
Coupled Problems

Computer practice

Mart́ı Burcet Rodŕıguez

June 1, 2016

1 Introduction

A MATLAB code is provided that solves a 1D heat transfer equations using finite
elements. The first task done was to adapt the code that solves the problem in
one domain to a problem in two subdomains solved first in a Monolithic way and
in an iterative way then. The new adapted codes are called main monolithic.m
and main iterative.m respectively.

2 Testing the codes

In this section some cases have been tested to see the differences in the per-
formance of the different methods and the influence of some parameters in the
final solution.

1. Task 1

For the first example tested the single heat transfer problem is used in
the domain [0, 1], and with Dirichlet boundary conditions at both ends
u(x = 0) = u(x = 1) = 0.

To see the influence of the thermal diffusion coefficient , a case with three
different values (1 = 1, κ2 = 5, κ3 = 10) has been tested. As seen in Figure
1 the higher the thermal diffusion coefficient the less the temperature in
the interior of the bar because more and more heat is dissipated in the
bar.

1

Figure 1: Influence of the thermal diffusion coefficient

Now the effect of the source term has been checked for the single heat
transfer problem. Again three different values of the source term (s1 =
1, s2 = 5.s3 = 10) have been plot in the same figure (2) to compare
between solutions. Thermal diffusion coefficient has been set to κ = 1 for
the three cases to don’t disturb the results. It is seen as it was expected
that the higher the source term in the bar, the higher the temperatures
inside the bar will be.

2

Figure 2: Influence of the thermal diffusion coefficient

Now a convergence analysis is performed to see how the solution converges
to the right solution as the number of elements is increased. The maxi-
mum temperature has been taken as reference value for this analysis. To
do so the analytical solution of the heat transfer equation has been calcu-
lated, which easily states that the maximum temperature is given at the
mid point with a value in our case of u(x = 0.5) = 1

8 = 0.125.

The convergence analysis show an oscillating pattern (Figure 3) for the
error in the maximum value of the temperature: for even number of ele-
ments the solution is computed very accurately because there is an element
in the mid point whereas for odd meshes there is none and the error is
significantly higher.

Therefore the solution of this problem with the single domain FEM ap-
proach is mesh dependent, and even for this small and easy problem the
errors are very small also for odd meshes, this is not an optimal scheme
and can cause problems in some situations.

3

Figure 3: Convergence analysis with the maximum temperature.

2. Task 2

Now two independent heat transfer problems are solved with κ = 1, s = 1
in the domains [0,0.25] and [0.25,1]. The space has been discretized with
100 elements.

As seen in Figure 4 the solution of two independent problems with fixed
Dirichlet boundary conditions in the left and right boundaries respectively
and with no prescription on neither fluxes nor temperatures in the inter-
face is discontinuous. Therefore it is clear that it is not possible to solve
independent problems without any kind of communication between them
through transmission conditions and get a smooth and continuous solution
between the subdomains. So if we want to solve a problem in separate
domains we will need to use other methods such as monolithic, partitioned
or others.

4

Figure 4: Solution of the independent problems

3. Task 3

Now the same problem of Task 2 has been solved also with two domains
but on a monolithic way instead of separately problems. The boundary
conditions imposed have been u(x = 0) = u(x = 1) = 0 and no pre-
scriptions on neither fluxes nor temperatures on the interface between
subdomains have been imposed.

What HP SolveMonolithic.m does is to create the system matrices for
both subdomains and assemble in a global ”blocky” matrix that contains
equations and unknowns for both subdomains. The interface node in this
case is the only value that has shared information for both subdomains,
so conitnuity of the unknown is imposed directly in this way.

The assemly of the matrices and unknowns and the solution of the global
system in a monolithic way is done as follows in the code HP SolveMonolithic.m:

1 npoin1 = HeatProblem . Data . nelem+1;
2 npoin2 = HeatProblem2 . Data . nelem+1;
3

4 %Monol i th ic system
5 KMono = ze ro s (npoin1+npoin2−1) ;
6 FMono = ze ro s (npoin1+npoin2 −1 ,1) ;
7

8 KMono(1 : npoin1 , 1 : npoin1) = HeatProblem . Matr ices .K;

5

9 FMono(1 : npoin1) = HeatProblem . Matr ices .F ;
10

11 KMono(npoin1 : npoin1+npoin2−1, npoin1 : npoin1+npoin2−1)
= KMono(npoin1 : npoin1+npoin2−1, npoin1 : npoin1+
npoin2−1) + HeatProblem2 . Matr ices .K;

12 FMono(npoin1 : npoin1+npoin2−1) = FMono(npoin1 : npoin1+
npoin2−1) + HeatProblem2 . Matr ices .F ;

13

14 %Solve Monol i th ic
15 UMono = KMono\FMono ;

The resultant graph (Figure 5)for the monolithic approach is a continuous
distribution of temperatures with the same shape as the single domain
problem with the same parameters solved in Task 1 (Figure ??). Although
the solution is good with this method a large system is needed to be
solved what for larger problems can be a limitation. Therefore to do
further another a method that could be solved by subdomains with few
communication between them is needed.

Figure 5: Solution with monolithic approach

If now instead of solving in both subdomains with the same thermal dif-
fusion coefficient (κ) we give different pairs of values, the solution also
changes. As seen in Figure 6 even though the value of the temperature
is the same in the interface node (because as we said the solution is done
in one single matrix that assembles equations for both subdomains), the
function on the interface is not differentiable because there is a sharp

6

change in the distribution.

Figure 6: Solution with monolithic approach with different κ in both subdo-
mains.

This is a consequence of only imposing the value of the unknown to be
the same on the interface but not the fluxes. Therefore the first derivative
with respect position of the temperature (the gradient) hasn’t to be the
same on the interface and actually it is shown that for different values of
κ the gradients are not the same. We know from the analytical solution
and from experience that not only the temperature but also the gradient
has to be the continuous across an interface, so the monolithic approach
is not useful to solve problems without imposing the fluxes on the interface.

So a method that can result with continuous and continuous derivatives
by imposing also the fluxes is needed, which is the iterative approach
explained in the next task.

4. Task 4

The iterative scheme has been implemented transferring the fluxes (Neu-
mann) in the left domain and the temperatures (Dirichlet) in the right
one. For the first example analysed the diffusion coefficient has been left
to κ = 1.

7

A convergence analysis has been conducted with a tolerance in the tem-
peratures in the interface of 1× 10−8. As seen in Figure 7 the algorithm
converges to the right solution in 16 iterations with quadratic convergence.

Figure 7: Convergence analysis of the iterative scheme.κ = 1

If now the thermal diffusion parameter is changed to κ = 100 in the first
domain the convergence is obtained faster (Figure 8), in only 4 iterations.
This is because the profile of temperatures changes faster for higher diffu-
sion coefficients so it also converges faster.

8

Figure 8: Convergence analysis of the iterative scheme.κ = 100

On the other hand if κ = 0.01 in the first domain the algorithm doesn’t
even converge as seen in Figure 9

Figure 9: Convergence analysis of the iterative scheme.κ = 0.01

The fact that the algorithm doesn’t converge with κ = 0.01 is due to the

9

fact that the Poincaré inequality that controls the stability of the method
when imposing boundary is not satisfied. When we decrease κ the stability
region is more restrictive til the point that this is broken and the method
don’t longer converges.

5. Task 5

In order to improve the not convergence for small values of the diffusion
(κ) a relaxed scheme with constant relaxation parameter (w) is proposed.
The idea of this algorithm is to relax the restriction of Poincaré inequality
by means of decreasing the actualisation of system matrices at each time
step.

To do so a parameter w is introduced in the solver of the iterative scheme
in the following way:

1 %Lef t
2 i f HeatProblem . Data . F ixFluxesLe f t == 0
3 HeatProblem . Matr ices .K(1 , 1) = HeatProblem .

Matr ices .K(1 , 1) + w∗HeatProblem . Data .
kappa∗1/h ;

4 HeatProblem . Matr ices .K(1 , 2) = HeatProblem .
Matr ices .K(1 , 2) − w∗HeatProblem . Data .
kappa∗1/h ;

5 e l s e
6 HeatProblem . Matr ices .F(1) = HeatProblem .

Matr ices .F(1) + w∗HeatProblem . Data .
Le f tF luxes ;

7 end
8

9 %Right
10 i f HeatProblem . Data . FixFluxesRight == 0
11 HeatProblem . Matr ices .K(npoin , npoin) =

HeatProblem . Matr ices .K(npoin , npoin) + w∗
HeatProblem . Data . kappa∗1/h ;

12 HeatProblem . Matr ices .K(npoin , npoin−1) =
HeatProblem . Matr ices .K(npoin , npoin−1) − w
∗HeatProblem . Data . kappa∗1/h ;

13 e l s e
14 HeatProblem . Matr ices .F(end) = HeatProblem .

Matr ices .F(end) + w∗ HeatProblem . Data .
RightFluxes ;

15 end

Choosing a small enough relaxation parameter the solution of the problem
with κ = 0.01 in the left domain converges in few iterations (11) as seen
in Figure 10.

10

Figure 10: Convergence analysis of the iterative scheme with constant relaxation
parameter w = 0.005,κ = 0.01

The temperatures distribution in this case is of the form of Figure 11. As
seen the solution converges in the interface and the distribution of tem-
peratures is characterised by the very small diffusivity on the left domain
that induced the fast change in temperatures.

11

Figure 11: Temperature distribution of the solution with relaxed iterative ap-
proach: w = 0.005,κ = 0.01

Another possible solution to

12

	Introduction
	Testing the codes

