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1 Transmission conditions

1.1 Deflection of an Euler-Bernoulli beam

1.1.a Space of functions where both v and δv belong.

Let us define for k = 1, 2, ...

Hk(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| ≤ k} (1)

The Sobolev space Hk(Ω) consists of all functions v on Ω, that, together with its partial
derivatives of order α, belong to the Hilbert space L2(Ω). Let us define this space of square
integrable functions as

L2(Ω) = {v : v is defined on Ω and
∫

Ω
v2dx <∞} (2)

Now let us introduce the space in which δv is

H2
0 (Ω) = {u ∈ H2(Ω) : u = δu

δx
= 0 on Γ} (3)

So it is clear that it is in this space since the boundary conditions are the same. As for v,
the restriction is lower, thus is belongs to H2(Ω), as its first and second derivatives need to be
square integrable, as well as the function v itself.

1.1.b Obtain the transmission conditions at P implied by regularity requirements

It is clear that we will need to satisfy Vh corresponding to the fourth order boundary value
problem. The finite element space Vh will belong to H2(Ω) if and only if the functions v ∈ Vh
and their first derivatives are continuous, otherwise the derivative does not exist as a function
in L2(Ω). In order for v to not be discontinuous across the the element side the transmission
conditions read

JvK = v(P+)− v(P−) = 0
J ∂v
∂x

K = 0
(4)
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1.1.c Transmission conditions at P that follow by imposing in the PTV that the
integral is additive

Now we will use the starting equation and integrate it by parts considering that now [0, L] =
[0, P ] ∪ (P,L]. That is,

EI
∫ P

0
δv
d4v

dx4︸ ︷︷ ︸
A

+EI
∫ L

P
δv
d4v

dx4︸ ︷︷ ︸
B

=
∫ P

0
δvf +

∫ L

P
δvf =

∫ L

0
δvf (5)

Now, integrating by parts terms A and B,

A −→ EI
∫ P

0
δv
d4v

dx4 = EI

∫ P

0

dδv

dx

d3v

dx3dx+
[
δv
d3v

dx3

]P
0

 =

= EI

∫ P

0

d2δv

dx2
d2v

dx2dx+
[
δv
d3v

dx3

]P
0

+
[
dδv

dx

d2v

dx2

]P
0

 (6)

B −→ EI
∫ L

P
δv
d4v

dx4 = EI

∫ L

P

dδv

dx

d3v

dx3dx+
[
δv
d3v

dx3

]L
P

 =

= EI

∫ L

P

d2δv

dx2
d2v

dx2dx+
[
δv
d3v

dx3

]L
P

+
[
dδv

dx

d2v

dx2

]L
P

 (7)

Now it is clear that in order to reach the final term the sum of the following is equal to zero,

[
δv
d3v

dx3

]P
0

+
[
dδv

dx

d2v

dx2

]P
0

+
[
δv
d3v

dx3

]L
P

+
[
dδv

dx

d2v

dx2

]L
P

= 0

δv
d3v

dx3

∣∣∣∣∣
x=P−

+ dδv

dx

d2v

dx2

∣∣∣∣∣
x=P−

− δv
d3v

dx3

∣∣∣∣∣
x=P+

− dδv

dx

d2v

dx2

∣∣∣∣∣
x=P+

= 0
(8)

In order for the latter to be true, given that the function δv is arbirtary, the following has to
be true

JδvK =
qdδv
dx

y
=

qd2v

dx2

y
=

qd3v

dx3

y
= 0 (9)
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1.2 The Maxwell problem

1.2.a Write a variational statement of the problem. Postulate the space of func-
tions where u must belong.

There are two identities that will be used to simplify and get rid of the curl of the curl.

• The cross product rule ∇ · (A×B) = (∇×A) ·B−A · (∇×B).

• The divergence theorem
∫

Ω ∇ · FdΩ =
∫
∂Ω F · ndΓ.

When writing the variational formulation, a test function v will multiply the equation and then
it will be integrated on the domain.

∫
Ω

v · (ν∇×∇× u) =
∫

Ω
f · v (10)

When using the first identity mentioned, considering that A = ∇× u and B = v

∫
Ω

v · (ν∇×∇× u) =
∫

Ω
(ν∇× u) · (∇× v) +

∫
Ω

∇ · (v× (ν∇× u))︸ ︷︷ ︸
C

(11)

Now by applying the divergence theorem on C, it is reached

∫
Ω

v · (ν∇×∇× u) =
∫

Ω
(ν∇× u) · (∇× v) +

∫
∂Ω

(v× (ν∇× u)) · n (12)

If considering that n× (∇× u× v) = −v× (∇× u · n), it is possible to rewrite the boundary
term and reach the fact that it vanishes due to n×u = 0. Hence the variational formulation is

∫
Ω

f · v =
∫

Ω
(ν∇× u) · (∇× v) (13)

As the left-hand side term is in L1(Ω), so is the right-hand side. That means that both cross
products need to be in L2(Ω). Therefore we can write as in the last exercise two different
Hilbert spaces, in this case H0

0 (Ω) and H0(Ω) with the difference that now the conditions are
applied on the curl, meaning that

H0(curl,Ω) = {u ∈ L2(Ω) : ∇× u ∈ L2(Ω)} (14)
H0

0 (curl,Ω) = {u ∈ L2(Ω) : u× n = 0} (15)

Then it is clear that u and v belong to H0
0 (curl,Ω).

3



1.2.b Obtain the transmission conditions across Γ implied by regularity require-
ments

For any orientable and closed surface Γ the unit normal vector n on Γ is outwardly oriented
from the interior domain enclosed by Γ towards the outer domain. Let n be a vector fielf on Γ,
then we denote by vT = n× (v× n) the vector field of its tangent components and the space
of L2(Ω) in which it belongs with

L2
t (Γ) = {u ∈ L2(Γ) : u · n = 0 on Γ} (16)

Then, for a vector field u ∈ H(curl,Ω) the transmission condition is that the jump Ju×nKΓ = 0,
or the tangential velocity on the surface that intersects.

1.2.c Obtain the transmission conditions across Γ that follow by imposing in the
variational form of the problem that the integral is additive

It was shown in the first part that the variational form on the domain had to form of (12).
Later we saw that the contribution on the boundary vanished due to n×u = 0 on the boundary.
Now there is another boundary Γ which has to be considered in the equation. So, when the
integral is additive, there are two subdomains whose contributions are

∫
Ω

v · (ν∇×∇× u) =
∫

Ω1
(ν∇× u) · (∇× v) +

∫
Γ
(v× (ν∇× u)) · n|Ω1+

+
∫

Ω2
(ν∇× u) · (∇× v) +

∫
Γ
(v× (ν∇× u)) · n|Ω2

(17)

In order for the formulation to be consistent with what was found in (13), the sum of the
contributions on the boundary must vanish, so that

∫
Γ
(v× (ν∇× u)) · n|Ω1 +

∫
Γ
(v× (ν∇× u)) · n|Ω2 = 0 (18)

So, as we saw, now the jump of the term of the projection of the curl on the normal to the
surface Γ must be zero, meaning that the transmission condition is

J(ν∇× u)) · nK = 0 (19)
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1.3 The Navier equations

1.3.a Variational form of the equations

The first equation is written in the form

−2µ
∫

Ω
v · (∇ · ∇Su)︸ ︷︷ ︸

A

−λ
∫

Ω
v · (∇(∇ · u))︸ ︷︷ ︸

B

= ρ
∫

Ω
v · b (20)

Now, term A will simply be integrated by parts, but term B will require the employment of the
chain rule and the divergence theorem to be simplified.

A −→ −2µ
∫

Ω
v · (∇ · ∇Su) = 2µ

∫
Ω
∇v : ∇Su− 2µ

∫
∂Ω

v · ∇Su · n (21)

B −→ −λ
∫

Ω
v · (∇(∇ · u)) = −

∫
Ω

∇ · (v(∇ · v))︸ ︷︷ ︸
C

+
∫

Ω
(∇ · v)(∇ · u)︸ ︷︷ ︸

D

(22)

Then, (20) eventually is

2µ
∫

Ω
∇v : ∇Su− 2µ

∫
∂Ω

v ·∇Su ·n +λ
∫

Ω
(∇ ·v)(∇ ·v)−λ

∫
∂Ω

(v(∇ · v)) · n︸ ︷︷ ︸
C

= ρ
∫

Ω
v ·b (23)

As for the second equation, which reads

− µ
∫

Ω
v ·∆u− (λ+ µ)

∫
Ω

v · ∇(∇ · u) = ρ
∫

Ω
v · b (24)

The first term in the right-hand side will be integrated by parts and the second term will be
treated exactly as term B in the previous equation, yielding

µ
∫

Ω
∇v : ∇u−µ

∫
∂Ω

v·∇u·n+(λ+µ)
∫

Ω
(∇·v)(∇·v)−(λ+µ)

∫
∂Ω

(v(∇·v))·n = ρ
∫

Ω
v·b (25)

As for the third equation, which reads

µ
∫

Ω
v · (∇×∇× u)− (λ+ 2µ)

∫
Ω

v · ∇(∇ · u) = ρ
∫

Ω
v · b (26)
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The first term in the right-hand side will be integrated according to the expression that was
seen in the previous exercises and the second term will be treated exactly as term B in the first
equation.

∇×∇× u = ∇(∇ · u)−∇2u (27)

Therefore, if we introduce this in the previous equation we have

µ
∫

Ω
v · (∇(∇ · u)−∇2u)− (λ+ 2µ)

∫
Ω

v · ∇(∇ · u) = ρ
∫

Ω
v · b

µ
∫

Ω
v · (∇(∇ · u)−∇2u)− (λ+ µ)

∫
Ω

v · ∇(∇ · u)− µ
∫

Ω
v · ∇(∇ · u) = ρ

∫
Ω

v · b

−µ
∫

Ω
v · (∇2u)− (λ+ µ)

∫
Ω

v · ∇(∇ · u) = ρ
∫

Ω
v · b

(28)

We have then reach the same as in the second expression, as they are equivalent expressions.
Therefore the variational form will be the same.

Now it is clear that v will belong to H1(Ω) and u will belong to H1
0 (Ω).

1.3.b Transmission conditions across Γ

Regarding the additive properties of the integrals, it has been shown that, when integrating
across a domain with a surface Γ intersected, the contributions of the terms along the part of
the boundary of each sub-domain corresponding to Γ must sum zero in order to recover the
weak form. In the case of the particular problem of the equations two and three, this translates
into

∫
Γ

v · ∇u · n|Ω1 +
∫

Γ
v · ∇u · n|Ω2 = 0∫

Γ
(v(∇ · v)) · n|Ω1 +

∫
Γ
(v(∇ · v)) · n|Ω2 = 0

(29)

Now the jump of the term of the projection of the gradient on the normal to the surface Γ must
be zero, as well as the projection of the divergence, meaning that the transmission conditions
are

J(∇u)) · nK = 0 J(∇ · u) · nK = 0 (30)

Clearly the functions cannot be discontinuous across the surface, otherwise they cannot belong
to H1(Ω).
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2 Domain decomposition methods

2.1 Problem 1

2.1.a Write down an i-b-s scheme based on a Schwarz additive domain decompo-
sition method

The additive Schwarz method is a parallel Jacobi-like scheme in which the values at the bound-
ary of the sub-domain are calculated by the previous iteration, that is, l = k − 1. As there are
two domains that overlap each other, we define

Ω1 = {x ∈ [0, L1]}, Γ12 = L1

Ω2 = {x ∈ [L2, L]}, Γ21 = L2
(31)

With this, we will consider for easiness that the beam is clamped at both ends. We will use
the differential operator as follows as well

EI
d4v

dx4 = f −→ EIL v = f (32)

As for the first sub-domain, it is only necessary to recall the transmission conditions.



EIL vk1 = f in Ω1

vk1 = 0 on x = 0
dvk

1
dx

= 0 on x = 0
vk1 = vk−1

2 on Γ12
dvk

1
dx

= dvk−1
2
dx

on Γ12

(33)

As for subdomain 2,



EIL vk2 = f in Ω2

vk2 = 0 on x = L
dvk

2
dx

= 0 on x = L

vk2 = vk−1
1 on Γ21

dvk
2

dx
= dvk−1

1
dx

on Γ21

(34)

2.1.b Obtain the matrix version of the previous scheme once space has been dis-
cretized using finite elements

When discretizing the space, we define the weak form as was done in the first exercise with a
bilinear form for the matrix and a linear form for the right-hand side term, obtaining
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a(v,u) =
∫

Ω
∇v : ∇u, v ∈ H2

0 (Ω), u ∈ H2(Ω) (35)

h(v,u) =
∫

Ω
vf, v ∈ H2

0 (Ω) (36)

After this is done, the matrix notation for an iterative scheme is used to obtain for the first
subdomain,

A11v
k
1 = f1 − A1Γv

k−1
2 (L1)

A22v
k
2 = f2 − A2Γv

k−1
1 (L2)

(37)

Where A11 = a1(Ni, Nj), A22 = a2(Ni, Nj), f1 = h1(Ni), f2 = h2(Ni).

The values at the interfaces can be calculated easily by the values at the other subdomain at
the previous iteration.

2.2 Problem 2

2.2.a Write down an i-b-s scheme based on the Dirichlet-Neumann coupling

As the transmission conditions for this exercise cannot be imposed at the same time, it is
necessary to iterate by sub-domains. For this we define Ω = Ω1 ∪ Ω2,Γ12 = Ω1 ∩ Ω2),Γi =
∂Ωi ∩ ∂Ω. Now, if recalling the transmission conditions that was found, J(ν∇ × u)) · nK = 0,
and the boundary conditions for that specific problem, the iterations are for each sub-domain
are:


ν∇×∇× uk

1 = f in Ω1

n× uk
1 = 0 on Γ1

ν(∇× uk
1) · n = ν(∇× uk−1

2 ) · n on Γ12

(38)

As for subdomain 2,


ν∇×∇× uk

2 = f in Ω2

n× uk
2 = 0 on Γ2

n× uk
2 = n× ul

1 on Γ21

(39)

Here it is seen that sub-domain 1 solves for Neumann and sub-domain 2 solves for Dirichlet.
If l = k − 1 we have a Jacobi scheme (in parallel) and if l = k we have a Gauss-Seidel scheme
(sequential).
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2.2.b Obtain the expression of the Steklov-Poincare operator of the problem.

The problem consists of finding ϕ ∈ H1/2(Γ12) such that S φ = G . For that, the problem
solution will be split in two parts, so that the first part will satisfy the homogeneous boundary
conditions and the other will have an unspecified value ϕ at the interface between two sub-
domains so that in each sub-domain we have


ν∇×∇× u0

i = f in Ωi

n× u0
i = 0 on Γ1

n× u0
i = 0 on Γ12

(40)


ν∇×∇× ũi = f in Ωi

n× ũi = 0 on Γ1

n× ũi = ϕ on Γ12

(41)

Again, recalling the transmission conditions, we can define the previous operators as

S : H1/2(Γ12) −→ H−1/2(Γ12)
ϕ −→ ν1(∇× ũ1) · n− ν2(∇× ũ2) · n
G = −ν1(∇× u0

1) · n + ν2(∇× u0
2) · n

(42)

2.2.c Obtain the matrix version of the previous scheme once space has been dis-
cretized using finite elements

For a Neumann-Dirichlet iterative shcheme we have

[
A11 A1Γ
AΓ1 A1

ΓΓ

] [
Uk

1
Uk

Γ

]
=
[

F1
FΓ − AΓ2U

k−1
2 − A2

ΓΓU
k−1
Γ

]
(43)

And the Dirichlet conditions are satisfied through A22U
k
2 = F2−A2ΓU

l
Γ. l can be as usual k or

k − 1.
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2.3 Problem 3

2.3.a Write down an i-b-s scheme based on the Robin-Dirichlet coupling

Let us consider a Jacobi scheme. The first sub-domain will be solved by enforcing the trans-
mission condition at the interface with a Dirichlet coupling and with a Robin coupling on the
second sub-domain such that


k1∆uk

1 = f in Ω1

uk
1 = 0 on Γ1

uk
1 = uk−1

2 on Γ12

(44)


k2∆uk

2 = f in Ω2

uk
2 = 0 on Γ2

k2
∂uk

2
∂n

+ γ2uk
2 = k1

∂uk−1
1
∂n

+ γ2uk−1
1 on Γ12

(45)

2.3.b Obtain the matrix version of the previous scheme once space has been dis-
cretized using finite elements

The iterative matrix version will be the same as the Neumann-Dirichlet system but taking into
account the Robin condition this time. For sub-domain 2 we have simply

A22U
k
2 = F2 − A2ΓU

k−1
Γ (46)

And for sub-domain 1 we have a matrix system of equations with the vector unknowns Uk
1 at

the domain and the vector unknowns Uk
Γ at the boundary Γ12. Taking into account that the

Robin condition acts on the boundary Γ12, the variable γ can therefore only affect the vector
Uk

Γ as

[
A11 A1Γ
AΓ1 A1

ΓΓ + γ1I

] [
Uk

1
Uk

Γ

]
=
[

F1
FΓ − AΓ2U

k−1
2 − (A2

ΓΓ − γ1I)Uk−1
Γ

]
(47)

2.3.c Obtain the Schur complement as discrete version of the Steklov-Poincare
operator

To do this, we need to substitute equation (46) into (47) to obtain the system of equations
SUΓ = G.

U1 = A−1
11 (F1 − A1ΓUΓ)

U2 = A−1
22 (F2 − A2ΓUΓ)

(48)

Now we need to introduce this into
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AΓ1U1 + (AΓΓ1 + γ1I)UΓ = FΓ − AΓ2U2 − (A2
ΓΓ − γ1I)UΓ (49)

Which gives the following matrices

S = A1
ΓΓ + γ1I− AΓ1A

−1
11 A1Γ − AΓ2A

−1
22 A2Γ

G = FΓ − AΓ1A
−1
11 F1 − AΓ2A

−1
22 F2 − (AΓΓ2 + γ1I)UΓ

(50)

2.3.d Identify the preconditioner for the Schur complement equation arising from
the iterative scheme of section (a)

A Richardson iterative scheme to solve this problem with preconditioner would be

Uk
Γ = Uk−1

Γ + P−1(G− SUk−1
Γ ) (51)

Let us consider this time the Gauss-Seidel i-b-s method

Uk
1 = A−1

11 (F1 − A1ΓUΓ)k

Uk−1
2 = A−1

22 (F2 − A2ΓUΓ)k−1 (52)

Putting this into the iterative equation that we have seen already

AΓ1U
k
1 + (AΓΓ1 + γ1I)Uk

Γ = FΓ − AΓ2U
k−1
2 − (A(2)

ΓΓ − γ1I)Uk−1
Γ (53)

will give us the equation we seek. We have that

AΓ1(A−1
11 (F1−A1ΓU

k
Γ))+(AΓΓ1+γ1I)Uk

Γ = FΓ−AΓ2(A−1
22 (F2−A2ΓU

k−1
Γ ))−(A(2)

ΓΓ−γ1I)Uk−1
Γ (54)

Now, in order to simplify this, we need to group terms by dividing the Schur component into
two terms, namely S = S1 + S2. Now,

S1 = A1
ΓΓ − AΓ1A

−1
11 A1Γ

S2 = A2
ΓΓ − AΓ2A

−1
22 A2Γ

(55)

And the matrix G was computed before and was

G = FΓ − AΓ1A
−1
11 F1 − AΓ2A

−1
22 F2 − (AΓΓ2 + γ1I)Uk−1

Γ (56)
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Now, if equation (54) is simplified further, it can be shown that

Uk
Γ = Uk−1

Γ + (S1 + γ1I)−1(G− SUk−1
Γ ) (57)

Where (S1 + γ1I) is the preconditioner matrix P .

3 Coupling of heterogeneous problems

3.1 Problem 1

3.1.a Write down the equations in the wall assuming a plane stress behavior

Here the basic unknowns will be considered to be displacements u and v in the x and y axis
directions. Strains, and hence stresses, can be expressed in terms of this displacements. The
strains are written as

ε =

 εxεy
εxy

 =


∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

 (58)

And, for the particular case of plane stress, the stresses are given by

σ =

 σxσy
σxy

 = E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 ε = E

1− ν2


∂u
∂x

+ ν ∂v
∂y

∂v
∂y

+ ν ∂u
∂x

1−ν
2 (∂u

∂y
+ ∂x

∂x
)

 (59)

It remains to solve the equilibrium equation system, where X and Y are the external forces per
unit volume

∂σx

∂x
+ ∂σxy

∂y
+X

∂σxy

∂x
+ ∂σy

∂y
+ Y

 = 0 (60)

The boundary conditions can be added as

[
u− u
v − v

]
=
[
u
v

]
= 0 on ΓD (61)

3.1.b Write down the equations for the beam modified because of the presence of
the wall

The initial equation is

12



EI
d4v

dx4 = f (62)

Now, the force that the wall transmits to the beam is hσy(y = 0) (h being the thickness of the
wall) and therefore the equation now will be

EI
d4v

dx4 = f − hσy(y = 0) = f − h
(
∂v

∂y
+ ν

∂u

∂x

)
y=0

(63)

With the same boundary conditions plus the one that relates vw = vb at y = 0.

3.1.c Obtain the adequate transmission conditions for v and the normal compo-
nent of the traction on the wall at y = 0

Since the beam is supported by the wall, a clear transmission condition for v is JvK = 0. As for
the normal component of the traction, we have to compute the projection of the traction vector
σ · n on the y-axis direction, to have equilibrium on the y axis. That results in Jn·(σ(x,0) · n)K.

3.1.d Suggest transmission conditions for u and the tangent component of the
traction on the wall at y = 0. Discuss the implications if this component is
not assumed to be zero.

There needs to be a transmission of the u component of the displacement such that JuK =
0. The tangential component is found by projecting the traction vector σ · n on the vector
perpendicular to n, so that now the transmission condition is Jt · (σ(x,0) · n)K. If this is not
assumed to be zero there we would not have equilibrium in the equations.

3.2 Problem 2

3.2.a Obtain the discrete version of the previous equation when space is dis-
cretized using finite elements. Relate the resulting matrices to those arising
from the discretization of the Darcy and the Stokes problems separately.

When the partial differential equation is discretized by finite elements the discretization of
the Steklov-Poincaré operator is the Schur complement obtained by eliminating all degrees of
freedom inside the domain. Therefore, if denoting by uΓ

D,uΓ
S the values of the unknowns of

each problem on the interface, the matrix arising from the discretization of the operators will
be

[
ADD ADS
ASD ADS

] [
uΓ
D

uΓ
S

]
=
[
fΓ
D

fΓ
S

]
(64)
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Now, if comparing the matrix with the one discretizing the other two problems separately, it
is clear that we will get differences as those matrices consider the interior values. The Stokes
problem has a very well-known matrix

[
K G
GT 0

] [
uS
p

]
=
[
fS
0

]
(65)

As for the Darcy problem, the matrix system is not common to me so I will derive it through
the weak form that is available in the notes

∫
Ω

w · (K−1uD +∇ϕ) =
∫

Ω
w ·K−1uD −

∫
Ω
ϕ∇ ·w +

∫
∂Ω
ϕn ·w = 0∫

Ω
q∇ · uD = 0

(66)

Therefore the matrix system is very similar to that of the Stokes, although now the matrix that
multiplies the velocity is computed differently,

[
B C
CT 0

] [
uD
ϕ

]
=
[
fD
0

]
(67)

3.2.b Write down the matrix form of a Dirichlet-Neumann iteration-by-subdomain
using the matrices of the Darcy and the Stokes problems

We solve first the Dirichlet problem on the Darcy sub-domain

BuD
k+1 + Cϕk+1 = fD − ADΓu

k
Γ

CTuD
k+1 = 0

(68)

Now the Neumann ibs is (for the Stokes sub-domain)

 ASS BSS ASΓ
BSS

T 0 BSΓ

ASΓ BSΓ
T A(S)

ΓΓ


US

PS
UΓ

 =

 fS
0

fΓS + fΓD −AΓΓ
DuΓ

k −AΓD
Suk+1

 (69)
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3.2.c Identify the Richardson iteration for the algebraic problem in (a) resulting
from (b)

4 Monolithic and partitioned schemes in time

4.1 Problem 1

4.1.a Discretize it using the finite element method (linear elements, element size
h) for the discretization in space, and a BDF1 scheme for the discretization
in time. Write down the weak form of the problem and the resulting ma-
trix form of the problem, including the corresponding boundary integrals if
necessary.

The discretization of the unknown u and its derivative are:

u(x, t) ≈
∑
j

uj(t)Nj(x) (70)

∂tu(x, t) ≈
∑
j

∂tuj(t)Nj(x) (71)

Given the boundary conditions of the problem and the fact that we have considered the test
functions to be zero at the boundary, when the integration by parts is performed on the laplacian
term, the integral over the boundary is zero, therefore the weak form of the problem is, after
multiplying by the test function v is

(v, ∂tu) + (∇v,∇u) = (v, f)∀v ∈ V (72)

And after discretizing this weak form using suitable spaces of functions Vh ∈ V the resulting
equation is

(vh, ∂tuh) + (∇vh,∇uh) = (vh, f)∀vh ∈ Vh (73)

This results in the following matrix form

M∂tuh + Kuh = f (74)

Where the matrices can be computed as

Mij =
∫ 1

0
NiNjdx (75)

Kij =
∫ 1

0
∇Ni∇Njdx (76)
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fij =
∫ 1

0
Nidx (77)

Now, when using a first order Backward differences scheme to approximate the term ∂tuh, it
is reached an unconditionally stable result. First, let us write the implicit scheme, where the
operators K, f are evaluated at time n+ 1.

M∂tUn+1 + KUn+1 = f (78)

Now, with the BDF1 scheme,

M
Un+1 −Un

δt
+ KUn+1 = f −→ (M

δt
+ K)Un+1 = f + MUn/δt (79)

And using the considered values

(M + K)Un+1 = 1 + MUn/δt (80)

4.1.b Consider a domain decomposition approach for the previous problem. The
left subdomain is composed of 2 elements (h = 0.2), while the right sub-
domain is composed of 3 elements (h = 0.2). Show that, if a monolithic
approach is adopted, no boundary integrals are required at the interface.
From now on, we denote the values at the nodes of the mesh as u0; u1, u2;
u3, u4; u5. The interface is at u2.

The purpose in this exercise is that, using a monolithic approach, when constructing the weak
form for each subdomain and summing both subdomains, the original equation is recovered
due to the fact that the transmission conditions for this problem are equality of solution and
fluxes at the interface, which in this case happens to be at h = 0.4. The weak form for both
subdomains is, now considering that there is a contribution from the boundary:

(v(1)
h , ∂tu

(1)
h ) + (∇v(1)

h ,∇u(1)
h )− < v

(1)
h ,∇u(1)

h >= (v(1)
h , f (1)) ∀vh ∈ Vh (81)

(v(2)
h , ∂tu

(2)
h ) + (∇v(2)

h ,∇u(2)
h )− < v

(2)
h ,∇u(2)

h >= (v(2)
h , f (2)) ∀vh ∈ Vh (82)

Now, the transmission conditions that will allow us to recover the original equation are <
v

(1)
h ,∇u(1)

h >= − < v
(2)
h ,∇u(2)

h >.

Therefore when summing up both equations,

(v(1)
h , ∂tu

(1)
h ) + (v(2)

h , ∂tu
(2)
h ) + (∇v(1)

h ,∇u(1)
h ) + (∇v(2)

h ,∇u(2)
h ) = (v(1)

h , f (1)) + (v(2)
h , f (2)) ∀vh ∈ Vh

(83)
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Therefore showing that no boundary integrals are required at the interface.

4.1.c Obtain the algebraic form of the Dirichlet-to-Neumann operator for the
left subdomain, departing from given values of uni at time step n, and an
interface value un+1

2 .

The integral of the matrices multiplying the term Un+1 can be checked in any finite element
technique book and yields for any element, considering linear shape functions and δt = 1,

∫ h

0

dNi

dx

dNj

dx
+NiNjdx −→

[
1/h+ h/3 −1/h+ h/6
−1/h+ h/6 1/h+ h/3

]
(84)

As for term f , we have

∫ h

0
Nidx −→

[
h/2
h/2

]
(85)

The mapping of the surface temperature to the surface heat flux is a Poincaré–Steklov operator.
This particular Poincare–Steklov operator is called the Dirichlet to Neumann (DtN) operator.
Therefore the contribution of the heat flux on the boundary has to be added to f

f =
[

h/2
h/2 + φn+1

]
(86)

Now the matrices are assembled takig into account that three nodes take part in the left sub-
domain, one of which is a Dirichlet node which can be removed its row and column, therefore,
assembling the matrices,

[
2( 1

h
+ h

3 ) h
6 −

1
h

h
6 −

1
h

1
h

+ h
3

] [
Un+1

1
Un+1

2

]
=
[

h
h/2 + φn+1

]
+
[

2h
3

h
6

h
6

2h
3

] [
Un

1
Un

2

]
(87)

Now as suggested we have to impose the term un+1
2 as a known interface value (Dirichlet)

2( 1
h

+ h

3 )Un+1
1 = h+ 2h

3 Un
1 + h

6 (Un
2 − Un+1

2 )− 1
h
Un+1

2 (88)

And then, what remains to do is substituting this value into the second equation of the system
of equations and isolate φn+1 to obtain the Dirichlet to Neumann operator, where Un+1

1 is
obtained from (88).

φn+1 = (h6 −
1
h

)Un+1
1 + ( 1

h
+ h

3 )Un+1
2 − h

2 + 1
h

(Un
1 − Un

2 ) (89)

17



4.1.d Obtain the algebraic form of the Neumann-to-Dirichlet operator for the
right subdomain, departing from given values of uni and an interface value
for the fluxes φn+1 = k∂xu

n+1 at the coordinate of node 2.

The purpose now is to compute the interior values of the second sub-domain with the obtained
value for the flux at the interface. The row and column of the u5 node have also been removed.
Now clearly, given the transmission condition, the flux will be accounting for a negative value
in the equation. The matricial system is, after assembling the matrices obtained in the last
part,


1
h

+ h
3

h
6 −

1
h

0
h
6 −

1
h

2( 1
h

+ h
3 ) h

6 −
1
h

0 h
6 −

1
h

2( 1
h

+ h
3 )


U

n+1
2

Un+1
3

Un+1
4

 =

h/2−+φn+1

h
h

+ h

3

 1 −1/2 0
−1/2 2 −1/2

0 −1/2 2


U

n
2

Un
3

Un
4


(90)

With the value of the flux obtained in equation (89), the values at the interior at time step
n+1 can be easily computed for the right sub-domain.

4.1.e Write down the iterative algorithm for a staggered approach applying Dirich-
let boundary conditions at the interface to the left subdomain and Neumann
boundary conditions at the interface for the right subdomain.

Let us write first the equations for the left and sub-domain,[
2( 1

h
+ h

3 ) h
6 −

1
h

h
6 −

1
h

1
h

+ h
3

] [
Un+1

1
Un+1

2

]
=
[

h
h/2 + φn+1

]
+
[

2h
3

h
6

h
6

2h
3

] [
Un

1
Un

2

]
(91)

The first equation can be written as

AxU1
n+1 = Fx + CxU1

n −BxŨ2
n+1 (92)


1
h

+ h
3

h
6 −

1
h

0
h
6 −

1
h

2( 1
h

+ h
3 ) h

6 −
1
h

0 h
6 −

1
h

2( 1
h

+ h
3 )


U

n+1
2

Un+1
3

Un+1
4

 =

h/2−+φn+1

h
h

+ h

3

 1 −1/2 0
−1/2 2 −1/2

0 −1/2 2


U

n
2

Un
3

Un
4


(93)

The first equation of which can be rewritten in terms of the unknowns of the left sub-domain
as

AYU2
n+1 = FY + CYU2

n −BYŨ1
n+1 (94)

Now the point of the staggered algorithm is to send the off-diagonal terms to the RHS through
a prediction, therefore, by using a first order approximation, the system to be solved will be
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(first the left sub-domain and then the second sub-domain with the input of the first will be,
by saying Ũ1

n+1 = U1
n, Ũ2

n+1 = U2
n:

AxU1
n+1 = Fx + CxU1

n −BxU1
n

AYU2
n+1 = FY + CYU2

n −BYU2
n

(95)

4.1.f Do the same for a substitution and an iteration by subdomains scheme.

Now the system is,

AxU1
n+1 = Fx + CxU1

n −BxŨ2
n+1

AYU2
n+1 = FY + CYU2

n −BYŨ1
n+1 (96)

In an iteration by subdomain, the algorithm would be,

(a) First, calculate the interior node of the left sub-domain, U1
n+1 at iteration number i+ 1

using values of the first iteration.

(b) Calculate the flux φn+1 at iteration i+ 1 with the values computed.

(c) Solve U2
n+1 using the values that we have computed for U1

n+1.

Therefore now

AxU1
n+1|(i+1) = Fx + CxU1

n −BxŨ2
n+1|(i)

AYU2
n+1|(i+1) = FY + CYU2

n −BYŨ1
n+1|(i)

(97)

4.1.g Rewrite the algebraic system associated to the left subdomain (Dirichlet
boundary conditions at the interface), using Nitsche’s method for applying
the boundary conditions. How does the condition number of the resulting
system of equations vary with the penalty parameter α?

The initial problem in variational form is written as follows

(v, ∂tu) + (∇v,∇u) = (v, f)∀v ∈ V (98)

The Nitche’s method is an extension of the penalty method to make it symmetric and consistent.
If we apply it to the left sub-domain we get the following variational form

(v1, ∂tu1)+(∇v1,∇u1)+α(v1, u1)Γ−(v, n·∇u1)Γ−(u1, n·∇u1)Γ = (v1, f1)+α(v1, uD)Γ−(uD, n·∇v1)Γ ∀v ∈ V
(99)

This corresponds to the following modified system
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(M + K + N)Un+1 = f + fN + MUn (100)

Where the N matrix has only contributions on the boundary term, therefore the system results

[
2( 1

h
+ h

3 ) h
6 −

1
h

h
6 −

1
h

1
h

+ h
3 + k

h
(α− 1)

] [
Un+1

1
Un+1

2

]
=
[

h
h/2 + φn+1 + ku2

h
(α− 1)

]
+
[

2h
3

h
6

h
6

2h
3

] [
Un

1
Un

2

]
(101)

The parameter α plays here an important role as it ensures stability of the model. As α
increases, it is more stable. However, it has a counterpart which is that the condition number
of the matrix increases with α, hence increasing the number of iterations needed.

5 Operator and splitting techniques

5.1 Problem 1

5.1.a Discretize it in space using finite elements (3 elements) and in time (finite
differences, BDF1). Solve the first step of the problem, writing the solution
as a function of the time step size δt.

The discretization of the unknown u and its derivative are:

u(x, t) ≈
∑
j

uj(t)Nj(x) (102)

∂tu(x, t) ≈
∑
j

∂tuj(t)Nj(x) (103)

Given the boundary conditions of the problem and the fact that we have considered the test
functions to be zero at the boundary, when the integration by parts is performed on the laplacian
term, the integral over the boundary is zero, therefore the weak form of the problem is, after
multiplying by the test function v is

(v, ∂tu) + (∇v,∇u) + (v,∇u) = (v, f)∀v ∈ V (104)

And after discretizing this weak form using suitable spaces of functions Vh ∈ V the resulting
equation is

(vh, ∂tuh) + (∇vh,∇uh) + (vh,∇uh) = (vh, f)∀vh ∈ Vh (105)

This results in the following matrix form
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M∂tuh + Kuh + Cuh = F (106)

Where the matrices can be computed as

Mij =
∫ 1

0
NiNjdx (107)

Kij =
∫ 1

0
∇Ni∇Njdx (108)

Fij =
∫ 1

0
Nidx (109)

Cij =
∫ 1

0
Ni∇Njdx (110)

Now, when using a first order Backward differences scheme to approximate the term ∂tuh, it
is reached an unconditionally stable result. First, let us write the implicit scheme, where the
operators K, f are evaluated at time n+ 1.

M∂tUn+1 + KUn+1 + CUn+1 = Fn+1 (111)

Now, with the BDF1 scheme,

M
Un+1 −Un

δt
+ KUn+1 + CUn+1 = Fn+1 −→ (M

δt
+ K + C)Un+1 = Fn+1 + M

δt
Un (112)

Let’s find now the elementary matrices,

Ke + Me =
∫ h

0

dNi

dx

dNj

dx
+NiNjdx −→

[
1/h+ h/3 −1/h+ h/6
−1/h+ h/6 1/h+ h/3

]
(113)

Ce =
∫ h

0
Ni
dNj

dx
dx −→ 1

2

[
−1 1
−1 1

]
(114)

Fe =
∫ h

0
Nidx −→

[
h/2
h/2

]
(115)

Now, when assembling the matrices, and given the boundary conditions, only the nodes in the
middle will have to be solved. The reduced system will be, after assembling

(
[
2(1/h+ h

3δt) −1/h+ h
6δt

−1/h+ h
6δt 2(1/h+ h

3δt)

]
+ 1

2

[
−2 1
−1 2

]
)Un+1 =

[
h
h

]
+
[

2h
3

h
6

h
6

2h
3

]
Un (116)

Operating with the system, we achieve the following
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[
6 + 2

9δt
1

18δt − 5/2
1

18δt − 7/2 6 + 2
9δt

] [
Un+1

1
Un+1

2

]
=
[
1/3
1/3

]
+
[

2
9

1
18

1
18

2
9

] [
Un

1
Un

2

]
(117)

The solution to this system, considering initial guess 0,

[
U1

1
U1

2

]
=
[ 6δt(51δt+1)

2943δt2+324δt+5
6δt(57δt+1)

2943δt2+324δt+5

]
(118)

5.1.b Solve the same time step by using a first order operator splitting technique

The operator splitting technique divides the problem in two parts that solve a partial part of
the problem, and a cycle is done until convergence reached. The two problems are the following,

(M
δt

+ C)UA
n+1 = M

δt
UA

n

(M
δt

+ K)Un+1 = Fn+1 + M
δt

UA
n+1

UA
n+1 = Un+1 −→ repeat

(119)

It is clear that UA
(1) will be zero if we have considered that UA

(0) is a vector of zeros. Then,
to find the solution at the first time step, we only need to solve the following equation,

(M
δt

+ K)Un+1 = Fn+1 (120)

Which, after computing wigh the values of the matrices that we have found, give the following
easy solution compared to the monolitic solution

[
U1

1
U1

2

]
=
[ 6δt

54δt+5
6δt

54δt+5

]
(121)

5.1.c Evaluate the error of the splitting approach with respect to the monolithic
approach. Plot the splitting error vs. the time step size for δt = 1; δt = 0.5,
δt = 0.25. Comment on the results

The solution of the monolithic is:

δt = 0.25 −→
[
U1

1
U1

2

]
=
[
0.0765
0.0874

]
; δt = 0.5 −→

[
U1

1
U1

2

]
=
[
0.0881
0.0980

]
; δt = 1 −→

[
U1

1
U1

2

]
=
[
0.0954
0.1064

]
(122)
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The solution for the splitting technique is

δt = 0.25 −→
[
U1

1
U1

2

]
=
[
0.0811
0.0811

]
; δt = 0.5 −→

[
U1

1
U1

2

]
=
[
0.0938
0.0938

]
; δt = 1 −→

[
U1

1
U1

2

]
=
[
0.1017
0.1017

]
(123)

It is interesting to note that the operator splitting technique gives equal results for both nodes
at the first time step for every time increment. This is due to the fact that if we consider
an null initial guess for the solution, then the convective matrix (which non-symmetric and
ultimately responsible for the different values at the nodes) has no effect on the solution. Then,
in the following figure, it is possible to see the evolution of the error with different δt. It is
concluded that the higher the time increment, the higher the error between methods, as could
be expected.

Figure 1: Caption
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6 Fractional step methods

6.1 Problem 1

6.1.a Which is the optimal value for the α parameter?

In order to find which is the optimum value, we need to see which is the value of α that makes
possible the recovering of the momentum equation.

Summing up the first and last equations, which are the extrapolated velocity equation and the
correction equation for the velocity,

M
1
δt

(Ûn+1−Un+Un+1−Ûn+1)+K(Ûn+1+αUn+1−αÛn+1) = f+G(P n+1−P̂ n+1+P̂ n+1) (124)

Now it is clear that when α = 1 we recover the momentum equation, and this is the optimum
value.

M
1
δt

(Un+1 − Un) +K(Un+1) = f +G(P n+1) (125)

6.1.b What is the source of error of the scheme?

As a part of the fractional step methods, the Yosida scheme for solving the incompressible
Navier-Stokes equations splits the original momentum equation into different steps, which in-
volve intermediate velocity and pressure calculations as well as a correction for both magnitudes
afterwards. Clearly, splitting the problem into parts will have an encompassed error which in
this case affects the continuity equation [1]. Moreover, in Yoshida scheme a small perturbation
is added to stabilize the solution when using a combination of interpolation degrees for the
velocity and pressure elements, in case the LBB test is not passed. This way it is possible to
have pressure and velocity interpolated at the same nodes. The higher this perturbation is, the
more effect it will have on stability, but of course the perturbation diminishes the enforcement
of the incompressibility condition. Hence the main source of the error for the Yosida scheme is
the unsatisfied continuity equation [1].

7 ALE formulations

7.1 Problem 1

7.1.a Obtain the description of the property in terms of the ALE coordinates
(X ,Y ,Z ).

We start by introducing the mesh movement xm = xm(X , t). With this, For each initial
position of the mesh nodes X , it gives the position of the mesh nodes xm at a given time
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instant. It traces the movement of the mesh. Let us now consider the description of a property
in the ALE frame of reference γALE(X (X, t), t). The description of the property will thus be,

γ(X ,Y ,Z , t) = [2(X + αt), (Y − βt)et, Z ] (126)

7.1.b Compute the velocity of the particles and the mesh velocity

The velocity of the particles is

v := ∂x(X, t)
∂t

=

Xe
t

et

0

 (127)

As for the velocity of the mesh, it is the derivative of the equations of the mesh movement with
respect to time,

vm = ∂x(X , t)
∂t

=

 α−β
0

 (128)

7.1.c Compute the ALE description of the material temporal derivative of γ

Let us now consider the description of a property in the ALE frame of reference γALE(X (X, t), t).
Its material derivative is

dγALE(X (X, t), t)
dt

= ∂γALE(X , t)
∂t

+ (v− vm) · ∇γ(x, t) (129)

Let us first start with ∇γ(x, t)

∇γ(x, t) =

2 0 0
0 et 0
0 0 1

 (130)

Then, the difference of the velocities needs to be computed with respect to the ALE coordinates

(v− vm) =

Xe
t + α

et + β
0

 =

X + α(t− 1)
et + β

0

 (131)

Eventually,
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∂γALE(X , t)
∂t

=

 2α
−et(βt+ β − Y )

0

 (132)

dγALE(X (X, t), t)
dt

=

 2α
−et(βt+ β − Y )

0

+

X + α(t− 1)
et + β

0


T 2 0 0

0 et 0
0 0 1

 =

 2(X + αt)
et(et − βt+ Y )

0


(133)

7.2 Problem 2

7.2.a Write down the ALE form of the incompressible Navier-Stokes equations.
Where (in time and space) is each of the terms of the equation evaluated?
How are temporal derivatives computed?

In order to obtain the ALE formulation, let us first write the original strong form

ρ
Du
Dt
−∇ · σ(u, p) = f

∇ · u = 0
(134)

Then, we have seen in the previous problem that the material derivative of a quantity in the
ALE descriprion is obtained as

dγALE(X (X, t), t)
dt

= ∂γALE(X , t)
∂t

+ (v− vm) · ∇γ(x, t) (135)

We can therefore obtain the material derivative of the velocity as

duALE(X (X, t), t)
dt

= ∂uALE(X , t)
∂t

+ (v− vm) · ∇u(x, t) (136)

Eventually the equation is

ρ(∂uALE(X , t)
∂t

+ (v− vm) · ∇u(x, t))−∇ · σ(u, p) = f

∇ · u = 0
(137)

The temporal derivatives are computed at the moving nodes, as the difference of the values of
the properties, but uALE is always evaluated at the same nodal coordinates even if the mesh is
moving. As for the other terms that do not involve the temporal derivative, they are evaluated
in the spatial coordinates in an Eulerian frame of reference.
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7.3 Problem 3

7.3.a Do a bibliographical research on existing methods for the definition of the
mesh movement in ALE formulations (Poisson problem, Elasticity problem,
etc.). Describe the main advantages of each of these methods

In an Eulerian formulation, the mesh is fixed and the particles move through it, so mesh
distortion can be avoided but the formulation may not be adequate to represent the move-
ment of boundaries. With the aim of avoiding mesh distortion without needing to generate
a new mesh, the arbitrary Lagrangian–Eulerian (ALE) kinematic description was used first
to simulate fluid and fluid–structure interaction. The ALE formulation lead to an efficient
treatment of fluid–structure interface, where nodes move independently of domain motion and
excessive mesh distortion is avoided. Therefore the need for an adequate mesh-update strategy
is underlined, and various automatic mesh-displacement prescription algorithms are reviewed.
This includes mesh-regularization methods essentially based on geometrical concepts, as well
as mesh-adaptation techniques aimed at optimizing the computational mesh according to some
error indicator, with emphasis on particular issues related to the modeling of compressible and
incompressible flow and nonlinear solid mechanics problems. This includes the treatment of
convective terms in the conservation equations for mass, momentum, and energy [3]. Therefore,
the methods are:

Mesh regularization, that keeps the regular mesh as regular as possible, avoiding mesh dis-
tortions and entanglement of the elements. This procedure decreases the numerical error due
to mesh distortion. It requires that updated nodal coordinates are specified at each station
of the calculation by using the mesh velocity. Then, the ALE formulation is able to reduce
finite element distortion while representing the boundaries correctly. Since mesh and material
movements are uncoupled in this formulation, convective terms appear in the balance of momen-
tum equation, due to the relative motion between the material and the mesh, and equilibrium
equations have twice as many unknowns as the number of equations [2].

Mesh adaption, whose purpose is to optimize the computational mesh to achieve better
accuracy. This procedure decreases the numerical error due to mesh distortion. It requires
that updated nodal coordinates are specified at each station of the calculation by using the
mesh velocity. The algorithm includes an error indicator, and the mesh is modified to obtain
an homogeneous distribution of the error over the computational domain.

Other techniques include Transfinite mapping method, which is a low computational cost
procedure. Laplacian Smoothing and Variational Methods, presenting smooth distribu-
tions on the mesh nodes [4].
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8 Fluid-Structure Interaction

8.1 Problem 1

8.1.a Describe the added mass effect problem for fluid structure interaction prob-
lems. When does it appear, what kind of problems suffer from it? What
are the main methods for dealing with it?

The added mass effect is a phenomena occuring when the density of the fluid is similar to that
of the solid. The operator acts as an additional mass on the degrees of freedom on the interface.
It tends to occur on staggered problems that iterate from one equation to the other. Relaxtion
methods, an in particular the Aitken scheme, which has been seen to provide good results in
the numerical homework, are options to overcome this.This method, moreover, helps reaching
the convergence faster.

8.2 Problem 2

8.2.a Consider the iteration by subdomain scheme for the heat transfer prob-
lem described in problem 1. Apply 2 iterations of the AITKEN relaxation
scheme to it.

It has been seen previously that the problem has the matrix form:

(M + K)Un+1 = 1 + MUn/δt (138)

The Neumann to Dirichlet method solves both sub-domains separately, and assigns the flux
to the right boundary of the first sub-domain and the solution of the first sub-domain to the
Dirichlet left value of the second. For that, at each iteration i we have for the first sub-domain:

(M1 + K1)U1(tn+1)k = f1 + M1U1(tn)/δt (139)

Where the flux is calculated as follows

∂U1(tn+1)k
∂x

= −∂U2(tn+1)k−1

∂x
(140)

As for the Dirichlet sub-domain, we have that

(M2 + K2)U2(tn+1)k = f2 + M2U2(tn)/δt (141)

And now the Aitken algorithm comes as a way to calculate U2(tn+1)k with information at two
previous iterations. At time tn+1 the value at the interface is
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uiΓ21 = wuiΓ12 + (1− w)ui−1
Γ21 (142)

And with the Aitken scheme,

w = uiΓ21 = ui−1
Γ21 − ui−2

Γ21

ui−1
Γ21 − ui−2

Γ21 + ui−1
Γ12 − ui−2

Γ12
(143)

Which implies that we need at least two iterations in order to start computing this value.
Before that, w can simply be 0.5.

8.3 Problem 3

8.3.a Consider the monolithic (1 domain), transient (BDF1), finite element (linear
elements, h = 1=4) approximation of the heat transfer equation in problem
1. Enforce the Dirichlet boundary conditions in x = 0 and x = 1 by using
Lagrange multipliers. What is the form of the discrete system? What is the
condition number of the resulting matrix?

The system of equations to be solved now will have the following form

Me + Ke =
[
A aT

a O

] [
Un+1

λ

]
=
[
f + MUn/δt

b

]
(144)

With A = M/δt+ K

Where a is the vector of coefficients that assign the boundary value to the nodes (a vector of
zeros and ones), and b contains the Dirichlet values. Since in this case is zero, we have

b =
[
0
0

]
; a =

[
1 0 0 0 0
0 0 0 0 1

]
(145)

It has been seen that the sum of the elementary matrices is

Me + Ke =
[

1/h+ h/3 −1/h+ h/6
−1/h+ h/6 1/h+ h/3

]
(146)

The good point in applying the Lagrange multipliers is that the boundary conditions are ap-
plied consistently. As for the condition number, if calculations are done and the matrices are
assembled, considering ∆t = 1, the condition matrix of the entire system is 38.3156 wheres that
of matrix A is 73.0412. Therefore the first one will be easier to solve. However, not all matrix
A has to be solved, only its reduced part, obtained after the first and last rows and columns
are deleted. After doing that, the condition number is 5.3585, as is to be expected for a matrix
with no zeros and only 3x3.
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8.4 Problem 4

8.4.a Consider the monolithic (1 domain), transient (BDF1), finite element (linear
elements, h = 0.25) approximation of the heat transfer equation in problem
1. Suppose that a level set function divides the domain into a high thermal
conductivity (κ = 100) subdomain (x ∈ [0; 0:4]) and a low thermal conduc-
tivity (κ = 1) subdomain (x ∈ (0:4; 1]). Build the system matrix for this
problem. Take into account the need for subintegrating the element cut by
the level set function.

For this problem, there are four elements, and the one which contains the points x = 0.4 has
two different values for k. For this reason, it will have to be integrated in different regions. We
have for the different element

K1 =
∫ h

0
100dNi

dx

dNj

dx
= 100

[
4 −4
−4 4

]
(147)

K2 = 100
∫ 0.4

h

dNi

dx

dNj

dx
+
∫ 2h

0.4

dNi

dx

dNj

dx
= 400

[
4 −4
−4 4

]
(0.15)+4

[
4 −4
−4 4

]
(0.1) = 241.6

[
1 −1
−1 1

]
(0.1)

(148)

K3 =
∫ h

0

dNi

dx

dNj

dx
=
[

4 −4
−4 4

]
(149)

K4 =
∫ h

0

dNi

dx

dNj

dx
=
[

4 −4
−4 4

]
(150)

As for the mass matrix of each element, it has been calculated before and is

Me =
[

2 −1
−1 2

]
/12 (151)

Then there is only to sum the contribution of these two matrix to generate the global matrix,
with the same source term as before.

References
[1] Quarteroni, Alfio Saleri, Fausto Veneziani, Alessandro. (2000). Factorization methods

for the numerical approximation of Navier-Stokes equations. Computer Methods in Applied
Mechanics and Engineering. 188. 10.1016/S0045-7825(99)00192-9.

[2] Farinatti Aymone, J.L. (2004), Mesh motion techniques for the ALE formulation in 3D large
deformation problems. Int. J. Numer. Meth. Engng., 59: 1879-1908. doi:10.1002/nme.939

30



[3] Donea, J., Huerta, A., Ponthot, J.-P. and Rodríguez-Ferran, A. (2004). Arbitrary L
agrangian–E ulerian Methods. In Encyclopedia of Computational Mechanics (eds E. Stein,
R. Borst and T.J.R. Hughes). doi:10.1002/0470091355.ecm009

[4] Mosler, J. and Ortiz, M. (2006), On the numerical implementation of variational arbitrary
Lagrangian–Eulerian (VALE) formulations. Int. J. Numer. Meth. Engng., 67: 1272-1289.
doi:10.1002/nme.1621

31


	Transmission conditions
	Domain decomposition methods
	Coupling of heterogeneous problems
	Monolithic and partitioned schemes in time
	Operator and splitting techniques
	Fractional step methods
	ALE formulations
	Fluid-Structure Interaction

