COUPLED PROBLEMS
Master of Science in Computational Mechanics/Numerical Methods
Spring Semester 2019
Rafel Perelld i Ribas

Homework

1. Transmission conditions
1.1. The deflection v(x) of an Euler-Bernoulli beam is governed by the differential equation

£l d*v

dx* f

Where EI is a mechanical property of the beam section and the beam material and f is the
distributed load. Assuming for example that the beam is clamped at x = 0 and x = L, the

Principle of Virtual Work (PTV) states that the solution v(x) satisfies

e jL d?svd?v e = fLS p
o dx? dx? *= 0 vf dx
For all 5v such that 6v(0) = dv(L) = 0,‘%’(0) = Z—T(L) =0.
a) Postulate the space of functions where both v and v must belong. Justify the
answer.

Both trial and test functions must satisfy the following condition: Their second derivative must be
2 2

square integrable in the domain of the problem. This ensures fOL ‘Zj;% dx < oo. The space of

functions that fulfil this condition is, by definition W2([0,L]) = H?([0,L]) . Virtual displacements

must satisfy additional conditions: their value and the value of their derivative must vanish at the

extremes of the domain. So &v belong in a subspace of HZ([0,L]): &v € HZ([0,L]) =
{w e H2([0,L]):w(0) = w(L) = 0,25 (0) = T=(L) = 0}.

Moreover, the function f must ensure fOL Svf dx < oo. This means that f must belong to the dual
space of §v. f € (W2)' = Wy 2.

b) If [0,L] =[0,P]U (P,L], obtain the transmission conditions at P implied by
regularity requirements.

As v € H?([0,L]) it can be shown that v must be continuous and also its derivative in all the domain.
Sobolev’s Inequality states that for p > 1 a function in ka is C™ where
k—m>n/p

here k = 2 and p = 2 are the parameters of the Sobolev space, n = 1 is the number of dimensions

of the domain. In this case, m < 2 — % = % — m = 1. This means that u € C*.

At point P this is stated as [v] = 0 and [[%ﬂ =0.



c) Obtain the transmission conditions at P that follow by imposing in the PTV that the
integral is additive.
From the strong form of the differential equation:
4
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Integrating the second term by parts twice:
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Imposing that the integral of PTV formulation is additive:

J‘L6 4 —fLEI d?é6vd?v " fPEI d?ésvd?v 4 +fLEI d?svd?v
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Comparing the two equations:

-[PEI d?svd?v p fLEI d?sv d?v dx + EI 5u(P-) d3v(P7) £l dsv(P™) d?v(P™)
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Resulting in:
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Taking into account that dv is arbitrary:



Sv(P~) = sv(PH)

_d3v(P7) d3v(Pt)
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It is seen that 4 transmission conditions are obtained:

dév
[6v] = 0 and [[—]] =0
dx

Eldzv = 0 and E1d3v =0
dx?| an dx3|

The transmission conditions of the virtual displacements are redundant as v € H2([0, L]).

It has to be noted that all of these conditions are stated in terms of class equivalence. That is, they can
be not fulfilled in sets of 0 measure.

1.2. The Maxwell problem consists in finding a vector field u: O — R3 such that
VWXVXu=finQ
V-u=0inQ
nxXu=0onadf

Where v > 0, f is a divergence free force field and n the unit external normal. Equation V -
u = 0 is in fact redundant.

a) Write a variational statement of the problem. Postulate the space of functions

where u must belong. Justify the answer.

In this formulation of the strong form of the PDE it has been assumed v is constant along the domain.
For a more general formulation is taken

VX (WWxu)=finQ
The variational formulation is obtained integrating the equation multiplied by a test function du €
R3(Q) such that Su X n = 0 on 98 in order to apply the Dirichlet BC:
fSu-Vx(viu)dQ=f6u-fdQ
Q Q

The following formula is used:
u- (Vxv)=v-Vxu—-V:-(uxwv)

substituting u by Su and v by (vV X u):

jdu-Vx(viu)dQ=f
Q

Vx6u-(viu)dQ—jV-((Sux(viu))dQ
Q Q

=fV><6u'(vV><u)dQ— oux (vWxu)-ndl
Q 1o)

=fV><6u'(vV><u)dQ+ 6u><n-(vV><u)dF=foSu-(viu)dQ
Q Q

Q



To ensure that the integral is bounded the term V X du - (vVV X w) must be in L, (). As this term is
the product of two terms this means that each of the terms must be in L, (Q):

VXSou€L,(Q)=HQ) - éueH (curl,Q) ={u € L,(Q):Vxu€ L,(Q)}
As it is desired that the obtained weak form is symmetric:
u € H(curl, Q)

This ensures V. X u € L, (). As v(V X u) € L,(Q) this means that v € L, (). Vector of force f €
(Ho(curl, Q))’, the dual space which belongs éu.

The additional condition Su Xn =0 can be applied stating that Su € HJ(curl,Q) = {u €
HO(curl,Q):u x n = 0 on 00}

b) If T is a surface that intersects ()}, obtain the transmission conditions across I’
implied by regularity requirements.

Asu € H(curl,Q) - V X u € L,(Q). The i-th component of V X u is:
[VXul; = €;jiu,
This is written as uy ; € L,(Q) for k # j.

Now imagine that u,, is discontinuous along the j dimension at x;. A regularized function u€ is defined
as a continuous function such that

u€(x) = uy(x) for |x — xo| > % and

BT LT R I P

With this definition u¢ - u when e - 0.

The square integral of uy ; around an interval of length 2a centered at x, is:

€

fxo+a <duk>2 xO_%(duE>2 Xota [ 4y, €\ 2 Xot5 [ du€\?
—— | dx; =lim — | dx; +f (—) dx; + (—) dx; =
Xo—a dx; Teo Xo—a dx; ! x0+§ dx; ! xo‘% dx; !

2
%07 (duc\? Xota [y €\ u (xo + %) —u (xo - %)

lir‘%J <—> dx; +f ( ) dx; +€

(i

Xo—a dx Xo +% dx €

) )

This tends to o as € — 0. That means that tangential components of u must be continuous along
surfaces (excepts on sets of measure 0).

c) Obtain the transmission conditions across I' that follow by imposing in the
variational form of the problem that the integral is additive.

From the strong form of the PDE:



viqu=f—>j(Su-fdQ:jdu-(viqu)dQ
Q Q

= Su-(WxvVxwdQ+ | du-(wVxVxu)dQ
Q Q;
Where Q; UQ, =QandQ; NQ, =T.
Applying to both terms the following formula of vector calculus and the divergence theorem as in a):
u- (Vxv)=v-Vxu—-V:-(uxwv)

It is obtained

ou-(WXVxuwdQ+ | du-(WVxVxu)dQ
Qq Q;

:f V><8u-(vV><u)dQ+f6u><(viu|Ql)-ndl“+fV><8u-(vV><u)dQ
Q r Q

1

+ fSu x (VW xulg,) - ndl
r
Where it has been used that Su X n = 0 on 9Q. From the weak form:

f&u-fdQ:jVXSu-(viu)dQ:f
Q Q

V><5u-(viu)dQ+f VXxdéu-(WVxu)dQ
Q

Q;

As du is arbitrary:
j&ux(viu|Ql)-ndl“+j6u><n-(viu|Qz)-ndF=0
r r

This means that:

[viVxu) -n]=0

1.3. The Navier equations for an elastic material can be written in three different ways:
—2uv - (e(w)) —AV(V - u) = pb
—uAu — A+ V(- -u) =pb
UV x (Vxu)— A+ 2w)V(V-u) =pb

Where u is the displacement field, ¢(u) the symmetric part of Vu,A and u the Lamé
coefficients, p the density of the material and b the body force. Let us assume that u = 0
on 0Q).

a) Write down the variational form of the previous equation in the appropriate
functional spaces.
- 1% formulation

jﬂ ou - (—ZuV . (e(u)) —AV(V- u)) dQ = fQSu - pb dQ

The left hand side can be integrated by parts:



j ou - (—ZuV . (s(u)) — AV(V - u)) dQ
Q
= fV5u: Z,u(e(u)) dQ — f ou- 2ue(u) -ndl + f Vou - A(V-u) dQ
Q a0 Q
—f ou- A(V-u)-ndrl
0
Resulting in
f Véu: 2u(£(u)) aq — f ou- 2ue(u) -ndl + f Vou- A(V-uw)da—| éu- A(V-u)- -ndl
Q a0 Q a0
= f éu - pb dQ
Q
Here the most restrictive term is
fVSu: 2u(e(w)) da
Q

This is because it uses the full gradient of the vector unknown. This means that u, Su € H* ()

- 2" formulation
j ou - (—,uAu — A+ wv(v- u))dQ = f éu - pb dQ
Q Q
The left hand side is integrated by parts:

j ou - (—,uAu — A+ wv(v- u))dQ
Q

:fVSu-uVudQ— 6u-,uVu-ndF+fV6u-(/1+,u)(V-u)dQ
Q Q

a0
—| ou-A+w)(V-u) -ndl
a0
The weak formulation is:

fVSu-qudQ— 8u-uVu-ndF+fV6u-(/1+u)(V-u)dQ—f Su-A+w(V-u) ndl
Q Q E1o)

20
= f éu - pb dQ
Q
Again, u, Su € H* () due to the first term
f Véu - uVu dQ
Q
- 3" formulation

fdu-(ny(qu)—()L+2y)V(V‘u))dQ=f6u-pbdQ
Q Q

The left hand side is integrated by parts using the same identity than for the Maxwell problem:



j Su- (U7 x (Vxu)— A+ 20)V(V-u))dQ
Q

:fVX&L-,u(VXu)dQ— 5u-y(V><u)-ndF+fV6u-(/1+2u)(V-u)dQ
Q Q

20
—f Su-A+2w)(V-u) -ndl
a0

This result in the following weak form:
foSu-u(VXu)dQ—f 6u-,u(V><u)-ndF+fV5u-(A+2u)(V'u)dQ
Q 0Q Q
—f 6u~(/1+2,u)(V~u)-ndF=f8u-pbdQ
Q Q

The third term contains a gradient of du for this reason Su € H*(Q). In the case of u there are terms
with the divergence of u and other with the curl of u. For this reason: u € H(curl, Q) n H'(div, Q).
u € H'(curl,Q) implies u; ; € H'(Q) for i # j.u € H'(div, Q) implies u; ; € H'(Q) for i = j. For
this reason, : u € H(curl, Q) n H1(div, Q) = H1(Q).

In all cases, as all boundary is of Dirichlet type, the surface integrals vanish.

b) If I is a surface that intersects (, obtain the transmission conditions across I" that
follow by imposing in the variational form of the problem that the integral is
additive.

- 1% formulation

fnl Su - (—ZuV (W) — AV(V - u)) dQ + f Su - (—ZMV (W) — AV(V - u)) dQ

Q,

:fé‘u-pbdﬂ
Q

Integrating by parts:

A

ou - (—Z;N- (s(u)) —AV(V - u)) dQ + f ou - (—ZMV . (e(u)) — AV(V - u)) dQ
Q,

1

:f Vou: 2u(e(w)) dQ — f&u- 2ueW)|q, -ndF+f Vou - A(V -u) dQ
Q r Q

1 1

—f8u- /1(|7-u|91)-nd1“+f vou: 2u(e(w)) dQ—f&u- 2ue(u)|g, - ndl
r Q, r

+f Véu - A(V-u)dﬂ—fé‘u- A(V-ulﬂz)-ndl"
Q r

2

The transmission conditions are:
[[,u(s(u)) 'n]] =0
[A(V-u)-n] =0

2" formulation



f ou - (—uAu —(A+wv(v- u))dQ + f ou - (—yAu —(A+ V(- u))dQ = f éu - pbdQ
Q4 Q, Q

Integrating by parts:
f éu - (—uAu —A+wv(v- u))dﬂ + f ou - (—,uAu — A+ wv(v- u))dQ
Qq Q;

:f V5u-,uVudQ—f6u-qu|91-ndF+f Vou-(A+w)(V-u)dQ
Q r Q

1 1

—fSu-(/1+,u)(V-u|gl)-ndF+f Vé‘u-,uVudQ—f(Su-uVumz-ndF
r Q, r

+f V(Su-(/1+,u)(V-u)dQ—f<5u~(/1+y)(V-u|Q)-nd[‘
Q r :

2

Resulting in the following transmission conditions:
[uVu-n] =0
[A+wW(V-uw)-n]=0

3" formulation

Su- (WX (Vxu)—@A+2WV(V-w)d+ [ Su-(uVx (Vxu) —@A+2pV(V-u))dQ
Q4 Q,

= f éu - pb dQ
Q
Integrating by parts:
Su- (VX (Vxu)— A+ 2wV -w)do+ | du-(uVx (Vxw) — @A+ 2u)V(V-u))dQ

o a,
=f Vxéu-u(qu)dQ—f 6u-,u(V><u|Ql).nd1"
Q 20

1

+j Vou-(A+2w)(V-w)d— | su-A+2w)(V-ulg,) ndl
Q a0

1

+.[ Vx6u-y(qu)dQ—f 5u-u(qu|Qz)-ndF
Q 1)

2

+j Vou-(A+2w)(V-w)d— | du-A+2w)(V-ulg,) ndl
Q a0

2

The transmission conditions are:
u(Vxu) -n]=0
[A+2W)(V-u)-n]=0



2. Transmission conditions

2.1. Consider Problem 1 of Section 1. Let [0,L] = [0, L] U [L,, L], with L, < L,.
a) Write down an iteration-by-subdomain scheme based on a Schwarz additive
domain decomposition method.

Each iteration is divided in two steps, one per subdomain:

1%t subdomain

d*v¥ _
EI It fin[0,L]
vf(0) = 7,
dv{c B
Tx (0) = vy,

vE(Ly) = v V(L)

dvk L) = dvz(k_l) @)
dx © V7 dx 1
- 2" subdomain
dtvi
El It = fin[L,, L]
vk(L) =7,
dvy _
E(L) = Uy,

véc (L) = vi (L2)

dv§ @) dvi L)
dx 2 dx =2

Here, | = k — 1 for a Jacobi scheme and | = k for a Gauss-Seidel scheme. After each iteration:

vi(x) for0<x<1L,
Vy(x) forl, <x <L

v(x) = {

b) Obtain the matrix version of the previous scheme once space has been discretized
using finite elements.

Here the Jacobi scheme will be explained. The two steps are analysed separately:
- 1% subdomain
Av=Ff

Here, the contributions of the Dirichlet boundary conditions at the interface are added at the force
vector. The matrix A; and vector f; are constructed as



[4:);; = a;(N;, N;)
[l = A+ v§ VW) - [, = bV = vV Ly - ag (N, NT)

Li d?vd?u

,U) = El ——

(v, u) —fo dx?dx?
Ly

Lw)=| fudx
0

dx

2" subdomain
Avy = [
Where
[A2]ij = az(Ni, Nj)
)i = [+ o V(L) - [H], = LD — az (N, V)

( )_JLEIdzvdzud
a,(v,u) = Ty X

L
Lw)=| fudx

Ly

The values at the interface can be obtained with the corresponding reduction operator:
v(Ly) = Riu
v(L,) = Rlu

The solution after each iteration computed with two injection operators applied on the two
subdomain solutions:

v+ = [oft + Lokt = (AT + L(AZY) = 11AI1(f1I + fergvk) + 12A51(f21 + fer{Uk)
= (LAT'f{ + LAY + (I1Aflf1FR£ + IzAglfer{)vk

Here it is seen two different terms, one constant representing the body force and a second one
depending on v¥ that is the one that ensures the transmission conditions.

2.2. Consider Problem 2 of Section 1. Let I' be a surface that intersects ().
a) Write down an iteration-by-subdomain scheme based on the Dirichlet-Neumann
coupling.

The domain of the problem is divided in two non-intersecting subdomains:
QuU, =0
Q4 NQ, =T
[ =00NnQ;



The subdomain 1 is solved as a Neumann problem where the transmission condition of fluxes is
enforced:

WxVxuk=FfinQ,
nxuf=0onT

Vl(V X u’f) ‘n = Vz (V X ugk_l)) ‘non F12

Subdomain 2 is solved as a Dirichlet problem enforcing the transmission condition of the primal
variable:

VWxVxuk=FfinQ,
nxufk=0o0nT,
nxuf=nxulonl,

l = k — 1 for aJacobi scheme and [ = k for a Gauss-Seidel scheme.

Note than the equation enforcing u is divergence free has been omitted as it is redundant.

b) Obtain the expression of the Steklov-Poincaré operator of the problem.

As the problem is linear the solution can be expressed as the sum of a problem where the solution
vanishes at the boundary and a homogeneous problem with the correct boundary conditions. Splitting
the solution at each subdomain:

w;=ud +4, fori=1,2

VWXVxul = finQ
nxu) =0onT;
nxu =00onT,

VW XVXU =0in
nxXu,=0onl;
nXﬁl=(p0nF12

With this definition of the problem it is ensured the transmission condition of the primal variable
[nxu] =0.

The transmission conditions for fluxes is [v(V X u) - n] = 0. So the problem is to find the trace of u
on I}, such that the transmission condition is ensured:

vi(VXuy) n=v,(VXuy) n->v;(VXy) n—vy,(VX1Uy)-n
= v (Vxud) n+v,(Vxuld) n

The Steklov-Poincaré operator is defined as

1 1
S:H2(curl,Ty,) » H 2(curl, Ty,)
@ ->v(VXU) n—v,(VXUy) n
And

G=-v(Vxul) n+v,(Vxud) n



In order to ensure the transmission conditions, the following problem must be solved:

Sp=G

c) Obtain the matrix version of the previous scheme once space has been discretized
using finite elements.

The Neumann problem for the first subdomain can be written as:

Ay A1r] ] [ ]
Ar1 Arr Fr — ArzUz

The Dirichlet subdomain problem is written as:
AUy = F, — AprUr

The three equations can be written in a single system:

Ayr Air 071Uy Fy
Ary Arr Arz||Ur| = |Fr
0  Ayr AzllU, F,

Using the iterative scheme:

All AlF
Arp A P - AUl 1) — ARyl

The Dirichlet problem is written using a Jacobi or Gauss-Seidel scheme defining [ as explained before:

A22U§ =F, —Azrull‘

2.3. Consider the problem of finding u: 1 — R such that
—kAu=finQ
u=0o0nadQ
Where k > 0. Let I" be a surface crossing ().

a) Write down an iteration-by-subdomain scheme based on the Dirichlet-Robin
coupling.

The same notation as in the previous problem is used for Q,,Q,, [}, [, and [},.
The Dirichlet problem is written as
—kAuk = finQ,
uf=0onTly

k-1
uk —ug )on[‘lz



The Robin problem is
—kAuk = finQ,
uf =0onT,
kz(Vu§ . n) +yuk =k, (VujlL -n) +yul on Ty,
Here,y > 0 and [ = k — 1 for a Jacobi scheme and [ = k for Gauss-Seidel scheme.

b) Obtain the matrix version of the previous scheme once space has been discretized
using finite elements.

The Dirichlet problems is written as:
AzU; = Fp — AprUr
The Robin problem is very similar to the Neumann one:

Agq Aqr [Ul] _ Fy
Ary AR 4 y1)lUrl T R - AU, — (45 - v1) U

The difference is that the submatrix Ap; accounts for the additional terms of the Robin BC.

Using the iterative scheme:

A1y Air Uk _ Fy
Ary AD +yi1||uk| T [Fo— AU - (Al(“zr) - VI) ug

A22U§ =F _AZI‘UII‘

c) Obtain the Schur complement as discrete version of the Steklov-Poicaré operator.
First local problems are solved taking into account the force term:
—kAu) = finQ;
0 _
u; =0onl;
0 _
u; =0onTy,
Then G is computed as:
G = —kl(Vug . n) + kz(vu(z) . n)
The discrete version of this problems are:
A11U{) =F

Azng =F,



The Steklov-Poincaré operator is, given the trace of u on I}, (@), solve
—kAfl; = 0in Q;
i =00nI;
i =¢@only,
The discrete version of this problem is:
A11U0; + AyrUr =0
Ay Uy + AprUr =0
Where ¢ is discretised as Ur.
Then, Se is computed as
S =k, (Vi - n) — ky(Vil, - m)
The discrete version of G is:
G = Fp — Ar1U? — AU

Where the minus sign is to note that it has the reverse sign of Sg. Substituting U and U? using the
linear problem computed before:

G = Fr — Ar1A11 i — Arp A3z Fs
The discrete version of Sg is:
S¢ = ArrUr + Ar1U; + Ar, U,
Substituting:
S¢ = (Arr — Ar1AT1 Air — Arp A2 Apr) Ur

Another point to note is that in the Steklov-Poincaré problem ¢ has a measure of 0 and does not
contribute to the problem. However in the discrete version Ur have contributions to the problem.
Because of that Arr and Ft are added.

The continuous problem is:
Sp=G
The discrete version is:

(Arr — Ar1A7i Air — ArpAZ3 Aor)Ur = Fr — Arq UP — Ap, U3



d) Identify the preconditioner for the Schur complement equation arising from the
iterative scheme of section (a).

First, let divide the Schur complement as
S=85+S;
S1 = AfY — Ars ATt Air
Sz = Ay — Ar2Az3 Azr
We will consider the Gauss-Seidel scheme:
Uf = A7i(Fy — AirUF)

U¥ = A7} (F, — A,rUf)

AryATH(Fy — ArpUE) + ARUE +yUf = Fr — Ara Az} (F, — Apr0f ) = (4 = y1) Ul
(S +VDUE = (Fr — AryATLFy — Ay A53Fy) — (AR = Ari Az} Agr + AR — Apy ATty ) U
+ (4% - AriAziar) UED +y(agiu
(S +yDUF = G — SUF™ + (5, +yDU™
Uk = UV 4 (s +yD7H(6 - suf)
So the preconditioner of the Dirichlet-Robinson algorithm is

Ppr=(S; +yD7!



3. Coupling of heterogeneous problems

3.1. Consider the beam described in Problem 1 of Section 1. Apart from being clampedat x = 0
and x = L, the beam is supported on an elastic wall that occupies the square [0, L] X
[—L, 0], where y = 0 corresponds to the beam axis. The wall is clamped everywhere except
on the upper wall, where the beam is. The wall displacements in the x- and y- directions
are u and v, respectively, and the elastic properties E (Young modulus) and v (Poisson’s
coefficient). No loads are applied on the wall, except for those coming from the beam.

a) Write down the equations in the wall assuming a plane stress behaviour.

As no body forces are applied on the wall, the equation of equilibrium is:
V-oa=0inQuq
The stress can be written in terms of the stress with the constitutive matrix:
o=Cs¢

Where

C= v 1 0
— 12
1I=v"lo 0 1-v

And the strain is the symmetric gradient of the displacement:
1
£=3 (Vu + (Vu)T)

With this, the PDE governing the behaviour of the wall displacement is:

V. <g (Vu + (VU)T)> = 0in Quay

The BCs are that the displacements are 0 on the clamped sides, which will be denoted as I':
u=0onTlp
At the upper side, the transmission conditions have to be enforced.

b) Write down the equations for the beam modified because of the presence of the
wall.

The differential equation to solve is the same than before but with a contribution to the force term
from the wall:
417 y '
EI@ =f+t,. inQpeam

Where t < L is the thickness of the wall.



The changes BCs of the wall remain the same:

UBeam (O;O) =0

deeam

—(0,0)=0
= (0,0)

UBeam(L: 0) =0

deeam

—(L,0)=0
= (L,0)

UBeam (0,0) = Uwall (0,0)

c) Obtain the adequate transmission conditions for v and the normal component of
the traction on the wall at y = 0.

In this problem, the equations of the beam cannot be obtained as the limit case of the plane stress
problem with an infinitesimal height. For that reason, transmission conditions are obtained from
physical principles. The first transmission condition is that the displacements must be continuous at
(x,0):

[v] =0

. . d
The normal component of the traction from the beam is computed as t§,,n, = EA %.

The normal component per unit length is computed as t%a”(x) =10,1] - (6(x,0) - n). The
transmission condition is to enforce continuity of tractions:

[t -n] =0

To impose it, the term ta’,a” of the beam equation has to be equal than tf,’l,au(x) =[0,1] -
(a(x,0) - n).

d) Suggest transmission conditions for u and the tangent component of the traction
on the wall at y = 0. Discuss the implications if this component is not assumed to
be zero.

The transmission condition for u is the same as for v: continuity must be enforced.

About the transmission condition for the tangential component of the traction can be enforced in a
similar way than the normal. The problem is that there is not differential equation about the tangential
traction. The problem to find the displacements in the x- direction such that.

2u
EAW = fx in Qpeam

The BCs are:
uBeam(Oro) =0

uBeam(L: 0) =0

With this, the traction in tangential component can be enforced.



3.2. Let S and S be the Dirichlet-to-Neumann operators for the Darcy and the Stokes
problems, respectively (see the class notes, chapter 3). The Steklov-Poincaré equation can
be written as:

Ss(A) = Sp (D),
Where A is the normal velocity on I, the interface between the Darcy and the Stokes regions.

a) Obtain the discrete version of the previous equation when space is discretized using
finite elements. Relate the resulting matrices to those arising from the discretization
of the Darcy and the Stokes problems separately.

Simple Dirichlet BCs will be imposed.
The strong form of the Stokes problem is:
—VvAug +Vp = f in Qg
V-u; =0 in Qg
u; =0 onlIj
The strong form of the Darcy problem is:
up +kVp =0 inQp
V-up =0 inQp
up =0onlp
Apart of that, the transmission conditions have to be imposed as
Ss() = Sp(D)

The discretization of the Stokes problem is:

Sug - (—vAug +Vp) dQ = | Su, - f dQ
QS QS

op-(V-uy)d=0
Qs

Integrating the first equation by parts:

dug - (—vAug + Vp) dQ

Qs
fﬂ

Véug - vVu, dQ —j (V-6ug)-p dﬂ—j dug - WWug —pl) -ndl
Qq a

S QS

This results in:

f V5us~vVusdQ—f (V-S8uy) - pdQ =1 Sus-fdQ+ ous - WVug —pl) -ndl
Qs Qs Qs 20y

The resulting linear system is:

e ollF1=05]



The space of functions is us € H1(Q)%,p € L,(Q)

The discretization of the Darcy problem is:

Sup - (k" up + V) dQ =0
Qp

6p - (V-up)dQ=0
Qp

Integrating by parts the first equation:

Sup - (ktup + V@) dQ = | Sup- -k tupdQ— | (V-6up) @dQ+ Sup - -ndl
Qp Qb Qp aQp

The resulting system of equations is:
M  Gplrusy _ (fp
[GE 0“4’]_[0]
The Steklov-Poincaré equation can be discretized as well:
Ss(A) =Sp(A) =0

Ass ASD
ADS ADD

b) Write down the matrix of a Dirichlet-Neumann iteration-by-subdomain using the
matrices of the Darcy and the Stokes problems.

First, given a guess for the velocity at the interface, the Stokes equation is solved using Neumann BC:

Kess ug fs
Krs K;r Grp‘ l k| = fr— Mmu(k 1) Gr¢(P(k_1) _ Mrrugk_l)
G 0

Now, the Darcy problem is solved using Dirichlet BC:

[MDD GD [uD] [fp ADrur]

A Gauss-Seidel scheme has been used.

c) Identify the Richardson iteration for the algebraic problem in (a) resulting from (b).

From the Neumann equation, uX and p can be taken as function of u'lf:
[K us fs sI‘uI‘ [f Kr k
GI 0 G

The Dirichlet problem is already written as function of u’r‘
ujp

[M DD GD]
(pk

| e R W o I

0




From the Neumann equation, u’f is computed as:

Krsu¥ + Kpruf + Grpp* = fr - ulv _ g, (p(" D _ My u(k D
k (k 1)
u k-
[Krs  Grp] [pi‘] + Kpruf = fr — [Mrp  Gry] [(p(k 1)] Mrru( v

sI‘

[KI‘S GI‘p[ 0] <
-1
= fr—[Mrp Gry] ”2%” %D ([f(;)] ADF] (k— 1))
(se = s Gyl [G )t

= fr— [Krs Grp] [K 0] [fs [Mrp Gry] [1‘2%0 GOD]‘l [

u#) + K[‘rug

Mpp G ]
+[Mrp Grol| 52 7P [Agf]ug" 2



4. Monolithic and partitioned schemes in time
Consider the one-dimensional, transient, heat transfer equation:

ou  0%u ,
E—KW:f in[0,1]
u(x=0,t) =0
u(x=1t)=0
u(x,t=0)=0

4.1. Discretize it using the finite element method (linear elements, element size h) for the
discretization in space, and a BDF1 scheme for the discretization in time. Write down the
weak form of the problem and the resulting matrix form of the problem, including the
corresponding boundary integrals if necessary. Consider xk = 1, f = 1,6t = 1.

The variable u is discretized as

n

u(x, t) = up(x, t) = Z w; (ON; (x)

j=0

The derivative in time is:
n
d,u(x,t) ~ dyup(x,t) = Z 0 ()N, (x)
j=0

The weak form of the problem is:
1 1
f vy, - (Oruy, — KAuy) dx = f vy - f dx
0 0
Integrating by parts:
1 1 1
-[ vy - Oy dx + f Vo kVuy, dx — [vpkVu, )b = f vy - f dx
0 0 0

Substituting the numerical values and the discretization:

1 n 1 n 1
f N; -zatujl\lj dx +f VNiZuj(t)Nj(x) dx = f N; dx fori=1,...,.n—1
0 = 0 = 0

The first and last node have been excluded from the equation because its value is prescribed and the
boundary integral, in this case a 0-dimensional integral, is null because all BC are Dirichlet.

This result in the following linear system:

Matuh + Kuh = f

1
Mijszi'Idex
0

1
0



1
fiszidx
0

The discretization in time of BDF1 is stated as: 0; Uy, 1 = (W41 — Uy) /6L
Substituting:
Mouitt + Kultt = f

M
s un —uR) HKupt = f

M
(a+ K)uﬁ+1 = f — Ku}

4.2. Consider a domain decomposition approach for the previous problem. The left subdomain
is composed of 2 elements (h = 0.2), while the right subdomain is composed of 3 elements
(h = 0.2). Show that, if a monolithic approach is adopted, no boundary integrals are
required at the interface. From now on, we denote the values at the nodes of the mesh as
Ug, Uq, Uy, Uz, Uy, Us. The interface is at u,.

The equations for the 1% subdomain are:
0.4 0.4 0.4
f vy Oy py dx + f Vi Vg, dx — [, VU194 = f vy dx
0 0 0

The equations for the 2" subdomain are:

1 1 1
J Vop * OtUzp dx + f Vo Vg dx — [V, VuaplGe = f Vyp dx
0.4 0.4 0.4

The transmission conditions are:
- Continuity of the temperature:
U (1) = uzp (D)
- Continuity of fluxes:

Vulh - VuZh = 0

From the first equation and neglecting the integral boundary at the Dirichlet BC:

0.4
Vvthulh dx — f V1in dx
0

0.4 0.4

Vin * atulh dx + J.

[v1nViiplx=04 = f
0

0

From the second equation:

1

1 1
_[ Van - Orlap dx + f VvonVugp dx + [V2nVugply=04 = j Vo dx
0.4 0.4 0.4



Substituting:

1 1 0.4 0.4
f Uap * Oplap dx + f Vv, Vu,y, dx + f Vip * Opqp dx + f Vv Vuy, dx
0.4 0.4 0 0
0.4 1
=f Vip dx+f Vyp dx
0 0.4

The original problem has been recovered without boundary integrals.

4.3. Obtain the algebraic form of the Dirichlet-to-Neumann operator (Steklov-Poincaré

operator) for the left subdomain, departing from given values of u;' at time step n, and an

interface value ul*1.

The matrices for the left problem is:
M
(a + K) upt! = f — Kuj}

The global matrices are computed as:

2/3 1/6

M:h'[1/6 1/3

£=[aga * [pn]

Where ¢p™*1 is obtained from the boundary integral and represents the flux out of the boundary. The
vector of unknowns is:

uh_[uz]
The resulting system is:
(ﬁ.[2/3 1/6]+1_[2 —1]) untl =h_[ 1 ]_1_[2 _1”u{l]+[ 0 ]
st 11/6 1731 " h -1 1 1) |up*t 1/2] h =1 1 up] 7 [

Imposing the ul}*! as a Dirichlet BC:

h 2 2 n+1 2 n 1 n+1 n
(E§+E>u1 =h—Eu1 +E(u2 +u2)

It can be written as:
Alu;l-l—l = F1 + Cl‘u{l + _Blu;l-l—l
Now ¢™** can be computed:
h /1 1 1 1 h
= (G )+ BT ) — 2 (8 —up) -5

So with this, the Dirichlet-to-Neumann operator has been computed: given u;‘“, u{‘“ is computed
and then ¢"*1,



4.4. Obtain the algebraic form of the Neumann-to-Dirichlet operator for the right subdomain,
departing from given values of u} and an interface value for the fluxes ¢"*! = kd, u"*! at

the coordinate of node 2.

The system of equations is:

M
(SZ-FI()uZ+1

The matrices are:

1/3
M=h-[1/6
0

f

1/2
__h.[ 1
1

n+1

Here, u} ™! can be computed. uj ™ is:

n+1

The system can be written as:

n+1
Azu;

=f — Kuy
1/6 0
2/3 1/6]
1/6 2/3
-1 0
2 -1
-1 2
__¢n+1
% ]
0
u3+1
n+1
u2+1

= FZ + Czu? - Bzu?-l—l

4.5. Write down the iterative algorithm for a staggered approach applying Dirichlet boundary
conditions at the interface to the left subdomain and Neumann boundary conditions at the

interface for the right subdomain.

In a staggered approach, instead of solving the monolithic system as one global linear system, two
local problems are solved using some approximation. The system to solve is:

Aquitt = F + Cuf + Bzt
Aultt = F, + Coul — Balt?!
In a 1°t order approximation:
@ = uf
In a 2" order approximation:
Mt = 2yt — 1t

l L

4

4.6. Do the same for a substitution and an iteration by subdomains scheme.

The substitution scheme is equal of the staggered approach but instead of solving the two problems

independently, first it is solved for u{‘“, then
computed value.

Uy

~n+1

is not approximation but taken as the already



The iteration by subdomains scheme is similar to the subdomains scheme but before advancing into

the new time step, the approximation is actualized with the computed one until convergence is
achieved:

n+1,i _n+1i-1
At = B4 Cult + Byt

n+1,i ~n+1,i
Ayu, = F, + Couf — B,

4.7. Rewrite the algebraic system associated to the left subdomain (Dirichlet boundary
conditions at the interface) using Nitche’s method for applying the boundary conditions.

How does the condition number of the resulting system of equations vary with the penalty
parameter a?

The system to solve is still the same with the contribution of the Nitche’s method:

M
(5 +K+N> M= f+ fy— Ku}l

The system however, include the u, degree of freedom as the Dirichlet BC is imposed weakly:

Ug
Uup = Uq
Uz

The matrices are:

1/3 1/6 0
M= h-[1/6 2/3 1/6]
0 1/6 1/3
1 [1 -1 0]
K=--[-1 2 -1
hlo
1/2
th
1/2

Now, the terms corresponding to the Nitche’s method are added in the left hand side the following
terms are added:

k
az(vh,uh)r —k<n- Vvh,uh >r

This result in the additional contribution that has to be summed:

k_ koo
N h l
0

N=| 0 o
. . k kJ
“nn

0

0



The a must be chosen large enough to ensure stability of the system. For engineering problems a =
o(10° + 10%). However, the larger « is the greater is the condition number of the resulting matrix.
For this reason, in most of cases the matrix is ill-conditioned

5. Operator splitting techniques

Consider the one dimensional, transient, convection-diffusion equation:

ou  9%u ou _

E"‘W“‘x&:f in[0,1]
u(x=0,t)=0
u(x=1t)=0
ulx,t=0)=0

Withk =1,a,=1,f =1
5.1. Discretize it in space using finite elements (3 elements) and in time (finite differences,

BDF1). Solve the first step of the problem, writing the solution as a function of the time
step size 4t.

The space discretization is:

1 1
j v(0;u — kAu + a,,Vu) dx = f vf dx
0 0

Integrating by parts:

1

1
f —vKkAu dx = f VokVu dx — [veVul}
0 0

The discretized weak form is (the boundary integral vanishes as all BC are of Dirichlet type and no
contributions are added to the vector force because the value of imposed values are 0).

1 1 1 1
f vy 0cuy dx +f Vv, kVuy, dx +f Vpay - Vuy, dx = f vf dx
0 0 0 0

The algebraic form is:
Matuh + Kuh + Cuh =F

The BDF1 discretization is ;1,11 = (Up41 — Uy,)/8t. Resulting in
M
E(uZ-H _ uz) + Kuﬁ“ + Cuﬁ“ — Fn+1

The matrices are obtained as:

1
Mij = f Nl]V] dx
0

2/3 1/6

M=h- [1/6 2/3

1
Kij = f VNLVIV] dx
0



The resulting system is:

(55 e s

SN e B A ) [ BT R

|

C.: =

9]

C =

F;

6 +2/(95t)
—5/2 4+ 1/(185t)

1
f N;VN; dx
0

2 0]
1

Ni dx

=[1]

o

F

—7/2 + 1/(1865¢%)
6 + 2/(96¢t)

The solution of the system is computed explicitly as:

uj

u;

10

|

WEH

_ 1 [ 6+2/(95t)  7/2—1/(186¢)
=T 5 . 8 _109(5/2—1/(185t) 6+ 2/(95¢t)
8oz V35t T 2

19 1

ul] _ 1 2 "ot

1 5 8 109 17 1

u; 2 4+ ° Y7
Tosscz T35t |5 tes

[2/3 1/6
36t 11/6 2/3

|2

5.2. Solve the same time step by using a first order operator splitting technique.

We will use a continuous splitting:

Where

ou

Jat

Lpu = —kAu

ou

Lcu=ax-a

+ Lpu+ Lou = f in[0,1]

First, given u™, only the convection operator will be applied to obtain u?“:

Then, given u

n+1

auc

dt

+LCuC =0

[fol =13

¢ the solution of the next time step is computed by using the convection operator:

Jt

Discretizing the convection operator:

ou
_+LDu =

f



M M M
n+l _ .n n+l _ n+l _ n
5 (ug*' —u™) + Cug 0 - (—6t+C>uC i

Asu’ =0,ul =0
Now the diffusion term is added:

M

_(un+1 _u2+1) +Kun+1 — Fn+1 N M-I—K un+1 — Fn+1 _l_MurCHl
ot

ot ot

Substituting the previously computed values:

1 _
(ﬁ' [32 ;jg 3 [—21 21])”1 = [ﬂ
2/(96t) +6 1/(186t)—3] , (1
[1/(1861:) -3 2/(96t)+6 ] B [1]

Solving the system:

- 1 6+2/(986t) 3-1/(1880)]11
“ _L+i+27[3—1/(185t) 6+2/(95t)“1]
1086¢2 " &t

e 1 [9 +1/(661)
=" 5 3 9+ 1/(661)
Togsez Tar t27

5.3. Evaluate the error of the splitting approach with respect to the monolithic approach. Plot
splitting error vs. time step size for 6t = 1,6 = 0.5, = 0.25. Comment on the results.

The solution of the monolithic scheme is:

19
um] 1 - +1/(651)
uml 5 8 . 109

7
10852 T 38t T4 |5 +1/(660)

The solution of the splitting scheme is:

[uS} B 1 9+ 1/(66t)]
wll 5 3 9+ 1/(66t)
* Toseez vt

The values for the different values of 6t have been substituted. To plot the error, it has computed
the error of the first component u}:



0.2 0.3 0.4 05 0.6 0.7 0.8 09 1
ot

Figure 1: Convergence plot for splitting scheme

It is seen that convergence is ensured.

6. Transmission conditions

Consider the fractional step approach for the incompressible Navier-Stokes equations
(Yosida scheme):

M% gntt — Un) + KOn+l = f — gpnrtt

DM—lGPn+1 — %Dﬁn-’-l _ DM—lGﬁn+1

1 _ . -
ME(Un-Fl _ Un+1) + aK(U”‘” _ Un+1) + G(Pn+1 _ pn+1) =0

6.1. Which is the optimal value for the a parameter?

To guess the optimal value for « in terms of accuracy, the 1%t and 3™ equations are summed and it is
obtained:

1 ~ ~
Ma(UrHl _ Un) + K(aU”“ + (1 _ (X)Un+1) + 0’(Un+1 _ Un+1) + G(Pn+1) — f
Here it is seen that if & = 1 the original momentum equation is obtained with errors of order
o(U™?t — U™*1) as the convection term is non-linear

6.2. What is the source of error of the scheme?
It has been already seen that the first source of error is that the convection term is nonlinear.

However, the largest source of error is in the imposition of the incompressibility condition. The Yosida
method calculates first U™+ as a velocity only satisfying the momentum equation. Then, to enforce
incompressibility, at 2" equation it is computed an estimation of the gradient of the pressure needed
to ensure that continuity is ensured (P”'*1 - 13”“). And with the 3™ equation this is added as some

type of “penalty” and U™ is computed as a correction of U™*! with a better approximation of the
continuity condition.

7. ALE formulations
7.1. Given the spatial description of a property
v(x,y,2,t) = [2x, yet, z]
The equations of movement:
x = Xet
y=Y+et -1



z=17
And the equations of the movement of the mesh:
Xm = Xm + at
Ym = Ym — Bt
Zm = Zm
a) Obtain the description of the property in terms of the ALE coordinates (X,,,, Y;,,, Z,,,).

VALE(va Ym: Zm: t) = [Z(Xm + at)' (Ym - ﬁt)etvzm]

b) Compute the velocity of the particles and the mesh velocity.

The velocity of the particles in term of the material coordinates is:

X, t) _ 00Xy _ Xeft
Wit =T eO

To obtain it in terms of spatial coordinates only the transformation ®~1 is needed:
X
vp(x, 1) = [et]
0
The velocity of the mesh is independent of material or spatial coordinates and only depends on time:
a
Vmesn(t) = [_()ﬁ]

c) Compute the ALE description of the material temporal derivative of y.
First, the gradient of y is computed:
2 0 0
Vy =10 et 0
0 0 1

Now the derivative of Y, is computed:

OVaLE _ E‘;
ot 0

The relative velocity v — v,,, must be computed in terms of X,,,, Y, Z,,, for that the inverse of the
equations of movement are used:

xe t—a Xm +a(t—1)
v — Um = et + B = et +ﬂ ]
0 0
Finally, the ALE material derivative is computed:
2a 2 0 0l1[Xpt+a(t—1) 2Xp + 2at
d d m m
0 0 0 1 0 0



7.2. Write down the ALE form of the incompressible Navier-Stokes equations. Where (in time
and space) is each of the terms of the equation evaluated? How are temporal derivatives
computed?

The Navier-Stokes for incompressible flow are:

Du
pﬁ = uV?u(x,t) — Vp(x,t) + pb(x,t)

V-ulx,t) =0

The incompressibility condition remains unchanged. In the momentum balance equation, the material
derivative is replaced by its ALE description:

P Ouy g (X, t)

™ + (v —v,,) - Vu(x, t) = uV2u(x,t) — Vp(x,t) + pb(x, t)

Most of the terms are evaluated in the Eulerian frame of reference. The difference is in the velocity of
the temporal derivative. This u,; 5 is evaluated always at the same nodes even if they are displaced.
This is used in order to discretize the temporal derivatives using a finite difference method.

7.3. Do abibliographical research on existing methods for the definition of the mesh movement
in ALE formulations (Poisson problem, Elasticity problem, etc.). Describe the main
advantages of each of these methods.

The boundaries of the meshes using ALE formulations must be able to be defined in some parts within
a Eulerian reference system and within a Lagrangian one in other regions. They must also ensure that
the mesh is not highly distorted.

The problem can be stated as: Given the displacement of the mesh in the boundary, find a map that
fulfils this boundary condition (of Dirichlet type) and does not distort the mesh too much. Several
techniques can be used:

— Laplacian mesh
In this method it is enforced that each component of the displacement is harmonic:
Vid; fori=1,..,n4
The problem is that for large displacements of the boundary this can result in self-intersection.
— Elasticity problem

Another approach with a physical base is to suppose that the domain behaves as an elastic body. Given
the displacements on the boundary, the interior displacements are solved as part of a linear elasticity
problem. This method ensures better results than the Laplacian but the computational cost is higher
as the displacements in different directions are now coupled. However, for large displacements this
method is not good as it is well known that applying infinitesimal strain theory to large deformations
can result in self-intersection.

- Transfinite mapping method

This method was designed as mesh generator. It consists in mapping a reference domain into the
actual domain. It can be applied at each time step and the topology will remain the same. In fact, any
mesh generator that consists in a mapping from a reference domain can be used.



- Mesh-smoothing

In ALE algorithms it is possible to use any mesh-smoothing algorithm if they conserve the topology.
This ensures a reduction of the deformation of the shape of the mesh.

References:

[1] Arbitrary Lagrangian-Eulerian Methods. ). Donea, A. Huerta, J.-Ph. Ponthot and A. Rodriguez-
Ferran

8. Fluid-Structure Interaction
8.1. Describe the added mass effect problem for fluid structure interaction problems. When
does it appear, what kind of problems suffer from it? What are the main methods for
dealing with it?

The added mass is a phenomenon that appears when the fluid and solid density are similar. If this
happens convergence of classical partitioned schemes. To fix this problem, methods that use
relaxation offer good results.

A widely used method is the Aitken relaxation scheme. This method uses an adaptive factor of
relaxation for a faster convergence.

8.2. Consider the iteration by subdomain scheme for the heat transfer problem described in
problem 1. Apply 2 iterations of the AITKEN relaxation scheme to it.

The problem to solve is:

ou  9%u ]

E—Kﬁ=f in [0,1]
u(x=0,t) =0
u(x=1t)=0
ulx,t=0)=0

In problem 1 of section 4 we showed that the discretization of the problem (using BDF1) is:

(iM + K)u"+1 = f+iMu”
ot ot

The first domain is solved using Neumann BC at the interface:

1 . 1
(aMl + K1>u;l+1' = fl +§M1u?

Where f takes the contribution of the Neumann BC:

n+1,k
ou,

ox

n+1,k—-1
ou,

™ = —T(F)

The Dirichlet problem is:

1 1
(EM2 + K2> whit = f, + s Mas



The condition on I is:
u;l+1,k(l-) = w u;l+1,k(l-) + (1 _ (l))u*;+1’k_1(r)
Where the relaxation factor is defined as:

u;l+1,k—2(1-) _ u;l+1,k—1(r-)

w =
u;l+1,k—2(l—w) _ u‘)21+1,k—1(1—w) + u*‘;l+1,k(l—v) _ u*‘;l+1,k—1(l—w)

It is seen that in the two first iterations this formula is no valid and a fixed value of w must be chosen.
For that reason, the two first iterations of the Aitken scheme are the same as a classical partitioned
scheme.

8.3. Consider the monolithic (1 domain), transient (BDF1), finite element (linear elements h =
1/4) approximation of the heat transfer equation in problem 1. Enforce Dirichlet boundary
conditions in x = 0 and x = 1 by using Lagrange multipliers. What is the form of the
discrete system? What is the condition number of the resulting matrix?

The elemental stiffness and mass matrices are:

1 _
Kezﬁ[—11 11]
. .[1/3 1/6
M _'h[1§6 1?3

After the assembly the global matrices are obtained:

2100 0
1[14100]
M=—|o 1 4 1 0
24[00141]
000 1 2

The Lagrange multipliers are defined only at the boundaries:
i (0) =11, (1) =0
#2(0) =0,u5(1) =1
The resulting system is:

Lu=»>

I

0

N P

3t

w

L

lu
L0000
000 0 1,
|

I

4

The discretized system is:



o e

1
f+—=Mu"
L oll 2 ot

b

Where:

1
A= aM +K
Assuming 6t = 1, the condition number of the resulting system is of 38.32. The condition number is
so large because of the presence of the Lagrange multipliers. Although the equations of L are exactly
the same as applying the Dirichlet BCs by row and column elimination, as they are dimensionless, the
condition number can be very large. The condition number of the matrix resulting from rows and
columns elimination is of 5.36.

8.4. Consider the monolithic (1 domain), transient (BDF1), finite element (linear elements, h =
1/4) approximation of the heat equation in problem 1. Suppose that a level set function
( =0 at x = 0.4) divides the domain into a high thermal conductivity (x = 100)
subdomain (x € [0,0.4]) and a low thermal conductivity (x = 1) subdomain (x € (0.4,1]).
Build the system matrix for this problem. Take into account the need for subintegrating the
element cut by the level set function.

The elemental mass matrices remain unchanged. The elemental stiffness matrices for the 1%,3 and
4™ elements are:

Kri1 -1
e _ _
Kk h [—1 1 ]
Where k is constant along the element.
On the 2" element:
1
Ke = j Z[VNfKVNf VNfKVNze] do
~ J1 |lUNEKVNE  VNEKVNS
4

0.4 e e e e 0.5 e e e e
Ny VN Ny VN NS VN N7 VN.
=-[ VN{VN;y VNV 2]dx+f 100.[V TVN;y VNV Z]d
0 0

s LUNSVNE  VNSVNS 4 UNEVNE  VNEVNE

4.4 4. (—4)

B 4-4 4-(—4)
= 100 [(—4) 4 (=4)- (-4)

(-4 (8- (=)

K¢ = 241.6[ 11 _11]

] -(0.4—0.25) + [ ] - (0.5—0.4)

The assembly of K leads to:

400 —400 0 0 0
[—400 6416 —2416 0 0 l
K=| 0 —2416 2456 -4 0
[ 0 0 4 8 —4J

0 0 0 -4 4



