = 1; % 0: do not fix, 1: fix

Data2.LeftValue = 0;

Data2.FixRight = 1;

Data2.RightValue = 0;

% Boundary conditions - Neumann

Data2.FixFluxesLeft = 0;

Data2.LeftFluxes = 0;

Data2.FixFluxesRight = 0;

Data2.RightFluxes = 0;

% Initialization

w = 0.75; % Initial relaxation

uGamma21_1 = 0; %Initial Sbd 2 interface value at i-1 / = 0

uGamma21_2 = 0; %Initial Sbd 2 interface value at i-2 / = 0

uGamma12_1 = 0; %Initial Sbd 1 interface value at i-1 / = 0

% Cycle data initialization

i = 1; % Iteration Counter initialization

imax = 100; % Maximum iterations

err = 100; % Error initialization

tol = 10^-3; % Tolerance

% Cycle "while"

 while (i < imax && err > tol)

 % Problem 1

 HeatProblem = HP_Initialize(Data); % Initialization

 HeatProblem = HP_Build(HeatProblem); % Building

 HeatProblem = HP_Solve(HeatProblem); % Solving

 % Calculation of uGamma21 at the current iteration

 Data2.LeftValue = w*HeatProblem.Solution.uRight + (1-w)*uGamma21_1;

 % Updating the interface values from the Sbd 2

 uGamma21_2 = uGamma21_1; % the i-1 becomes i-2 for the following step

 uGamma21_1 = Data2.LeftValue; % the i becomes i-1 for the following step

 % Problem 2

 HeatProblem2 = HP_Initialize(Data2); % Initialization

 HeatProblem2 = HP_Build(HeatProblem2); % Building

 HeatProblem2 = HP_Solve(HeatProblem2); % Solving

 % Updating the flux going to Sbd 1 (for the following step)

 Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft;

 % Error calculation

 err = abs(abs(HeatProblem.Solution.uRight - uGamma12_1)/uGamma12_1)*100;

 fprintf('The current error is: %f\n',err);

 err_vector(i) = err;

 % Recalculating the interface value (Sbd 1) for the following step (it will be i-1 in the next iteration)

 uGamma12_1 = HeatProblem.Solution.uRight;

 % Incrementation of the iteration index

 i = i + 1;

 end

% Plotting

HP_Plot(HeatProblem,1,1); %Plot Problem1

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure)

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northeast'); % Legend

title('Heat Problem - relaxation scheme with a constant w') % Title

figure(2) % Plot of the convergence - Cartesian

hold on

plot(1:i-1,err_vector,'linewidth',1,'color','r','marker','o');

grid on

xlabel('Iterations (#)','fontsize',12);

ylabel('Error for u at \Gamma_1_2','fontsize',12);

title(['Heat Problem - relaxation scheme with a constant w = ',num2str(w),' - Convergence Error Analysis'])

figure(3) % Plot of the convergence - LogLog

%hold on

loglog(1:i-1,err_vector,'linewidth',1,'color','r','marker','o');

grid on

xlabel('log(Iterations (#))','fontsize',12);

ylabel('log(Error for u at \Gamma_1_2)','fontsize',12);

title(['Heat Problem - relaxation scheme with a constant w = ',num2str(w),' - Convergence Error Analysis -

Logarithmic scale'])

F] Aitken Relaxation Scheme

clc

close all

clear variables

% Problem 1

% Geometry

Data.inix = 0;

Data.endx = 0.25;

Data.nelem = 25;

% Physical properties

Data.kappa = 1;

Data.source = 1;

% Boundary conditions - Dirichlet

Data.FixLeft = 1; % 0: do not fix, 1: fix

Data.LeftValue = 0;

Data.FixRight = 0;

Data.RightValue = 0;

% Boundary conditions - Neumann

Data.FixFluxesLeft = 0;

Data.LeftFluxes = 0;

Data.FixFluxesRight = 1;

Data.RightFluxes = 0;

% Problem 2

% Geometry

Data2.inix = 0.25;

Data2.endx = 1;

Data2.nelem = 75;

% Physical properties

Data2.kappa = 100;

Data2.source = 1;

% Boundary conditions - Dirichlet

Data2.FixLeft = 1; % 0: do not fix, 1: fix

Data2.LeftValue = 0;

Data2.FixRight = 1;

Data2.RightValue = 0;

% Boundary conditions - Neumann

Data2.FixFluxesLeft = 0;

Data2.LeftFluxes = 0;

Data2.FixFluxesRight = 0;

Data2.RightFluxes = 0;

% Initialization

w = 1; % Initial relaxation

uGamma21_1 = 0; %Initial Sbd 2 interface value at i-1 / = 0

uGamma21_2 = 0; %Initial Sbd 2 interface value at i-2 / = 0

uGamma12_1 = 0; %Initial Sbd 1 interface value at i-1 / = 0

% Cycle data initialization

i = 1; % Iteration Counter initialization

imax = 100; % Maximum iterations

err = 100; % Error initialization

tol = 10^-3; % Tolerance

% Cycle "while"

 while (i < imax && err > tol)

 % Problem 1

 HeatProblem = HP_Initialize(Data); % Initialization

 HeatProblem = HP_Build(HeatProblem); % Building

 HeatProblem = HP_Solve(HeatProblem); % Solving

 % Calculation of Aitken relaxation (if iter counter is > 2)

 if i > 2

 w = (uGamma21_2 - uGamma21_1)/(uGamma21_2 - uGamma21_1 + HeatProblem.Solution.uRight - uGamma12_1);

 end

 % Calculation of uGamma21 at the current iteration

 Data2.LeftValue = w*HeatProblem.Solution.uRight + (1-w)*uGamma21_1;

 % Updating the interface values from the Sbd 2

 uGamma21_2 = uGamma21_1; % the i-1 becomes i-2 for the following step

 uGamma21_1 = Data2.LeftValue; % the i becomes i-1 for the following step

 % Problem 2

 HeatProblem2 = HP_Initialize(Data2); % Initialization

 HeatProblem2 = HP_Build(HeatProblem2); % Building

 HeatProblem2 = HP_Solve(HeatProblem2); % Solving

 % Updating the flux going to Sbd 1 (for the following step)

 Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft;

 % Error calculation

 err = abs(abs(HeatProblem.Solution.uRight - uGamma12_1)/uGamma12_1)*100;

 fprintf('The current error is: %f\n',err);

 err_vector(i) = err;

 % Recalculating the interface value (Sbd 1) for the following step (it will be i-1 in the next iteration)

 uGamma12_1 = HeatProblem.Solution.uRight;

 % Incrementation of the iteration index

 i = i + 1;

 end

% Plotting

HP_Plot(HeatProblem,1,1); %Plot Problem1

HP_Plot(HeatProblem2,2,1); %Plot Problem2 (in the same figure)

legend('u1 (Left Sbd)','u2 (Right Sbd)','Location','northeast'); % Legend

title('Heat Problem - Aitken relaxation scheme') % Title

figure(2) % Plot of the convergence - Cartesian

plot(1:i-1,err_vector,'linewidth',1,'color','r','marker','o');

grid on

xlabel('Iterations (#)','fontsize',12);

ylabel('Error for u at \Gamma_1_2','fontsize',12);

title('Heat Problem - Aitken relaxation scheme - Convergence Error Analysis')

figure(3) % Plot of the convergence - LogLog

%hold on

loglog(1:i-1,err_vector,'linewidth',1,'color','r','marker','o');

grid on

xlabel('log(Iterations (#))','fontsize',12);

ylabel('log(Error for u at \Gamma_1_2)','fontsize',12);

title('Heat Problem - Aitken relaxation scheme - Convergence Error Analysis - Logarithmic scale')

G] Change in HP_Plot.m

function HP_Plot(HeatProblem,n,fignum)

 figure(fignum)

 hold on

 if n == 1 %number of sbd

 plot(HeatProblem.Solution.coord,HeatProblem.Solution.U,'linewidth',1);

 elseif n == 2 %number of sbd

 plot(HeatProblem.Solution.coord,HeatProblem.Solution.U,'linewidth',1,'color','r');

 end

 xlabel('Coordinate x','fontsize',11);

 ylabel('Temperature','fontsize',11);

end

