
Universitat Politècnica de Catalunya
Numerical Methods in Engineering

Coupled Problems

Coupled Problems Deliverable

Eduard Gómez Escandell
June 16, 2020

Eduard Gómez Escandell June 16, 2020

Contents

1 Transmission Conditions 2
1.1 Euler-Bernoulli beam theory . 2
1.2 The Maxwell problem . 5
1.3 The Navier equations . 8

2 Domain Decomposition Methods 11
2.1 Schwartz method . 11
2.2 Dirichlet-Neumann Coupling . 13
2.3 Poisson equation . 15

3 Coupling of Heterogeneous Problems 18
3.1 Plane stress . 18
3.2 Dirichlet to Neumann operators . 20

4 Monolithic and Partitioned Schemes in Time 23
4.1 FEM discretization . 23
4.2 Domain decomposition . 24
4.3 Dirichlet-to-Neumann operator . 25
4.4 Neumann-to-Dirichlet operator . 25
4.5 Staggered iteration scheme . 26
4.6 Substitution and iteration by subdomain . 27
4.7 Nitsche method for boundary conditons . 27

5 Operator Splitting Techniques 29
5.1 FEM discretization . 29
5.2 Operator splitting technique . 30
5.3 Splitting error . 32

6 Fractional Step Methods 33
6.1 Optimal alpha . 33
6.2 Error . 33

7 ALE Formulations 34
7.1 Introduction . 34
7.2 Navier-Stokes . 36
7.3 Bibliographical search . 36

8 Fluid-Structure Interaction 38
8.1 Added mass effect . 38
8.2 Aitken relaxation scheme . 38
8.3 Lagrange multipliers . 40
8.4 Split elements . 42

A Appendix 44
A.1 Code for Operator splitting . 44
A.2 Code for Aitken relaxation scheme comparisson . 46
A.3 Code for Lagrange multipliers conditioning analysis . 51
A.4 Code for elements with heterogeneous physical properties . 53

Coupled Problems 1 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

1 Transmission Conditions

1.1 Euler-Bernoulli beam theory

The deflection v(x) of an Euler-Bemouilli beam is governed by the differential equation

EI
d4v

dx4
= f

where EI is a mechanical property of the beam section and the beam material and f is the distributed load.
Assuming for example that the beam is clamped at x = 0 and x = L, the Principle of Virtual Work (PTV) states
that the solution v(x) satisfies

EI

∫ L

0

d2δv

dx2

d2v

dx2
=

∫ L

0

δvf (1)

for all δv such that δv(0) = δv(L) = 0, dδv
dx (0) = dδv

dx (L) = 0.

Part A

Postulate the space of functions where both v and δv must belong. Justify the answer.

We need the following integral to be well-defined:∫ L

0

d2δv

dx2

d2v

dx2
dx (2)

This can be rewritten as: ∫ L

0

d

dx

(
dδv

dx

)
d

dx

(
dv

dx

)
dx (3)

The space that fulfills this requirement is:

dδv

dx
,
dv

dx
∈ L2(Ω) (4)

The space that contains all functions whose first derivative is L2(Ω) is H1(Ω). Hence:

δv, v ∈ H1(Ω) (5)

Part B

If [0, L] = [0, P] ∪ (P,L], obtain the transmission conditions at P implied by regularity requirements.

The first regularity condition dictates:
JuK = 0 (6)

This means:
lim
ε→0

(
u(P + ε)− u(P − ε)

)
= 0 (7)

We also have to fulfill the second regularity conditions of the first derivative:

J
du

dx
K = 0 (8)

Which implies

lim
ε→0

(du
dx

(P + ε)− du

dx
(P − ε)

)
= 0 (9)

Both of the condition need be fulfilled for u, du
dx to be square integrable, and therefore be in the spaces

expalained in the previous exercise.

Coupled Problems 2 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Part C

Obtain the transmission conditions at P that follow by imposing in the PTV that the integral is additive.

We’ll start with the strong form of the problem:

EI
d4v

dx4
= f (10)

Therefore: ∫ L

0

EI
d4v

dx4
δv dx =

∫
Ω

fδv dx (11)

Integration by parts twice yields:

EI

[
δv

d3v

dx3
− dδv

ddx

d2v

ddx

]L
0

+ EI

∫ L

0

d2δv

ddx2

d2v

ddx2
dx =

∫ L

0

fδv dx (12)

Let’s now split the domain at point P. We obtain the following set of equations:

EI
[
δv d3v

dx3 − dδv
ddx

d2v
ddx

]PL

0
+ EI

∫ PL

0
d2δv
ddx2

d2v
ddx2 dx =

∫ PL

0
fδv dx in Ω1 : [0, PL)

EI
[
δv d3v

dx3 − dδv
ddx

d2v
ddx

]L
PR

+ EI
∫ L
PR

d2δv
ddx2

d2v
ddx2 dx =

∫ L
PR
fδv dx in Ω2 : [PR, L]

 (13)

Notice that we distinguish PL and PR from P . They simply refer to approaching form the left or from the right.
We’ll now impose the additivity.

EI

[
δv

d3v

dx3
− dδv

ddx

d2v

ddx

]PL

0

+ EI

∫ PL

0

d2δv

ddx2

d2v

ddx2
dx+ EI

[
δv

d3v

dx3
− dδv

ddx

d2v

ddx

]L
PR

+ EI

∫ L

PR

d2δv

ddx2

d2v

ddx2
dx

=

∫ PL

0

fδv dx+

∫ L

PR

fδv dx

This result must be equal to that in 12. Let’s start by combining the integrals:

EI

[
δv

d3v

dx3
− dδv

ddx

d2v

ddx

]PL

0

+ EI

[
δv

d3v

dx3
− dδv

ddx

d2v

ddx

]L
PR

+ EI

∫ L

0

d2δv

ddx2

d2v

ddx2
dx =

∫ L

0

fδv dx (14)

Let’s also expand the brackets and rearrange them:

EI δv
d3v

dx3

∣∣∣∣PL

0

+EI δv
d3v

dx3

∣∣∣∣L
PR

−EI dδv

ddx

d2v

ddx

∣∣∣∣PL

0

−EI dδv

ddx

d2v

ddx

∣∣∣∣L
PR

+EI

∫ L

0

d2δv

ddx2

d2v

ddx2
dx =

∫ L

0

fδv dx (15)

For additivity to be fulfilled the first two terms must follow:

EI δv
d3v

dx3

∣∣∣∣PL

0

− EI δv d3v

dx3

∣∣∣∣L
PR

= EI
dδv

ddx

d2v

ddx

∣∣∣∣L
0

(16)

For this to be true the following relationship must hold:

d3v

dx3

∣∣∣∣
PR

=
d3v

dx3

∣∣∣∣
PL

(17)

Coupled Problems 3 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

This can be stated as the continuity of shear force or Jd
3u
dx3 K = 0 Referring back to equation 16 and taking the

second pair of terms we reach a similar conclusion:

EI
dδv

ddx

d2v

ddx

∣∣∣∣PL

0

− EI dδv

ddx

d2v

ddx

∣∣∣∣L
PR

= EI
dδv

ddx

d2v

ddx

∣∣∣∣L
0

(18)

For this to be true the following relationship must hold:

EI
d2v

ddx

∣∣∣∣
PL

= EI
d2v

ddx

∣∣∣∣
PR

(19)

This can be stated as the continuity of bending moment or Jd
3u
dx2 K = 0.

Coupled Problems 4 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

1.2 The Maxwell problem

The Maxwell problem consists in finding a vector field u : Ω −→ R3 such that

ν∇×∇× u = f in Ω

∇ · u = 0 in Ω

n× u = 0 on ∂Ω

where ν > 0, f is a divergence free force field and n the unit external normal. Equation ∇ · u = 0 is in fact
redundant.

Part A

Write a variational statement of the problem. Postulate the space of functions where u must belong. Justify the
answer.

We’ll start by multiplying the first equation by a test function www : R3 7→ R3:∫
Ω

www · ν∇×∇× uuu =

∫
Ω

fff ·www (20)

Let’s explore the first term with the help of index notation:

[www · ∇ ×∇× uuu] = wiεijk∂j(∇× uuu)k

= εijk∂j [wi(∇× uuu)k]− εijk(∂jwi)(∇× uuu)k

= −∂jεjikwi(∇× uuu)k + (∇× uuu)kεkij∂jwi

= −∇ · (www ×∇× uuu) + (∇× uuu) · (∇× uuu)

Plugging this back into equation 20 results in:∫
Ω

(∇×www) · (ν∇× uuu)−
∫

Ω

∇ · (www × ν∇× uuu) =

∫
Ω

fff ·www (21)

Applying the divergence theorem results in:∫
Ω

(∇×www) · (ν∇× uuu)−
∫
∂Ω

(www × ν∇× uuu) ·nnn =

∫
Ω

fff ·www (22)

We will now apply the following relationship:

aaa · (bbb× ccc) = bbb · (ccc× aaa) (23)

Doing so results in ∫
Ω

(∇×www) · (ν∇× uuu)−
∫
∂Ω

www · (ν∇× uuu×nnn) =

∫
Ω

fff ·www (24)

Our boundary condition was that uuu×nnn = 0 on the border, hence the term is zero.∫
Ω

(∇×www) · (ν∇× uuu) =

∫
Ω

fff ·www (25)

We see how the first term is the L2 inner product 〈∇×www,∇×uuu〉L2 . These two terms must belong to L2(Ω) for
their inner product to be well-defined. The space of functions whose curl is in L2(Ω) is:

uuu,www ∈ H(curl,Ω) (26)

Coupled Problems 5 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Part B

If Γ is a surface that intersects Ω, obtain the transmission conditions across ∂Ω implied by regularity require-
ments. The regularity condition for an element of H(curl,Ω) is∫

Ω

(∇× uuu)2 <∞ (27)

Let’s make an approximation around a postulated discontinuity on xxx0 ∈ Γ, and nnn1,nnn2 being the unitary normal
vectors pointing away from Ω1 and Ω2 respectively. Note that nnn1 = −nnn2.

∇× uuuε =

 ∇× uuu xxx ∈ Ω1
1
2ε

[
∇× uuu(xxx0 −nnn1ε)−∇× uuu(xxx0 −nnn2ε)

]
ε > 0

∇× uuu xxx ∈ Ω2

(28)

This replaces ∇× uuu in the neighbourhood of the border by a linear interpolation from xxx0 −nnn1ε to xxx0 −nnn2ε.
Hence, the L2 norm is:∫

Ω

(∇× uuuε)2 =

∫
Ω1

(∇× uuu)2 +

∫ xxx0−nnn2ε

xxx0−nnn1ε

[
∇× uuu(xxx0 −nnn1ε)−∇× uuu(xxx0 −nnn2ε)

2ε

]2

+

∫
Ω2

(∇× uuu)2

=

∫
Ω1

(∇× uuu)2 +

[
∇× uuu(xxx0 −nnn1ε)−∇× uuu(xxx0 −nnn2ε)

2ε

]2

+

∫
Ω2

(∇× uuu)2

Now we can approach the L2 norm of∇× uuu by taking the limit:∫
Ω

(∇× uuu)2 = lim
ε→0

∫
Ω

(∇× uuuε)2

= lim
ε→0

(∫
Ω1

(∇× uuu)2 + 2ε

[
∇× uuu(xxx0 −nnn1ε)−∇× uuu(xxx0 −nnn2ε)

2ε

]2

+

∫
Ω2

(∇× uuu)2

)

=

∫
Ω

(∇× uuu)2 + lim
ε→0

(
2ε

[
∇× uuu(xxx0 −nnn1ε)−∇× uuu(xxx0 −nnn2ε)

2ε

]2
)

We see now that the only way for them to be equal id for the top part of the fraction within the limit to be
zero, and therefore:

∇× uuu(xxx0 −nnn1ε) = ∇× uuu(xxx0 −nnn2ε) for ε→ 0 (29)

In other words, the curl must be continuous across the border. Otherwise its L2 norm could grow ad infinitum
as more borders are added, hence breaking expression 27. This condition can be formally expressed as strong
condition:

J∇× uuuK = 0 (30)

Part C

Obtain the transmission conditions across Γ that follow by imposing in the variational form of the problem that
the integral is additive.

We’ll start by splitting equation 24 into two domains. We’ll use Γi to refer to the border when approached
from subdomain i. As stated previously, the border integral vanishes for all external borders, but there’s no
reason to believe the same is true for internal borders, so the term stays.∫

Ω1
(∇×www) · (ν∇× uuu)−

∫
Γ1
www · (ν∇× uuu×nnn1) =

∫
Ω1
fff ·www in Ω1∫

Ω2
(∇×www) · (ν∇× uuu)−

∫
Γ2
www · (ν∇× uuu×nnn2) =

∫
Ω2
fff ·www in Ω2

 (31)

Coupled Problems 6 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

If we add up these two equations and subtract the weak form we reach:

−
∫

Γ1

www · (ν∇× uuu×nnn1)−
∫

Γ2

www · (ν∇× uuu×nnn2) = 0

Since Γ1 = Γ2: ∫
Γ1

[
www · (ν∇× uuu×nnn1) +www · (ν∇× uuu×nnn2)

]
= 0

This can be stated as a weak transmission condition:

Jν∇× uuu×nnn1K = 0 (32)

Coupled Problems 7 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

1.3 The Navier equations

The Navier equations for an elastic material can be written in three different ways:

−2µ∇ · (εεε(u))− λ∇(∇ · u) = ρb

−µ∆u− (λ+ µ)∇(∇ · u) = ρb

µ∇× (∇× u)− (λ+ 2µ)∇(∇ · u) = ρb

where u is the displacement field, ε(u) the symmetric part of ∇u, λ and µ the Lamé coefficients, ρ the density
of the material and b the body forces. Let us assume that u = 0 on ∂Ω

Part A

Write down the variational form of the previous equations in the appropriate functional spaces.

Let’s start off working on the first equation. We’ll use vector test functions www:

−
∫

Ω

2µ(∇ · ∇suuu) ·www −
∫

Ω

λwww · ∇∇∇(∇ · uuu) =

∫
Ω

ρwww · bbb

We can integrate by parts on both terms of the left hand side and apply the divergence theorem as per usual to
obtain: ∫

Ω

2µ∇www : ∇suuu+

∫
Ω

λ(∇ ·www)(∇ · uuu)−
∫
∂Ω

2µwww(∇suuu)nnn−
∫
∂Ω

λwww · (∇ · uuu)nnn =

∫
Ω

ρwww · bbb (33)

Since all boundaries have Dirichlet boundary conditions with value 0 we can use a funcion space with compact
support for www, meaning www

∣∣
∂Ω

= 0. This makes two terms vanish to result in the variational form of the first
equation: ∫

Ω

2µ∇www : ∇suuu+

∫
Ω

λ(∇ ·www)(∇ · uuu) =

∫
Ω

ρwww · bbb (34)

Moving on to the second equation:

−
∫

Ω

www · µ(∇ · ∇uuu)−
∫

Ω

www · (λ+ µ(∇(∇ · uuu) =

∫
Ω

ρwww · bbb

Repeating the same process as before:∫
Ω

µ∇www : ∇uuu+

∫
Ω

(λ+ µ)(∇ ·www)(∇ · uuu)−
∫
∂Ω

www · µ(∇uuu)nnn−
∫
∂Ω

www · (λ+ µ)(∇ · uuu)nnn =

∫
Ω

ρwww · bbb (35)

Considering the compact support results in the variational form of the second equation:∫
Ω

µ∇www : ∇uuu+

∫
Ω

(λ+ µ)(∇ ·www)(∇ · uuu) =

∫
Ω

ρwww · bbb (36)

The third equation is simple since we can solve it via analogy. Notice how the first term is identical to the first
of the Maxwell equations. The second term is identical to the second term of the second Navier equation, save
for a small change in the constant. The term on the right hand side is the same as the previous two equations
as well. We can immediately resolve that the variational form is:∫

Ω

(∇×www)·(µ∇×uuu)+

∫
Ω

(λ+2µ)(∇·www)(∇·uuu)−
∫
∂Ω

www ·(µ∇×uuu×nnn)−
∫
∂Ω

www ·(λ+2µ)(∇·uuu)nnn =

∫
Ω

ρwww ·bbb (37)

Coupled Problems 8 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Once again considering the compact support results in the variational form of the third equation:∫
Ω

(∇×www) · (µ∇× uuu) +

∫
Ω

(λ+ 2µ)(∇ ·www)(∇ · uuu) =

∫
Ω

ρwww · bbb (38)

Then, the system all put together looks like:∫
Ω

2µ∇www : ∇suuu+

∫
Ω

λ(∇ ·www)(∇ · uuu) =

∫
Ω

ρwww · bbb (39)∫
Ω

µ∇www : ∇uuu+

∫
Ω

(λ+ µ)(∇ ·www)(∇ · uuu) =

∫
Ω

ρwww · bbb (40)∫
Ω

(∇×www) · (µ∇× uuu) +

∫
Ω

(λ+ 2µ)(∇ ·www)(∇ · uuu) =

∫
Ω

ρwww · bbb (41)

The functional spaces can be deduced from these. We see that the L2 inner products must be defined on the
curl, divergence and gradient. We also know we have a compact support. We can therefore conclude that:

uuu,www ∈ H1
0(curl,Ω) ∩H1

0(div,Ω) ∩H1
0(Ω) (42)

Part B

If Γ is a surface that intersects Ω, obtain the transmission conditions across Γ that follow by imposing in the
variational form of the problem that the integral is additive. We’ll have to use equations 33, 35 and 37 but all
the surface integrals vanish on the external border. The system is:∫

Ω1

2µ∇www : ∇suuu+

∫
Ω1

(∇ ·www)(∇ · uuu)−
∫

Γ1

2µwww(∇suuu)nnn1 −
∫

Γ1

λwww · (∇ · uuu)nnn1

+

∫
Ω2

2µ∇www : ∇suuu+

∫
Ω2

(∇ ·www)(∇ · uuu)−
∫

Γ2

2µwww(∇suuu)nnn2 −
∫

Γ2

λwww · (∇ · uuu)nnn2

=

∫
Ω1

ρwww · bbb+

∫
Ω2

ρwww · bbb

∫
Ω1

µ∇www : ∇uuu+

∫
Ω1

(λ+ µ)(∇ ·www)(∇ · uuu)−
∫

Γ1

www · µ(∇uuu)nnn1 −
∫

Γ1

www · (λ+ µ)(∇ · uuu)nnn1

+

∫
Ω2

µ∇www : ∇uuu+

∫
Ω2

(λ+ µ)(∇ ·www)(∇ · uuu)−
∫

Γ2

www · µ(∇uuu)nnn2 −
∫

Γ2

www · (λ+ µ)(∇ · uuu)nnn2

=

∫
Ω1

ρwww · bbb+

∫
Ω2

ρwww · bbb

∫
Ω1

(∇×www) · (µ∇× uuu) +

∫
Ω1

(λ+ 2µ)(∇ ·www)(∇ · uuu)−
∫

Γ1

www · (µ∇× uuu×nnn1)−
∫

Γ1

www · (λ+ 2µ)(∇ · uuu)nnn1

+

∫
Ω2

(∇×www) · (µ∇× uuu) +

∫
Ω2

(λ+ 2µ)(∇ ·www)(∇ · uuu)−
∫

Γ2

www · (µ∇× uuu×nnn2)−
∫

Γ2

www · (λ+ 2µ)(∇ · uuu)nnn2

=

∫
Ω1

ρwww · bbb+

∫
Ω2

ρwww · bbb

Coupled Problems 9 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

By taking these expressions and subtracting the weak forms we obtain:

−
∫

Γ1

2µwww(∇suuu)nnn1 −
∫

Γ1

λwww · (∇ · uuu)nnn1 −
∫

Γ2

2µwww(∇suuu)nnn2 −
∫

Γ2

λwww · (∇ · uuu)nnn2 = 0

−
∫

Γ1

www · µ(∇uuu)nnn1 −
∫

Γ1

www · (λ+ µ)(∇ · uuu)nnn1 −
∫

Γ2

www · µ(∇uuu)nnn2 −
∫

Γ2

www · (λ+ µ)(∇ · uuu)nnn2 = 0

−
∫

Γ1

www · (µ∇× uuu×nnn1)−
∫

Γ1

www · (λ+ 2µ)(∇ · uuu)nnn1 −
∫

Γ2

www · (µ∇× uuu×nnn2)−
∫

Γ2

www · (λ+ 2µ)(∇ · uuu)nnn2 = 0

Therefore the conditions are:

Jµ(∇suuu)nnnK = 0

Jλ(∇ · uuu)nnnK = 0

Jµ(∇uuu)nnnK = 0

J(λ+ µ)(∇ · uuu)nnnK = 0

Jµ∇× uuu×nnnK = 0

J(λ+ 2µ)(∇ · uuu)nnnK = 0

These can be reduced in the cases where µ, λ are continuous, and considering that a continuity of ∇uuu implies
a continuity on ∇suuu, the reduced version becomes:

J(∇ · uuu)nnnK = 0

J(∇uuu)nnnK = 0

J∇× uuu×nnnK = 0

Coupled Problems 10 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

2 Domain Decomposition Methods

2.1 Schwartz method

Consider Problem 1 of Section 1. Let [0, L] = [0, L1] ∪ [L2, L] , with L2 < L1

Part A

Write down an iteration-by-subdomain scheme based on a Schwarz additive domain decomposition method.

We will start by declaring a differential operator:

L := EI
d4

dx4
(43)

Hence our problem becomes:
Lu = f in Ω
u = 0 on Γ1

u = 0 on Γ2

 (44)

If we split it into two semi-overlapping domains Ω1 and Ω2, with their new interfaces Γ12 and Γ21, we obtain
the following system:

Lu1 = f in Ω1

u1 = 0 on Γ1

u1 = u2 on Γ12

 Lu2 = f in Ω2

u2 = 0 on Γ2

u2 = u1 on Γ21


(45)

We can then iterate by using the previous iteration’s result as interface boundary condition:

Luk1 = f in Ω1

uk1 = 0 on Γ1

uk1 = u
(k−1)
2 on Γ12

 Luk2 = f in Ω2

uk2 = 0 on Γ2

uk2 = ul1 on Γ21


(46)

where l = k − 1 if we plan on using a Jacobi solver or l = k if we choose Gauss-Seidel.

Part B

Obtain the matrix version of the previous scheme once space has been discretized using finite elements.

We can define L as the discretized operator L. We must distinguish nodes within the domains and those lying
on the interfaces. To do so I will use the symbol I for interior nodes, Γ12 for the interface contained within Ω2

and Γ21 for the other interface. The matrix operations to solve are the following:

(
u

(1)
Γ12

)k
=
(
u

(2)
Γ12

)k−1

L
(1)
II

(
u

(1)
I

)k
= f

(1)
I − L

(1)
Γ12I

(
u

(1)
Γ12

)k
(
u

(2)
Γ21

)k
=
(
u

(1)
Γ21

)l
L

(2)
II

(
u

(2)
I

)k
= f

(2)
I − L

(2)
Γ21I

(
u

(2)
Γ21

)k
Coupled Problems 11 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

One missing piece in the above expression is that the values of uΓ have to be initialized before the first step
with a first guess. For the Gauss-Seidel method only the values on Γ12 are needed, but for the Jacobi the initial
guess on Γ21 is needed as well. The other missing piece are the outside boundary conditions, for which any
method such as Lagrange multipliers, penalty method or master-slave elimination will suffice.

Coupled Problems 12 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

2.2 Dirichlet-Neumann Coupling

Consider Problem 2 of Section 1. Let Γ be a surface that intersects Ω

Part A

Write down an iteration-by-subdomain scheme based on the Dirichlet-Neumann coupling.

The system before can be described by:

ν∇×∇× u = f in Ω

∇ · u = 0 in Ω

n× u = 0 on Γ

Hence, we must define the following differential operators:

C = ν∇×∇×
D = ∇·

Then the system can be stated as:
Cuuu = fff in Ω

Duuu = 0 in Ω

nnn× uuu = 0 on Γ

 (47)

We must also add the transmission conditions.

1st condition: Jnnn× uuuK
2nd condition: Jν∇× uuu×nnnK

In a Dirichlet-Neumann scheme, the first subdomain has a weak Neumann transmission condition and the
second one has a strong Dirichlet one.

Cuuuk1 = fff in Ω1

Duuuk1 = 0 in Ω1

nnn× uuuk1 = 0 on Γ1

ν1∇× uuuk1 ×nnn = ν2∇× uuuk−1
2 ×nnn on Γ


Cuuuk2 = fff in Ω2

Duuuk2 = 0 in Ω2

nnn× uuuk2 = 0 on Γ2

nnn× uuuk2 = nnn× uuul1 on Γ

 (48)

where once again we must use l = k − 1 if we prefer a Jacobi solver or l = k if we choose Gauss-Seidel.

Part B

Obtain the expression of the Steklov-Poincaré operator of the problem.

We’ll start off by separating the system using the expression uuui = uuu0
i + ũ̃ũui, where i = 1, 2 and i 6= j = 1, 2:

Cuuu0
i = fff in Ωi

Duuu0
i = 0 in Ωi

nnn× uuu0
i = 0 on Γi

nnn× uuu0
i = 0 on Γij


Cũ̃ũui = 0 in Ωi

Dũ̃ũui = 0 in Ωi

nnn× ũ̃ũui = 0 on Γi

nnn× ũ̃ũui = ϕ on Γij


Coupled Problems 13 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

We also must ensure the weak continuity on Γ:

ν1∇× uuu1 ×nnn = ν2∇× uuu2 ×nnn
ν1∇× uuu0

1 ×nnn− ν2∇× uuu0
2 ×nnn = −ν1∇× ũ̃ũu1 ×nnn+ ν2∇× ũ̃ũu2 ×nnn

We can now define the Steklov-Pointcaré operator:

S :
H1/2(Γ) −→ H−1/2(Γ)

ϕ −→ ν1∇× ũ̃ũu1 ×nnn− ν2∇× ũ̃ũu2 ×nnn
(49)

we will also define:
G = −ν1∇× uuu0

1 ×nnn+ ν2∇× uuu0
2 ×nnn ∈ H−1/2(Γ) (50)

The system then looks like:
Sϕ = G (51)

Part C

Obtain the matrix version of the previous scheme once space has been discretized using finite elements.

First off, we’ll define finite element space discretized operators C := FEM(C), D := FEM(D). Now we can
move towards matrix forms. We can write:

Ax = b[
C DT

D 0

] [
uuu
λ

]
=

[
fff
0

]
We are using Lagrange multipliers to impose the non-divergence condition. From this point on we’ll work
with Ax = b so any other manner of applying this condition is also valid. We’ll use matrix E to enforce the
Neumann boundary condition:

E =

[
0II 0IΓ
ATIΓ ATΓΓ

]
(52)

It can be seen that it’s simply AT with it’s top half removed. This is valid only because A is SPD and done to
make the notation less cumbersome in the next expressions. The system then becomes, in domain 1:

A(1)x(1) = b(1) − E
(
x(2)

)k−1

(53)

Notice the Neumann boundary condition. Domain 2 with its Dirichlet boundary condition will look like:

A
(2)
II

(
x

(2)
I

)k
= b

(2)
I −A

(2)
ΓI

(
x

(1)
Γ

)l
(54)

As before, we must use l = k − 1 if we prefer a Jacobi solver or l = k if we choose Gauss-Seidel.

Coupled Problems 14 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

2.3 Poisson equation

Consider the problem of finding u : Ω −→ R such that

−k∆u = f in Ω

u = 0 on ∂Ω

where k > 0. Let Γ be a surface crossing Ω

Part A

Write down an iteration-by-subdomain scheme based on the Dirichlet-Robin coupling.

We’ll use the differential operator L = −k∇ · ∇ to obtain the expression:

Lu = f in Ω
u = 0 on ∂Ω

}
(55)

Now our problem becomes:

Lu1 = f in Ω1

u1 = 0 on ∂Ω1

Lu2 = f in Ω2

u2 = 0 on ∂Ω2

k1∂nu1 + γ1u1 = k2∂nu2 + γ2u2 on Γ


(56)

To enforce this scheme we solve the following system:

Luk1 = f in Ω1

uk1 = 0 on ∂Ω1

(k1∂n + γ1)uk1 = (k2∂n + γ2)uk−1
2 on Γ


Luk2 = f in Ω2

uk2 = 0 on ∂Ω2

(k2∂n + γ2)uk2 = (k1∂n + γ1)ul1 on Γ


Once again, we must use l = k − 1 if we prefer a Jacobi solver or l = k if we choose Gauss-Seidel.

Part B

Obtain the matrix version of the previous scheme once space has been discretized using finite elements.

The discretized operator L is matrix A. The system in domain 1 looks like:[
A

(1)
II A

(1)
IΓ

A
(1)
ΓI A

(1)
ΓΓ

][
(u

(1)
I)k

(u
(1)
Γ)k

]
=

[
f
(1)
I

f
(1)
Γ −A(2)

ΓI (u
(2)
I)k−1 −A(2)

ΓΓ(u
(2)
Γ)k−1

]
(57)

For domain number 2 it looks like:[
A

(2)
II A

(2)
IΓ

A
(2)
ΓI A

(2)
ΓΓ

][
(u

(2)
I)k

(u
(2)
Γ)k

]
=

[
f
(2)
I

f
(2)
Γ −A(1)

ΓI (u
(2)
I)l −A(1)

ΓΓ(u
(1)
Γ)l

]
(58)

Yet again, we must use l = k − 1 if we prefer a Jacobi solver or l = k if we choose Gauss-Seidel. Our initial
guess will consist of (u(2))0 for the Gauss-Seidel method, but for the Jacobi we’ll also have to add (λ(1))0.

Coupled Problems 15 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Part C

Obtain the Schur complement as discrete version of the Steklov-Poincare operator.

Our problem looks like:  A
(1)
II A

(1)
IΓ 0

A
(1)
ΓI AΓΓ A

(2)
ΓI

0 A
(2)
ΓI A

(2)
II


 u

(1)
I

uΓ

u
(2)
I

 =

 f
(1)
I

fΓ

f
(2)
I

 (59)

By re-arranging the first and last rows we obtain the following two equations:

u
(1)
I = (A

(1)
II)−1

(
f
(1)
I −A

(1)
IΓuΓ

)
u

(2)
I = (A

(2)
II)−1

(
f
(2)
I −A

(2)
IΓuΓ

) (60)

Using them in the second row of the matrix equation results in:(
AΓΓ −A(1)

ΓI (A
(1)
II)−1A

(1)
IΓ −A

(2)
ΓI (A

(2)
II)−1A

(2)
IΓ

)
uΓ = fΓ −A(1)

ΓI (A
(1)
II)−1f

(1)
I −A

(2)
ΓI (A

(2)
II)−1f

(2)
I (61)

Which can be abreviated as:
SuΓ = G (62)

Where the Schur complement S is the discrete version of the Steklov-Pointcaré operator S:

S = AΓΓ −A(1)
ΓI (A

(1)
II)−1A

(1)
IΓ −A

(2)
ΓI (A

(2)
II)−1A

(2)
IΓ (63)

and G is:
G = fΓ −A(1)

ΓI (A
(1)
II)−1f

(1)
I −A

(2)
ΓI (A

(2)
II)−1f

(2)
I (64)

Part D

Identify the preconditioner for the Schur complement equation arising from the iterative scheme of section A.

We can first split the Schur complement into two parts:

S(1) = A
(1)
ΓΓ −A

(1)
ΓI (A

(1)
II)−1A

(1)
IΓ

S(2) = A
(2)
ΓΓ −A

(2)
ΓI (A

(2)
II)−1A

(2)
IΓ

If we take equation 57 and 58 we can see it yields:

(u
(1)
I)k = (A

(1)
II)−1

(
f
(1)
I −A

(1)
IΓu

k
Γ

)
(u

(2)
I)k = (A

(2)
II)−1

(
f
(2)
I −A

(2)
IΓ (u

(2)
Γ)k

)
A

(1)
ΓI (u

(1)
I)k +A

(1)
ΓΓu

k
Γ = f

(1)
Γ −A(2)

ΓI (u
(2)
I)k−1 −A(2)

ΓΓ(u
(2)
Γ)k−1

We can take the first and second equations and substitute them in the third one:

A
(1)
ΓI (A

(1)
II)−1

(
f
(1)
I −A

(1)
IΓu

k
Γ

)
+A

(1)
ΓΓu

(1)
Γ = f

(1)
Γ −A(2)

ΓI (A
(2)
II)−1

(
f
(2)
I −A

(2)
IΓ (u

(2)
Γ)k−1

)
−A(2)

ΓΓ(u
(2)
Γ)k−1 (65)

Expanding the terms results in:

A
(1)
ΓI (A

(1)
II)−1f

(1)
I −A

(1)
ΓI (A

(1)
II)−1A

(1)
IΓu

k
Γ +A

(1)
ΓΓ(u

(1)
Γ)k

= f
(1)
Γ −A(2)

ΓI (A
(2)
II)−1f

(2)
I +A

(2)
ΓI (A

(2)
II)−1A

(2)
IΓ (u

(2)
Γ)k−1 −A(2)

ΓΓ(u
(2)
Γ)k−1

Coupled Problems 16 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Rearranging them results in:(
A

(1)
ΓΓ −A

(1)
ΓI (A

(1)
II)−1A

(1)
IΓ

)
ukΓ

= f
(1)
Γ −A(1)

ΓI (A
(1)
II)−1f

(1)
I −A

(2)
ΓI (A

(2)
II)−1f

(2)
I +

(
A

(2)
ΓI (A

(2)
II)−1A

(2)
IΓ −A

(2)
ΓΓ

)
(u

(2)
Γ)k−1

Notice that this is equivalent to:
S(1)ukΓ = G− S(2)uk−1

Γ (66)

Left-multiplying by the inverse of S, and expanding S(2) = S − S(1):

ukΓ = (S(1))−1G− (S(1))−1Suk−1
Γ + uk−1

Γ (67)

Hence, rearranging finally results in:

ukΓ = uk−1
Γ + (S(1))−1

(
G− Suk−1

Γ

)
(68)

This is clearly a Richardson fixed-point iteration with preconditioner S(1).

Coupled Problems 17 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

3 Coupling of Heterogeneous Problems

3.1 Plane stress

Consider the beam described in Problem 1 of Section 1. Apart from being clamped at x = 0 and x = L, the beam
is supported on an elastic wall that occupies the square [0, L]× [−L, 0], where y = 0 corresponds to the beam axis.
The wall is clamped everywhere except on the upper wall, where the beam is.

The wall displacements in the x- and y-directions are u and v, respectively, and the elastic properties E (Young
modulus) and ν (Poisson’s coefficient). No loads are applied on the wall, except for those coming from the beam.

Part A

Write down the equations in the wall assuming a plane stress behavior.

First we must state the constitutive law for plane stress:

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (69)

Then our stress-strain relationshitp looks like:
σσσ = Dεεε (70)

note that we are using Voigt notation, hence the way to operate the differential operators will be different
than usually. For this reason we’ll label them ∇V .

∇V =


∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

 (71)

We also know the following relationship:
εεε = ∇V uuu (72)

And the balance of forces equation:
−∇V · σσσ = fff (73)

Combining these three results, and acknowledging that there are no body loads, results in:

−∇V ·D∇V uuu = 0 (74)

Now adding the boundary conditions results in the full boundary value problem:

−∇V ·D∇V uuu2 = 0 in Ω2

u2 = 0 on ∂Ω2

v2 = 0 on ∂Ω2\Γ
v2 = v1 on Γ

 (75)

we use subindex 2 to refer to the plate and reserve subindex 1 for the beam. We’ll use Γ to refer to the shared
boundary, and ∂Ωi to refer to the outside boundaries.

Coupled Problems 18 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Part B

Write down the equations for the beam modified because of the presence of the wall.

We can start with the original equation, and add to it the force of the plate:

EI
d4v1

dx4
= f + T (76)

where T is the traction imparted by the wall onto the beam. Hence the full boundary problem will be:

EI
d4v1

dx4
= f + T in Ω1

v1 = 0 on ∂Ω1

v1 = v2 on Γ

 (77)

Part C

Obtain the adequate transmission conditions for v and the normal component of the traction on the wall at y = 0

The transmission condition for v looks like:

JvK = v2 − v1 = 0 (78)

And the transmission condition regarding the traction is:

JτK = T − σσσ2 ·nnn2 = 0

This can be further expanded into:
JτK = T −nnn2 ·D∇V uuu2 = 0 (79)

Part D

Suggest transmission conditions for u and the tangent component of the traction on the wall at y = 0. Discuss the
implications if this component is not assumed to be zero.

Euler-Bernoulli beam theory is based on the premise that the displacements are so small that their tangent
components are neglected. Hence any attempt at coupling u2 with some derived u1 would lead to meaningless
results. If one wanted to impose such conditions, then the model should be upgraded to a more generalized
one, such as Timoshenko-Ehrenfest beam theory. This theory accounts for shear deformation and uses two
variables:

• v is the vertical displacement, just as before.

• θ is the rotation.

Hence we could express u1 = v1 sin(θ1) ≈ v1θ1. Then the new transmission condition would look like:

JuK = v1θ1 − u2 = 0 (80)

This will barely affect the result, since u1 will be very small in comparisson to v1, but it will make the solving
process more difficult and expensive since this is a non-linear transmission condition. All in all it’s important
to consider whether the gain is worth the cost.

One is free to chose any other model for beam deformation, this one was chosen because it’s the simplest one
that fits the requirements.

Coupled Problems 19 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

3.2 Dirichlet to Neumann operators

Let SD and SS be the Dirichlet-to-Neumann operators for the Darcy and the Stokes problems, respectively (see the
class notes, chapter 3). The Steklov-Poincaré equation can be written as

SS(λ) = SD(λ) (81)

where λ is the normal velocity on Γ, the interface between the Darcy and the Stokes regions.

Part A

Obtain the discrete version of the previous equation when space is discretized using finite elements. Relate the
resulting matrices to those arising from the discretization of the Darcy and the Stokes problems separately.

First off let’s write the matrix form of the Stokes problem:[
KS GS
GTS 0

] [
uS
pS

]
=

[
fS
hS

]
(82)

where the matrices are defined as:

(KS)ij =

∫
Ω

∇wwwi · ν∇wwwj

(GS)ij =

∫
Ω

wwwi∇qj

(fS)ij =

∫
Ω

wwwif +

∫
∂Ω

wi(nnnS · (−pSIII + ν∇uuuS))

(hS)ij =

∫
∂Ω

qinnn · uuuS

where www ∈ H1(Ω) and q ∈ L2(Ω) are test vector and test scalar functions respectively. The Darcy problem is
similar and results in the following system:[

MD GD
GTD 0

] [
uD
ϕD

]
=

[
0

hD

]
(83)

where the matrices are defined as:

(MD)ij =

∫
Ω

wwwi · k−1wwwj

(GD)ij =

∫
Ω

wwwi∇qj

(hD)ij =

∫
∂Ω

qinnn · uuuS

We can now Rewrite the two systems by splitting between velocities at the interior and those at the interface.
For Stokes: KSS KSΓ GSΓ

KΓS KΓΓ GΓS

GTSΓ GTΓS 0

uSλ
pS

 =

fSS
fSΓ

hS

 (84)

For Darcy: MDD MDΓ GDΓ

MΓD MΓΓ GΓD

GTDΓ GTΓD 0

uDλ
ϕD

 =

 0
0

hD

 (85)

Coupled Problems 20 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

The we can combine the two systems into one:
KSS GSΓ KSΓ 0 0
GTSΓ 0 KT

ΓS 0 0

KΓS GΓS K
(S)
ΓΓ +M

(D)
ΓΓ MΓD GΓD

0 0 MDΓ MDD GDΓ

0 0 GTΓD GTDΓ 0



uS
pS
λ
Ud
ϕD

 =


fSS
hS
fSΓ

0
hD

 (86)

We can now merge the degrees of freedom of velocity at the interior and pressure into a vectors xS and xD.
The combined system becomes: A

(S)
II A

(S)
IΓ 0

A
(S)
ΓI AΓΓ A

(D)
ΓI

0 A
(D)
IΓ A

(D)
II


x(S)

I

λ

x
(D)
I

 =

b
(S)
I

bΓ

b
(D)
I

 (87)

Which is the form we’re accustumed to. Skipping the steps this results in:(
AΓΓ −A(S)

ΓI (A
(S)
II)−1A

(S)
IΓ −A

(D)
ΓI (A

(D)
II)−1A

(D)
IΓ

)
λ = bΓ −A(S)

ΓI (A
(S)
II)−1b

(S)
I −A(D)

ΓI (A
(D)
II)−1b

(D)
I (88)

Which can be abreviated as:
Sλ = G (89)

Then we can split S into:

SS = A
(S)
ΓΓ −A

(S)
ΓI (A

(S)
II)−1A

(S)
IΓ (90)

SD = A
(D)
ΓΓ −A

(D)
ΓI (A

(D)
II)−1A

(D)
IΓ (91)

Since the problem statement has stated that SS(λ) = SD(λ), we can conclude that G is 0:

G = bΓ −A(S)
ΓI (A

(S)
II)−1b

(S)
I −A(D)

ΓI (A
(D)
II)−1b

(D)
I = 0 (92)

Part B

Write down the matrix form of a Dirichlet-Neumann iteration-by-subdomain using the matrices of the Darcy and
the Stokes problems.

First we must impose the Neumann boundary condition on the Stokes equation. Using the same notation as in
equation 84, the Stokes equation looks like the following:KSS KSΓ GSΓ

KΓS KΓΓ GΓS

GTSΓ GTΓS 0

uSλ
pS

 =

 fSS

fSΓ −M (D)
ΓΓ λk−1 −MΓDu

k−1
D −GTDΓϕ

k−1

hS

 (93)

For the Darcy equation we use the same notation as in equation 85, and we impose a Dirichlet boundary
condition: [

MDD GDΓ

GTDΓ 0

] [
ukD
ϕk

]
=

[
−MT

ΓDλ
l

hD

]
(94)

where λl can be chosen in order to use a Jacobi scheme (l = k − 1) or a Gauss-Seidel (l = k).

Coupled Problems 21 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Part C

Identify the Richardson iteration for the algebraic problem in (a) resulting from (b).

The Neumann equation can be re-written so as to make u and p a function of λ:[
KSS GSΓ

GTSΓ 0

] [
ukS
pkS

]
=

[
fSS
hS

]
−
[
KSΓ

GTΓS

]
λk (95)

The Dirichlet equation was already a function of λ:[
MDD GDΓ

GTDΓ 0

] [
ukD
ϕk

]
=

[
0

hD

]
−
[
MT

ΓD

0

]
λl (96)

Now from the second row of the Neumann equation we have:

KΓSu
k
S +KΓΓλ

k +GΓSp
k
S = fSΓ −M (D)

ΓΓ λk−1 −MΓDu
k−1
D −GTDΓϕ

k−1 (97)

We can rewrite this as:[
KΓS GΓS

] [ukS
pkS

]
+KΓΓλ

k = fSΓ −M (D)
ΓΓ λk−1 −

[
MΓD GTDΓ

] [uk−1
D

ϕk−1

]
(98)

Now these two vectors appeared in the previous two linear systems of equations. As such, we can replace
them.

[
KΓS GΓS

] [KSS GSΓ

GTSΓ 0

]−1([
fSS
hS

]
−
[
KSΓ

GTΓS

]
λk
)

+KΓΓλ
k

= fSΓ −M (D)
ΓΓ λk−1 −

[
MΓD GTDΓ

] [MDD GDΓ

GTDΓ 0

]−1([
0

hD

]
−
[
MT

ΓD

0

]
λl
)

At this point we must decide to go for Jacobi or Gauss-Seidel. I will go for Jacobi because of personal
preference.

(
KΓΓ −

[
KΓS GΓS

] [KSS GSΓ

GTSΓ 0

]−1 [
KSΓ

GTΓS

])
λk =

([
MΓD GTDΓ

] [MDD GDΓ

GTDΓ 0

]−1 [
MT

ΓD

0

]
−M (D)

ΓΓ

)
λk−1

+

(
fSΓ −

[
KΓS GΓS

] [KSS GSΓ

GTSΓ 0

]−1 [
fSS
hS

]

−
[
MΓD GTDΓ

] [MDD GDΓ

GTDΓ 0

]−1 [
0

hD

])

This very large system becomes much smaller if we compare the large parentheses with expressions 90, 91
and 92:

SSλ
k = −SDλk−1 +G (99)

Now we can manipulate it much more easily to obtain:

λk = λk−1 + S−1
S (G− Sλk−1) (100)

which is clearly a Richardson iteration with preconditioner SS .

Coupled Problems 22 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

4 Monolithic and Partitioned Schemes in Time

Consider the one-dimensional, transient, heat transfer equation:

∂u

∂t
− κ∂

2u

∂x2
= f in [0, 1]

u(x = 0, t) = 0

u(x = 1, t) = 0

u(x, t = 0) = 0

4.1 FEM discretization

Discretize it using the finite element method (linear elements, element size h) for the discretization in space, and
a BDF1 scheme for the discretization in time. Write down the weak form of the problem and the resulting matrix
form of the problem, including the corresponding boundary integrals if necessary. Consider κ = 1, f = 1, δt = 1.

BDF1 time discretization is comonly known as backwards Euler. The expression for an arbitrary function y is:

yn+1 − yn = δt
dy

dt

∣∣∣∣n+1

(101)

Moving on to our problem in particular, the expression becomes:

un+1 − un = δt f + δt κ
∂2u

∂x2

∣∣∣∣n+1

(102)

This can be rearrange and rewritten as:

− δt κ ∂2u

∂x2

∣∣∣∣n+1

+ un+1 = un + δt f (103)

We can multiply both sides by a test function w ∈ H1
0(Ω) and integrate on the domain:

− δt κ
∫

Ω

w
∂2u

∂x2

∣∣∣∣n+1

+

∫
Ω

wun+1 =

∫
Ω

wun + δt

∫
Ω

wf (104)

Integrating by parts results in:

δt κ

∫
Ω

∂w

∂x

∂u

∂x

∣∣∣∣n+1

+

∫
Ω

wun+1 =

∫
Ω

wun + δt

∫
Ω

wf + δt κ

[
w
∂u

∂n

∣∣∣∣n+1
]x=xL

x=x0

(105)

The test function w has compact support and as such the last term vanishes. We can now use a Galerkin
discretization:

N ≈ w u ≈
nnodes−1∑
j=2

Njuj (106)

Notice that we are skipping the two nodes at the boundary since their value is 0. The result is the following:(
δt κ

∫
Ω

∂Ni
∂x

∂Nj
∂x

+

∫
Ω

NiNj

)
un+1
j =

(∫
Ω

NiNj

)
unj + δt

∫
Ω

Nif (107)

Coupled Problems 23 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

This can be rewritten as the following matrix system:

(δt κK +M)Un+1 = MUn + F (108)

If we substitute the values:
(K +M)Un+1 = MUn + F (109)

4.2 Domain decomposition

Consider a domain decomposition approach for the previous problem. The left subdomain is composed of 2
elements (h = 0.2), while the right subdomain is composed of 3 elements (h = 0.2). Show that, if a monolithic
approach is adopted, no boundary integrals are required at the interface. From now on, we denote the values at
the nodes of the mesh as u0, u1, u2, u3, u4, u5 The interface is at u2

Let’s first recover equation 105 and adapt it to our problem:

δt κ

∫ 0.4

0

∂w

∂x

∂u

∂x

∣∣∣∣n+1

+

∫ 0.4

0

wun+1 =

∫ 0.4

0

wun + δt

∫ 0.4

0

wf + δt κ

[
w
∂u

∂n

∣∣∣∣n+1
]x=0.4

x=0

δt κ

∫ 1

0.4

∂w

∂x

∂u

∂x

∣∣∣∣n+1

+

∫ 1

0.4

wun+1 =

∫ 1

0.4

wun + δt

∫ 1

0.4

wf + δt κ

[
w
∂u

∂n

∣∣∣∣n+1
]x=1

x=0.4


(110)

The values at x = 0 and x = 1 the boundary values vanish just as before:

δt κ

∫ 0.4

0

∂w

∂x

∂u

∂x

∣∣∣∣n+1

+

∫ 0.4

0

wun+1 =

∫ 0.4

0

wun + δt

∫ 0.4

0

wf + δt κw
∂u

∂n

∣∣∣∣n+1

x=0.4

δt κ

∫ 1

0.4

∂w

∂x

∂u

∂x

∣∣∣∣n+1

+

∫ 1

0.4

wun+1 =

∫ 1

0.4

wun + δt

∫ 1

0.4

wf − δt κw ∂u

∂n

∣∣∣∣n+1

x=0.4

 (111)

The matrix system looks like:

(K(1) +M (1))(U (1))n+1 = M (1)(U (1))n + F (1) +Q(1)

(K(2) +M (2))(U (2))n+1 = M (2)(U (2))n + F (2) −Q(2)

}
(112)

The new vector Q is the result of the interface value. Notice that Q(1) = Q(2) as can be easily seen in equation
111. If we expand the matrices we obtain the following systems. For system 1 (left part of the domain):[

A
(1)
11 A

(1)
12

A
(1)
21 A

(1)
22

][
un+1

1

un+1
2

]
=

[
F

(1)
1

F
(1)
2 +Q(1)

]
+

[
M

(1)
11 M

(1)
12

M
(1)
21 M

(1)
22

] [
un1
un2

]
(113)

And system 2: A
(2)
11 A

(2)
12 A

(2)
13

A
(2)
21 A

(2)
22 A

(2)
23

A
(2)
31 A

(2)
32 A

(2)
33


un+1

2

un+1
3

un+1
4

 =

F
(2)
1 −Q(2)

F
(2)
2

F
(2)
3

+

M
(2)
11 M

(2)
12 M

(2)
13

M
(2)
21 M

(2)
22 M

(2)
23

M
(2)
31 M

(2)
32 M

(2)
33


un2un3
un4

 (114)

Coupled Problems 24 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Note that the notes at the boundary (u0 and u5) are not present because they have been eliminated thanks to
their Dirichlet boundary condition. Combining both systems in a monolithic manner results in:

A
(1)
11 A

(1)
12 0 0

A
(1)
21 A

(1)
22 +A

(2)
11 A

(2)
12 A

(2)
13

0 A
(2)
21 A

(2)
22 A

(2)
23

0 A
(2)
31 A

(2)
32 A

(2)
33



un+1

1

un+1
2

un+1
3

un+1
4

 =


F

(1)
1

F
(1)
2 + F

(2)
1 +Q(1) −Q(2)

F
(2)
2

F
(2)
3

+


M

(1)
11 M

(1)
12 0 0

M
(1)
21 M

(1)
22 +M

(2)
11 M

(2)
12 M

(2)
13

0 M
(2)
21 M

(2)
22 M

(2)
23

0 M
(2)
31 M

(2)
32 M

(2)
33



un1
un2
un3
un4


Now we see how Q(1) and Q(2) are subtracting each other, which, as observed earlier, are equal. Then the
system becomes:

A
(1)
11 A

(1)
12 0 0

A
(1)
21 A

(1)
22 +A

(2)
11 A

(2)
12 A

(2)
13

0 A
(2)
21 A

(2)
22 A

(2)
23

0 A
(2)
31 A

(2)
32 A

(2)
33



un+1

1

un+1
2

un+1
3

un+1
4

 =


F

(1)
1

F
(1)
2 + F

(2)
1

F
(2)
2

F
(2)
3

+


M

(1)
11 M

(1)
12 0 0

M
(1)
21 M

(1)
22 +M

(2)
11 M

(2)
12 M

(2)
13

0 M
(2)
21 M

(2)
22 M

(2)
23

0 M
(2)
31 M

(2)
32 M

(2)
33



un1
un2
un3
un4


(115)

As it can be seen, all the matrices are domain integrals and none are on the boundary.

4.3 Dirichlet-to-Neumann operator

Obtain the algebraic form of the Dirichlet-to-Neumann operator (Steklov-Poincaré’s operator) for the left subdo-
main, departing from given values of uni at time step n, and an interface value un+1

2

Let’s start with equation 113:[
A

(1)
11 A

(1)
12

A
(1)
21 A

(1)
22

] [
un+1

1

un+1
2

]
=

[
F

(1)
1

F
(1)
2 +Q(1)

]
+

[
M

(1)
11 M

(1)
12

M
(1)
21 M

(1)
22

] [
un1
un2

]
Now we can rearrange this as:

A
(1)
11 u

n+1
1 =

(
F

(1)
1 +M

(1)
11 u

n
1 +M

(1)
12 u

n
2

)
−A(1)

12 u
n+1
2 (116)

Here we see the system with the Dirichlet operator (last term on the RHS).

4.4 Neumann-to-Dirichlet operator

Obtain the algebraic form of the Neumann-to-Dirichlet operator for the right subdomain, departing from given
values of uni and an interface value for the fluxes φn+1 = κ∂xu

n+1 at the coordinate of node 2

Let’s start off in equation 114:A
(2)
11 A

(2)
12 A

(2)
13

A
(2)
21 A

(2)
22 A

(2)
23

A
(2)
31 A

(2)
32 A

(2)
33


un+1

2

un+1
3

un+1
4

 =

F
(2)
1 −Q(2)

F
(2)
2

F
(2)
3

+

M
(2)
11 M

(2)
12 M

(2)
13

M
(2)
21 M

(2)
22 M

(2)
23

M
(2)
31 M

(2)
32 M

(2)
33


un2un3
un4

 (117)

Coupled Problems 25 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

We will now park this expression here and work in system 1. Notice that in the previous section we ignored
the second row of the matrix system:

A
(1)
22 u

n+1
2 = F

(1)
2 +Q(1) +M

(1)
21 u

n
1 +M

(1)
22 u

n
2 −A

(1)
21 u

n+1
1

We can rearrange this as:

Q(1) = A
(1)
22 u

n+1
2 +A

(1)
21 u

n+1
1 − F (1)

2 −M (1)
21 u

n
1 −M

(1)
22 u

n
2 (118)

We must now remember that:
Q(1) = Q(2) = φn+1 = κ∂xu

n+1 (119)

Hence equation 117 becomes:A
(2)
11 A

(2)
12 A

(2)
13

A
(2)
21 A

(2)
22 A

(2)
23

A
(2)
31 A

(2)
32 A

(2)
33


un+1

2

un+1
3

un+1
4

 =

F
(1)
2 + F

(2)
1

F
(2)
2

F
(2)
3



+

M
(1)
21 M

(2)
11 +M

(1)
22 M

(2)
12 M

(2)
13

0 M
(2)
21 M

(2)
22 M

(2)
23

0 M
(2)
31 M

(2)
32 M

(2)
33



un1
un2
un3
un4


−

A(1)
22 u

n+1
2 +A

(1)
21 u

n+1
1

0
0



(120)

where this last matrix is the Neumann operator. One can compare with the monolithic system in equation 115
to see that the rest of the system is unaltered here.

4.5 Staggered iteration scheme

Write down the iterative algorithm for a staggered approach applying Dirichlet boundary conditions at the
interface to the left subdomain and Neumann boundary conditions at the interface for the right subdomain.

Let’s start with our two equations 116 and 120. They can be simplified with the help of notation to:

A
(1)
II u

n+1
I1

= B
(1)
I −A

(1)
IΓu

n+1
Γ[

A
(2)
II A

(2)
IΓ

A
(2)
ΓI A

(2)
ΓΓ

] [
un+1
I2

un+1
Γ

]
=

[
B

(2)
I

BΓ

]
−
[

0 0

A
(1)
ΓI A

(1)
ΓΓ

] [
un+1
I1

un+1
Γ

]
 (121)

where I refers to interior nodes and Γ to the interface node. The issue presented here is the circular logical
dependency: they both need each other’s solution. Hence we’ll follow an iterative algorithm with predictive
variables ũ:

A
(1)
II u

n+1,k
I1

= B
(1)
I −A

(1)
IΓ ũ

n+1,k
Γ[

A
(2)
II A

(2)
IΓ

A
(2)
ΓI A

(2)
ΓΓ

][
un+1,k
I2

un+1,k
Γ

]
=

[
B

(2)
I

BΓ

]
−
[

0 0

A
(1)
ΓI A

(1)
ΓΓ

] [
ũn+1,k−1
I1

ũn+1,k−1
Γ

] (122)

where k is the iterator counter. A good starter for k = 0 is ũn+1,0 = un. Convergence is reached when u→ ũ
which yields the same result as the monolithic scheme. Neither convergence nor stability are guaranteed.

Coupled Problems 26 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

4.6 Substitution and iteration by subdomain

Do the same for a substitution and an iteration by subdomains scheme.

The substitution scheme is quite straight-forward:

A
(1)
II u

n+1,k
I1

= B
(1)
I −A

(1)
IΓ ũ

n+1,k−1
Γ[

A
(2)
II A

(2)
IΓ

A
(2)
ΓI A

(2)
ΓΓ

][
un+1,k
I2

un+1,k
Γ

]
=

[
B

(2)
I

BΓ

]
−
[

0 0

A
(1)
ΓI A

(1)
ΓΓ

] [
un+1,k
I1
un+1,k
I1
un+1,k
I1

un+1,k
Γu
n+1,k
Γu
n+1,k
Γ

] (123)

The difference has been highlighted with boldface. As it can be seen, this time only subdomain 1 uses a
predictive variable.

Iteration by subdomain is not too different either:

A
(1)
II u

n+1,k
I1

= B
(1)
I −A

(1)
IΓ ũ

n+1,̀`̀
Γ[

A
(2)
II A

(2)
IΓ

A
(2)
ΓI A

(2)
ΓΓ

][
un+1,k
I2

un+1,k
Γ

]
=

[
B

(2)
I

BΓ

]
−
[

0 0

A
(1)
ΓI A

(1)
ΓΓ

] [
ũn+1,k−1k−1k−1
I1

ũn+1,k−1k−1k−1
Γ

] (124)

The changes with respect to the staggered iterative scheme are highlited in boldface again. As is a recurring
theme already, ` = k − 1 is for Jacobi and ` = k for Gauss-Seidel iterative scheme.

4.7 Nitsche method for boundary conditons

Rewrite the algebraic system associated to the left subdomain (Dirichlet boundary conditions at the interface),
using Nitsche’s method for applying the boundary conditions. How does the condition number of the resulting
system of equations vary with the penalty parameter α ?

The weak form of our problem in subdomain 1 looks like:(
w, ut

)
Ω1

+
(
wx, κux

)
Ω1
−
〈
w, n1κux

〉
∂Ω1

=
(
w, f

)
Ω1

(125)

where w ∈ Vh. We can now add Nitsche’s terms:(
w, ut

)
Ω1

+ κ
(
wx, ux

)
Ω1
− κ
〈
w, n1ux

〉
∂Ω1

+ α
κ

h

(
w, u

)
∂Ω1
− κ
〈
n1wx, u

〉
∂Ω1

= α
κ

h

(
w, ū

)
∂Ω1
− κ
〈
n1wx, ū

〉
∂Ω1

+
(
w, f

)
Ω1

(126)

Here ū is the weakly enforced dirichlet condition, h is the element size and α is the penalty parameter. We can
now substitute in ∂Ω1:(

w, ut
)

Ω1
+ κ
(
wx, ux

)
Ω1
− κ
[
wn1ux

]0.4
0

+ α
κ

h

[
wu
]0.4

0
− κ
[
n1wxu

]0.4
0

= α
κ

h

[
wū
]0.4

0
− κ
[
n1wxū

]0.4
0

+
(
w, f

)
Ω1

(127)

Finite element matrices K and M have already been defined, as well as vectors U and F . Let’s now define the
following:

Bi = ∂xNi (128)

Coupled Problems 27 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

and of course N is simply the shape functions arranged in a column vector. Substituting κ = 1, h = 0.2 and
B2 = −B0 = h

2 = 1
10 the space- and time-discretized system becomes:

1

δt
M(Un+1 − Un) +KUn+1 +

1

10
N(Un+1

2 + Un+1
0) + 5αN(Un+1

2 − Un+1
0)−B(Un+1

2 + Un+1
0)

= 5αN(Ūn+1
2 − Ūn+1

0)−B(Ūn+1
2 + Ūn+1

0) + F

This can be simplified down to:

(
1

δt
M +K)Un+1 + (5.1N −B)Un+1

2 − (4.9N +B)Un+1
0

= (5αN −B)Ūn+1
2 − (5αN +B)Ūn+1

0 +
1

δt
MUn + F

(129)

In our case we had that Ū0 = 0:

(
1

δt
M +K)Un+1 + (5.1N −B)Un+1

2 = (5αN −B)Ūn+1
2 +

1

δt
MUn + F (130)

Therefore our system’s matrix is:

A =

M
(1)
00 +K

(1)
00 M

(1)
01 +K

(1)
01 M

(1)
02 +K

(1)
02 + 5.1αN0 −B0

M
(1)
10 +K

(1)
10 M

(1)
21 +K

(1)
21 M

(1)
12 +K

(1)
12 + 5.1αN1 −B1

M
(1)
20 +K

(1)
20 M

(1)
21 +K

(1)
21 M

(1)
22 +K

(1)
22 + 5.1αN2 −B2

 (131)

As we increase the value of alpha the condition number of A is gona increase and hence the system is going
to become more ill-condition. The goal therefore is to find the smallest α that stabilizes the system. For the
Poisson problem, α > 2ci where ci is a parameter dependent on element shapes. For non-streched elements it
grows at a rate of O(1).

We can compare it to the penalty method’s α > ci
κ
h , which grows at a rate of O(nd) for d spatial dimensions.

It is clear that Nitsche’s method is better since it allows for smaller values of α and therefore it can stabilize
much larger systems.

Coupled Problems 28 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

5 Operator Splitting Techniques

Consider the one dimensional, transient, convection-diffusion equation:

∂u

∂t
− κ∂

2u

∂x2
+ ax

∂u

∂x
= f in [0, 1]

u(x = 0, t) = 0

u(x = 1, t) = 0

u(x, t = 0) = 0

with κ = 1, ax = 1, f = 1

5.1 FEM discretization

Discretize it in space using finite elements (3 elements) and in time (finite differences, BDF1). Solve the first step
of the problem, writing the solution as a function of the time step size δt

Let’s start re-writing the equation in more compact notation and substituting the values:

ut − uxx + ux = 1 (132)

We can multiply it all with w ∈ H1
0(Ω) and integrate over the domain:∫

Ω

wut −
∫

Ω

wuxx +

∫
Ω

wux =

∫
Ω

w (133)

Using integration by parts yields:∫
Ω

wut +

∫
Ω

wxux +

∫
Ω

wux =

∫
Ω

w +

∫
Γ

wuxn (134)

Because of the compact support the flux term vanishes.∫
Ω

wut +

∫
Ω

wxux +

∫
Ω

wux =

∫
Ω

w (135)

We now interpolate with shape functions.(∫
Ω

NiNj

)
(Ut)j +

(∫
Ω

(Nx)i(Nj)x

)
Uj +

(∫
Ω

Ni(Nj)x

)
Uj =

(∫
Ω

Ni

)
(136)

The terms in parentheses can be replaced by matrices:

MUt + (K + C)U = F (137)

The formula for BDF1 time discretization is:

yn+1
t ≈ yn+1 − yn+1

δt
(138)

Therefore our discretized equation becomes:

M(Un+1 − Un) + δt (K + C)Un+1 = δt F

Coupled Problems 29 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

And finally: [
1

δt
M +K + C

]
Un+1 = F +

1

δt
MUn (139)

Let’s now obtain the numerical values:

M =
1

18


2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

 K = 3


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 C =
1

2


1 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 −1

 F =
1

6


1
2
2
1

 (140)

Since nodes 0 and 3 have Dirichlet BC with value 0 we can write the system as:
2

9δt
+ 8

1

18δt
− 2.5

1

18δt
− 3.5

2

9δt
+ 8


Un+1

1

Un+1
2

 =

 1
3

1
3

+


2

9δt

1

18δt

1

18δt

2

9δt


Un1
Un2


The result is:

Un+1 =
6δt

2943δt 2 + 324δt + 5


0

51δt + 1
57δt + 1

0

 (141)

These numerical values have been obtained with a matlab script that can be found in appendix A.1.

5.2 Operator splitting technique

Solve the same time step by using a first order operator splitting technique.

The operator splitting technique consists of splitting the system in two:

L = La + Lν

These can be defined as:

La = aaa · ∇
Lν = −∇ · κ∇

For our problem in particular this becomes:

La = ∂x (142)

Lν = −∂xx (143)

The transient convection-diffusion equation becomes:

ut + Lau+ Lνu = 1 (144)

The operator splitting technique then mandates first solving the convective therm:

una = un

(ua)t + Laua = 0
(145)

Coupled Problems 30 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Once this has been solved we solve:
unν = un+1

a

(uν)t + Lνuν = 1
(146)

And the final result is:
un+1 = uν (147)

Let’s now solve our problem. First we obtain U0
a :

U0
a = U0 = 0 (148)

Hence next expression looks like: [
1

δt
M + C

]
U1
a =

1

δt
MU0

a = 0 (149)

Expanding it: [
2

9δt
1

18δt + 1
2

1
18δt −

1
2

2
9δt

] [
U1
a1

U1
a2

]
=

[
0
0

]
The result is trivial given the empty RHS: [

U1
a1

U1
a2

]
=

[
0
0

]
(150)

Now moving on to the next step:
U0
ν = U1

a = 0 (151)

Therefore the step looks like: [
1

δt
M +K

]
U1
ν = F +

1

δt
MU0

ν = F (152)

Expanding it: [
2

9δt + 6 1
18 − 3

1
18δt − 3 2

9δt + 6

] [
U1
ν1

U1
ν2

]
=

[
1
6
1
6

]
We obtain as result:

Un+1 =
6δt

54δt + 5


0
1
1
0

 (153)

This is clearly different from equation 141, the result from the monolithic scheme. We do see that, as δt → 0,
both results approach:

Un+1 =
6δt

5


0
1
1
0

 (154)

These numerical values have also been obtained with the matlab script in appendix A.1.

Coupled Problems 31 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

5.3 Splitting error

Evaluate the error of the splitting approach with respect to the monolithic approach. Plot the splitting error vs.
the time step size for δt = 1, δt = 0.5, δt = 0.25. Comment on the results.

The error can be computed as the norm of:

E = ||Umonolithic − Usplit||L2 (155)

The result is:

δt Norm of error
0.25 5.937× 10−3

0.50 7.118× 10−3

1.00 7.869× 10−3

Table 1: Caption

This can be graphed and the result is the following:

0 0.2 0.4 0.6 0.8 1 1.2
t

0

0.002

0.004

0.006

0.008

0.01

N
or

m
 o

f e
rr

or

Splitting error

Splitting error
Requested values

Figure 1: Splitting error as a function of δt. Requested values are δt = 0.25, 0.5 and 1.

It is clear from the graph that the error decreases with δt. On the other hand, it is clear that the error
approaches a maximum value assymptoticaly. For instance at δt = 30 the error is still only 8.736× 10−3, well
within the same order of magnitude as the previous results. The error does grow with the number of elements
however (E = 1.697× 10−2 with 12 elements and δt = 0.5), so it is something one must be careful with.

Coupled Problems 32 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

6 Fractional Step Methods

Consider the fractional step approach for the incompressible Navier-Stokes equations (Yosida scheme):

M
1

δt

(
Ûn+1 − Un

)
+KÛn+1 = f −GP̃n+1 (156)

DM−1GPn+1 =
1

δt
DÛn+1 −DM−1GP̃n+1 (157)

M
1

δt

(
Un+1 − Ûn+1

)
+ αK

(
Un+1 − Ûn+1

)
+G

(
Pn+1 − P̃n+1

)
= 0 (158)

6.1 Optimal alpha

Which is the optimal value for the α parameter?

Let’s start by discretizing the Navier-Stokes momentum equation:

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f

After FEM discretization:
MUt +KU +GP = F

After using backwards Euler this becomes:

1

δt
M(Un+1 − Un)KUn+1 +GPn+1 = F (159)

Now if we add equations 156 and 158 we obtain:

1

δt
M(Un+1 − Un) +K

(
(1− α)Ûn+1 + αUn+1

)
+GPn+1 = F (160)

It is clear that equations 159 and 160 will only be equal if:

α = 1

6.2 Error

What is the source of error of the scheme?

The source of the error is due to the splitting of the system. We first calculate Ûn+1 based not on pres-
sure but on a guess on what the pressure will be (P̃n+1). The we coorect the pressure with this already
incorrect Û to obtain a slightly incorrect Pn+1. Then we use this to obtain Un+1. The issue is therefore due to
the fact that P̃ is not the real pressure and therefore all that follows will be just as incorrect.

The only way to solve this system is iterating until convergence, however this scheme offers a good middle
ground between accurate computational expense and less accurate but faster solving times.

Coupled Problems 33 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

7 ALE Formulations

7.1 Introduction

Given the spatial description of a property

γ(x, y, z, t) =
[
2x, yet, z

]
the equations of movement:

x = Xet

y = Y + et − 1

z = Z

and the equations of the movement of the mesh:

xm = X + αt
ym = Y − βt
zm = Z

Part A

Obtain the description of the property in terms of the ALE coordinates (X ,Y,Z)

Our goal is to find γALE(XXX , t). We simply have to replace in the original equations to obtain:

γALE(XXX , t) =
[
2X + 2αt, (Y − βt)et,Z

]
(161)

Part B

Compute the velocity of the particles and the mesh velocity.

The velocity of a particle can be obtained via

vvv =
∂xxx(XXX, t)

∂t
(162)

For particles of the domain the result is:

vvv =

Xetet
0

 (163)

And the mesh moves at:

vvvm =

 α
−β
0

 (164)

Coupled Problems 34 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

Part C

Compute the ALE description of the material temporal derivative of γ.

The material derivative in ALE formulation looks like:

d

dt
γALE(XXX (XXX, t), t) =

∂γALE(XXX , t)
∂t

+ (vvv − vvvm) · ∇γ(xxx, t) (165)

Expanding this results in:

d

dt
γALE(XXX (XXX, t), t) =

 2α
(Y − β(t+ 1))et

0

+
[
Xet − α et + β 0

] 2 0 0
0 et 0
0 0 1


Then solving results in:

d

dt
γALE(XXX (XXX, t), t) =

 2Xet

(Y − βt)et + e2t

0

 (166)

We must now use the appropiate set of coordinates. Recalling that X + αt = Xet:

d

dt
γALE(XXX , t) =

 2X + 2αt
(Y − βt)et + e2t

0

 (167)

Coupled Problems 35 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

7.2 Navier-Stokes

Write down the ALE form of the incompressible Navier-Stokes equations. Where (in time and space) is each of the
terms of the equation evaluated? How are temporal derivatives computed?

Let’s start with mass conservation:

∂ρALE

∂t
+ ccc · ∇ρ(xxx, t) = −ρ∇ · uuu(xxx, t) (168)

Since the fluid is incompressible, all derivatives of density are 0, and the resulting equation is:

∇ · uuu(xxx, t) = 0 (169)

This is the same result as with spatial formulation. Moving on to the momentum equation:

∂uuuALE(XXX , t)
∂t

+ ccc · ∇uuu(xxx, t) = ∇ · σσσ(xxx, t) + ρ(xxx, t)bbb(xxx, t) (170)

Since the fluid is incompressible we know the density to be constant:

∂uuuALE(XXX , t)
∂t

+ ccc · ∇uuu(xxx, t) = ∇ · σσσ(xxx, t) + ρbbb(xxx, t)

The Navier-Stokes equations describe Newtonian fluids, hence we must make the following substitution:

σσσ(xxx, t) = −p(xxx, t)III + 2µ∇suuu(xxx, t) (171)

Leading to our final result:

∂uuuALE(XXX , t)
∂t

+ ccc · ∇uuu(xxx, t)− µ∆u+∇p(xxx, t) = ρbbb(xxx, t)

∇ · uuu(xxx, t) = 0

 (172)

The energy equation is redundant and therefore not necessary when solving for incompressible Newtonian
fluids.

7.3 Bibliographical search

Do a bibliographical research on existing methods for the definition of the mesh movement in ALE formulations
(Poisson problem, Elasticity problem, etc.). Describe the main advantages of each of these methods.
There are two ways to guide mesh movement. These are mesh regularization and adaption. The former
consists int moving the mesh in such a way that we avoid it from being too distorted. To do so, we need
information about displacements of the underlying material with which to calculate the displacement of the
mesh. There are multiple ways of accomplishing this.

The easiest case is when the displacements are prescribed, then they are all known a priori and the mesh
can be moved accordingly. This is, however, not common, and when displacement is not known beforehand,
than mesh displacement has to be computed alongside the material displacement. This is specially important
near interfaces, where fluids are generally treated in an Eulerian manner whereas solids are described in a
Lagrangian fashion.

The other devised strategy, mesh adaption, consists in optimizing the mesh density such that spots where more

Coupled Problems 36 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

more accuracy is required can be allocated the resources that would be wasted on less-demanding regions of
the domain. The need for more or less accuracy must be measured and this is often done by solving an elliptic
or parabolic differential equation on the domain.

Sources

1. HUERTA AND LIU (1988) - Viscous flow structure interaction. Journal of pressure vessel technology.

2. RODRIGUEZ-FERRAN (2002) - Arbitrary Lagrangian-Eulerian (ALE) formulation for hyperelasticity -
International Journal for Numerical methods in engineering.

Coupled Problems 37 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

8 Fluid-Structure Interaction

8.1 Added mass effect

Describe the added mass effect problem for fluid structure interaction problems. When does it appear, what kind of
problems suffer from it? What are the main methods for dealing with it?

The issue of added mas effect appears in fluid-structure interaction problems solved with iterative meth-
ods and coupled via a Neumann-Neumann cheme. It is problematic when the density of the solid is similar or
lesser that that of the fluid.

Most engineering problems are therefore exempt from this problem since structures are generally made
of steel, concrete, or other dense materials interacting with water or air. Fields like biology or bio-engineering
are more prone to this problem since biological tissue is generally of similar density to water.

There are different ways of combating this problem, such as changing the coupling method to Robin-Robin or
using a relaxation scheme.

8.2 Aitken relaxation scheme

Consider the iteration by subdomain scheme for the heat transfer problem described in problem 1. Apply 2
iterations of the AITKEN relaxation scheme to it.

This problem has been solved via a Matlab script (see appendix A.2). A comparisson for δt = 0.1 is presented
in figure 2. Note that the colors go from blue to red for each iteration, hence the closer to red the color, the
more accurate. One can see how Aitken starts worse but quickly surpasses the standard relaxed shceme in
accuracy. Just to fulfill the requirements, here is the result after iteration 2:

1 >> simplify(U)

2 ans =

3 0

4 (9*dt*(196875*dt^2 + 56100*dt + 812))/(50*(421875*dt^3 + 270000*dt^2 + 17100*dt + 208))

5 (27*dt*(83056640625*dt^5 + 96250781250*dt^4 + 13037625000*dt^3 + 630090000*dt^2 + 12459600*dt + 83872))/(50*(421875*dt^3 + 270000*dt^2 + 17100*dt + 208)^2)

6 (18*dt*(32906250*dt^4 + 33294375*dt^3 + 2274750*dt^2 + 39732*dt + 200))/((75*dt + 4)*(5625*dt^2 + 3300*dt + 52)^2)

7 (81*dt*(18193359375*dt^5 + 19005468750*dt^4 + 2484000000*dt^3 + 126600000*dt^2 + 2618000*dt + 18208))/(50*(421875*dt^3 + 270000*dt^2 + 17100*dt + 208)^2)

8 0

Not a nice expression. Particularized for δt = 0.1 it becomes much more manageable:

1 >> u

2 u =

3 0

4 0.0300

5 0.0662

6 0.0518

7 0.0390

8 0

Coupled Problems 38 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Standard relaxation

0 2 4 6 8 10

Iteration

10 -4

10 -3

10 -2

10 -1

10 0

E
rr

or

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Aitken relaxation

0 2 4 6 8 10

Iteration

10 -4

10 -3

10 -2

10 -1

10 0

E
rr

or

Figure 2: Comparisson between normal relaxation and Aitken relaxation

Coupled Problems 39 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

8.3 Lagrange multipliers

Consider the monolithic (1 domain), transient (BDF1), finite element (linear elements, h = 1/4) approximation
of the heat transfer equation in problem 1. Enforce the Dirichlet boundary conditions in x = 0 and x = 1 by using
Lagrange multipliers. What is the form of the discrete system? What is the condition number of the resulting matrix?

The matrix system has been derived before and it looks like:

(
1

δt
M +K)Un+1 = F +

1

δt
MUn (173)

This problem has been solved with a Matlab script (see appendix A.3). The resulting matrix, after appending
the Lagrange multipliers looks like:

A =



1

12δt
+ 4

1

24δt
− 7

2
0 0 0 1 0

1
24δt −

9

2

1

6δt
+ 8

1

24δt
− 7

2
0 0 0 0

0
1

24δt
− 9

2

1

6δt
+ 8

1

24δt
− 7

2
0 0 0

0 0
1

24δt
− 9

2

1

6δt
+ 8

1

24δt
− 7

2
0 0

0 0 0
1

24δt
− 9

2

1

12δt
+ 4 0 1

1 0 0 0 0 0 0

0 0 0 0 1 0 0



(174)

Calculating the condition number of a matrix with non-constant entries can be quite an odyssey, so we have to
particularize for a certain value of δt . The following plot shows the result of a sweep of δt from 1× 10−5 to 1:

10 0 10 1 10 2 10 3 10 4 10 5

1/ t

10 0

10 2

10 4

10 6

10 8

10 10

(A
)

Condition number

Data
Parabolic fit

p : κ̃ = 0.0182 + 1.95δt−1 + 5.62δt−2

Figure 3: Analysis of condition number as a function of δt

Coupled Problems 40 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

First observe that the x axis shows the reciprocal of δt . We can see how well a parabola fits, hence we can
estimate that the condition number grows at a rate of O(δt−2). This means that the more accuracy we need,
the worst the matrix will behave. It is worth mentioning that increasing the number of elements will mitigate
the effect somewhat, however the growth is still parabolic.

Coupled Problems 41 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

8.4 Split elements

Consider the monolithic (1 domain), transient (BDF1), finite element (linear elements, h = 1/4) approximation
of the heat transfer equation in problem 1. Suppose that a level set function (ψ = 0 at x = 0.4) divides the domain
into a high thermal conductivity (κ = 100) subdomain (x ∈ [0, 0.4]) and a low thermal conductivity (κ = 1)
subdomain (x ∈ (0.4, 1]). Build the system matrix for this problem. Take into account the need for subintegrating
the element cut by the level set function.

This problem is once again more indicated to solve in Matlab. The whole code is shown in appendix
A.4. The most interesting part are the following lines (corresponding to lines 59-85):

1 for i = 1:n_elem

2 x1 = dom.x(i);

3 x2 = dom.x(i+1);

4

5 if x2 <= x0

6 % Left half

7 [Me, Ke, Fe] = local_matrices(q, k(1), f(1), h);

8 elseif x1 >= x0

9 % Right half

10 [Me, Ke, Fe] = local_matrices(q, k(2), f(2), h);

11 else

12 % Hybrid element

13 h1 = x0 - x1;

14 h2 = x2 - x0;

15 [Me1, Ke1, Fe1] = local_matrices(q, k(1), f(1), h1);

16 [Me2, Ke2, Fe2] = local_matrices(q, k(2), f(2), h2);

17 Me = Me1 + Me2;

18 Ke = Ke1 + Ke2;

19 Fe = Fe1 + Fe2;

20 end

21

22 nodes = [i, i+1];

23 K(nodes, nodes) = K(nodes, nodes) + Ke;

24 M(nodes, nodes) = M(nodes, nodes) + Me;

25 F(nodes) = F(nodes) + Fe;

26 end

This shows the assembly loop. As it can be seen when we find ourselves in the critical element we split it
in two smaller elements and we add up the resulting matrices. This is what is referred to as subintegrating.
Figure 4 shows the solution for 10 steps with δt = 0.05. It shows the requested 4 element discretization as
well as another with 31 elements to show that it work as expected.The requested system matrix A looks like
the following:

Coupled Problems 42 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

0 0.2 0.4 0.6 0.8 1

x

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

u

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (s)

(a) Solution with 4 elements

0 0.2 0.4 0.6 0.8 1

x

0

0.01

0.02

0.03

0.04

0.05

u

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (s)

(b) Solution with 31 elements

Figure 4: Results with 4 and 31 elements.

A =


1

6δt
+

3230

3

1

24δt
− 2030

3
0

1

24δt
− 2030

3

1

6δt
+

2042

3

1

24δt
− 4

0
1

24δt
− 4

1

6δt
+ 8

 (175)

Coupled Problems 43 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

A Appendix

A.1 Code for Operator splitting

1 clearvars;

2 n = 2;

3 dt = sym('dt', 'positive');

4

5 % Matrices

6 M = 1/(6*(n+1)) * tridiag(1,4,1,n);

7 K = (n+1) * tridiag(-1,2,-1,n);

8 C = 0.5 * tridiag(-1,0,1,n);

9 F = 1/(n+1) * ones(n,1);

10

11 % Traditional FEM

12 A = M/dt + K + C;

13 X = simplify(A\F);

14

15 % Split operator

16 Aa = simplify(M/dt + C);

17 Xa = simplify(Aa\zeros(size(F)));

18

19 Ak = M/dt + K;

20 Xk = simplify(Ak\(F + M/dt*Xa));

21

22 % Plot

23 error = [];

24 k = 0.25;

25 DT = linspace(0.25 - k,1+k, 300);

26 for dt = DT

27 y_mono = eval(X);

28 y_split = eval(Xk);

29 error(end+1) = norm(y_split - y_mono);

30 end

31

32 error_star = [];

33 DTstar = [.25,.5,1];

34 for dt = DTstar

35 y_mono = eval(X);

36 y_split = eval(Xk);

37 error_star(end+1) = norm(y_split - y_mono);

38 fprintf('%.5e\n',error_star(end));

39 end

40

41 plot(DT, error,'b', 'LineWidth',2);

42 hold on

Coupled Problems 44 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

43 scatter(DTstar, error_star,'ob', 'LineWidth',2);

44 grid on

45 hold off

46 title('Splitting error');

47 legend('Splitting error','Requested values','Location','South');

48 ylabel('Norm of error');

49 xlabel(['\delta','t']);

50 xlim([-inf inf])

51

52

53 function mat = tridiag(a,b,c, n)

54 mat = diag(a*ones(1,n-1),-1) + diag(b*ones(1,n))+ diag(c*ones(1,n-1),1);

55 end

Coupled Problems 45 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

A.2 Code for Aitken relaxation scheme comparisson

1 clearvars;

2 global dt

3 n_elem1 = 2;

4 n_elem2 = 3;

5 inter = 0.4;

6 maxIter = 10;

7 tol = 1e-8;

8 relaxation = 0.3;

9 f1 = 1;

10 f2 = 1;

11

12 %% Discretization

13 % Subdomains

14 s1 = create_subdomain(n_elem1, [0, inter], 1, n_elem1+1, f1);

15 s2 = create_subdomain(n_elem2, [inter, 1], n_elem2+1, 1, f2);

16

17

18 dt = sym('dt', 'positive');

19 x1 = linspace(0,inter, n_elem1+1);

20 x2 = linspace(inter,1, n_elem2+1);

21 x = [x1(1:end-1), x2];

22

23 %% Initial state

24 s1.X_pre = 0 * sym('x', [s1.n_nodes, 1]);

25 s2.X_pre = 0 * sym('x', [s2.n_nodes, 1]);

26

27 Utilde0 = [s1.X_pre(s1.I); s2.X_pre];

28 Utilde = Utilde0;

29

30

31 %% Standard relaxation

32

33 % Plot initial state

34 U = [0; Utilde; 0];

35 u = eval(subs(U, dt, 0.1));

36

37 clf;

38 subplot(221);

39 Colors = jet(maxIter+1);

40 plot(x,u,'o-','Color',Colors(1,:),'LineWidth',2);

41 Error = zeros(1,maxIter);

42

43 % Iteration loop

44

45 for i=1:maxIter

46 [s1, s2] = iterate_once(Utilde, s1, s2);

Coupled Problems 46 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

47

48 Utilde_old = Utilde;

49 Utilde = Utilde_old + relaxation * ([s1.X(s1.I); s2.X] - Utilde_old);

50

51 U = [0; Utilde; 0];

52

53 % Plotting and error

54 x_old = u;

55 u = eval(subs(U, dt, 0.1));

56 error = norm(u - x_old);

57 fprintf('Iteration %2d | Error %.3e | Border %4g\n',i, error, u(s1.G));

58

59 hold on;

60 plot(x,u,'o-','Color',Colors(i+1,:),'LineWidth',2);

61

62 Error(i) = error;

63

64 if error < tol

65 break

66 end

67 end

68 title('Standard relaxation');

69 subplot(223);

70 semilogy(Error(1:i),'+-');

71 grid on

72

73 %% Aitken comparisson

74 fprintf('\nAitken:\n');

75 U0 = Utilde0;

76

77 U = [0; U0; 0];

78 u = eval(subs(U, dt, 0.1));

79 xlabel('Iteration');

80 ylabel('Error');

81

82 subplot(222);

83 Colors = jet(maxIter+1);

84 plot(x,u,'o-','Color',Colors(1,:),'LineWidth',2);

85 Error = zeros(1,maxIter);

86 title('Aitken relaxation');

87

88 for i = 1:maxIter

89 [s1, s2] = iterate_once(U0, s1, s2);

90 U1 = [s1.X(s1.I); s2.X];

91

92 [s1, s2] = iterate_once(U1, s1, s2);

93 U2 = [s1.X(s1.I); s2.X];

94

95 denominator = (U2 - U1) - (U1 - U0);

Coupled Problems 47 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

96 U_new = U2 - (U2-U1).^2./denominator;

97

98 % Plotting and error

99 u_old = u;

100 U = [0; U_new; 0];

101 u = eval(subs(U, dt, 0.1));

102 error = norm(u - u_old);

103 fprintf('Iteration %2d | Error %.3e | Border %4g\n',i, error, u(s1.G));

104 hold on;

105 plot(x,u,'o-','Color',Colors(i+1,:),'LineWidth',2);

106

107 Error(i) = error;

108

109 if error < tol

110 break

111 end

112 U0 = U_new;

113 end

114

115 subplot(224);

116 semilogy(Error(1:i),'+-');

117 grid on

118 xlabel('Iteration');

119 ylabel('Error');

120

121 %% Various functions

122

123 function [s1, s2] = iterate_once(Xtilde, s1, s2)

124 global dt

125

126 % Easier reading

127 I1 = s1.I; % Interior 1

128 G1 = s1.G; % Gamma 1

129 G2 = s2.G; % Gamma 2

130

131 %% Domain 1

132 A = s1.A(I1,I1);

133 B = s1.F(I1) + 1/dt*s1.M(I1, :) * s1.X_pre;

134 % Dirichlet BC

135 B(I1) = B(I1) - s1.A(I1, G1) * Xtilde(G1);

136 % Solving

137 s1.X(I1,1) = simplify(A\B);

138

139 %% Domain 2

140 A = s2.A;

141 B = s2.F + 1/dt*s2.M * s2.X_pre;

142 B(G2) = B(G2) + s1.F(G1) + 1/dt*s1.M(G1,:)*s1.X_pre;

143 % Neumann BC

144 B(G2) = B(G2) - s1.A(G1,I1)*Xtilde(I1) - s1.A(G1, G1) * Xtilde(G1);

Coupled Problems 48 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

145 % Solving

146 s2.X = simplify(A\B);

147

148 %% Border value sharing

149 s1.X(G1) = s2.X(G2);

150 end

151

152

153

154 function subd = create_subdomain(n_elem, xrange, reduce, intersect, f)

155 global dt

156

157 G = create_quadrature();

158

159 K = zeros(n_elem+1);

160 M = zeros(n_elem+1);

161 F = zeros(n_elem+1,1);

162

163 J = (xrange(2) - xrange(1))/n_elem;

164

165 for i = 1:n_elem

166 nodes = [i, i+1];

167

168 Ke = zeros(2);

169 Me = zeros(2);

170 Fe = zeros(2,1);

171

172 for g = G

173 gradN = J\g.gradN;

174

175 Ke = Ke + g.w * (gradN' * gradN);

176 Me = Me + g.w * (g.N' * g.N);

177 Fe = Fe + g.w * g.N' * f;

178 end

179

180 K(nodes, nodes) = K(nodes, nodes) + abs(J) * Ke;

181 M(nodes, nodes) = M(nodes, nodes) + abs(J) * Me;

182 F(nodes) = F(nodes) + abs(J) * Fe;

183 end

184

185 keep = setdiff(1:n_elem+1, reduce);

186

187 subd.A = 1/dt * M(keep, keep) + K(keep, keep);

188 subd.M = M(keep, keep);

189 subd.F = F(keep);

190

191 subd.I = setdiff(keep, intersect)';

192 subd.G = intersect';

193

Coupled Problems 49 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

194 if reduce==1

195 subd.I = subd.I - 1;

196 subd.G = subd.G - 1;

197 end

198

199 subd.n_nodes = size(subd.A, 1);

200 end

201

202 function G = create_quadrature()

203 gpoints = [-1,1]*sqrt(1/3);

204 Nfun = {@(x)(0.5 - 0.5*x), @(x)(0.5 + 0.5*x)};

205 Nder = [-0.5,0.5];

206

207 G = [[],[]];

208

209 for i = 1:2

210 x = gpoints(i);

211 G(i).w = 0.5;

212 G(i).x = x;

213 G(i).N = [Nfun{1}(x), Nfun{2}(x)];

214 G(i).gradN = Nder;

215 end

216 end

Coupled Problems 50 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

A.3 Code for Lagrange multipliers conditioning analysis

1 clearvars;

2 n = 20;

3 f = 1;

4 dt = sym('dt', 'positive');

5 DT = logspace(-5,0,50);

6

7 % Matrices

8 M = 1/(6*n) * laplacian_like(1,4,1,n+1);

9 K = n * laplacian_like(-1,2,-1,n+1);

10 C = 0.5 * laplacian_like(-1,0,1,n+1);

11 F = 1/(n-1) * f * ones(n+1,1);

12

13 X0 = zeros(size(F));

14

15 % Boundary conditions

16 BC(1).i = 1;

17 BC(1).u = 0;

18

19 BC(2).i = n+1;

20 BC(2).u = 0;

21

22 % Assembly

23 A = M/dt + K + C;

24 b = F + M/dt*X0;

25

26 % Lagrange multipliers

27 for bc=BC

28 % Growing matrix

29 A(end+1,end+1) = 0;

30

31 %Enforcing values

32 A(end, bc.i) = 1;

33 A(bc.i, end) = 1;

34 b(end+1) = bc.u;

35 end

36

37 X = A\b;

38 x = X(1:end-length(BC));

39

40 k = zeros(size(DT));

41 for i=1:length(k)

42 dt = DT(i);

43 a = eval(A);

44 k(i) = 1/rcond(a);

45 end

46

Coupled Problems 51 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

47 clf

48 loglog(1./DT, k,'o-');

49 xlabel(['1/\delta','t']);

50 ylabel('\kappa(A)');

51 grid on

52 hold on

53

54 % Parabolic fit

55 p = polyfit(1./DT, k,2);

56 loglog(1./DT, polyval(p, 1./DT));

57 fprintf('Best fit:\ny = %f + %f x + %f x^2\n',p(1),p(2),p(3))

58

59 title('Condition number');

60 legend('Data','Parabolic fit','Location','North');

61

62 function mat = laplacian_like(a,b,c, n)

63 mat = diag(a*ones(1,n-1),-1) + diag(b*ones(1,n))+ diag(c*ones(1,n-1),1);

64 mat(1,1) = b/2;

65 mat(end,end) = b/2;

66 end

Coupled Problems 52 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

A.4 Code for elements with heterogeneous physical properties

1 clearvars;

2 global dt

3

4 % Simulation parameters

5 dt = 0.1;% sym('dt','positive');

6 xrange = [0,1];

7 n_elem = 4;

8 n_steps = 10;

9

10 % Physiscal properties

11 f = [1, 1];

12 k = [100, 1];

13 x0 = 0.4;

14

15 % Boundaries and ititial value

16 reduce = [1, n_elem+1];

17 X0 = zeros(n_elem+1, 1);

18

19 % Assembling system

20 domain = init_domain(n_elem, xrange, k, x0, f, X0, reduce);

21

22 % Solving a few steps

23 Colors = jet(n_steps+1);

24 clf

25 plot(domain.x, domain.u,'o-','Color', Colors(1,:));

26 for i=1:n_steps

27 domain = step_forward(domain);

28 plot(domain.x, domain.u,'o-','Color', Colors(i+1,:));

29 hold on

30 end

31 grid on

32 xlabel('x');

33 ylabel('u');

34

35 %%%%%%% End of main program %%%%%%%

36

37 function domain = step_forward(domain)

38 global dt

39 domain.X0 = domain.X;

40 domain.b = domain.F + 1/dt * domain.M * domain.X0;

41 domain.X = domain.A \ domain.b;

42 domain.u = [0; domain.X; 0];

43 end

44

45

46 function dom = init_domain(n_elem, xrange, k, x0, f, X0, reduce)

Coupled Problems 53 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

47 global dt

48

49 dom.x = linspace(xrange(1), xrange(2), n_elem+1);

50

51 q = create_quadrature();

52

53 K = zeros(n_elem+1);

54 M = zeros(n_elem+1);

55 F = zeros(n_elem+1,1);

56

57 h = (xrange(2) - xrange(1))/n_elem;

58

59 for i = 1:n_elem

60 x1 = dom.x(i);

61 x2 = dom.x(i+1);

62

63 if x2 <= x0

64 % Left half

65 [Me, Ke, Fe] = local_matrices(q, k(1), f(1), h);

66 elseif x1 >= x0

67 % Right half

68 [Me, Ke, Fe] = local_matrices(q, k(2), f(2), h);

69 else

70 % Hybrid element

71 h1 = x0 - x1;

72 h2 = x2 - x0;

73 [Me1, Ke1, Fe1] = local_matrices(q, k(1), f(1), h1);

74 [Me2, Ke2, Fe2] = local_matrices(q, k(2), f(2), h2);

75 Me = Me1 + Me2;

76 Ke = Ke1 + Ke2;

77 Fe = Fe1 + Fe2;

78 end

79

80 nodes = [i, i+1];

81

82 K(nodes, nodes) = K(nodes, nodes) + Ke;

83 M(nodes, nodes) = M(nodes, nodes) + Me;

84 F(nodes) = F(nodes) + Fe;

85 end

86

87 keep = setdiff(1:n_elem+1, reduce);

88

89 dom.A = 1/dt * M(keep, keep) + K(keep, keep);

90 dom.M = M(keep, keep);

91 dom.F = F(keep);

92 dom.X = X0(keep);

93 dom.u = X0;

94 dom.n_nodes = size(dom.A, 1);

95 end

Coupled Problems 54 Numerical Methods in Engineering

Eduard Gómez Escandell June 16, 2020

96

97 function [Me, Ke, Fe] = local_matrices(G, k, f, h)

98 Ke = zeros(2);

99 Me = zeros(2);

100 Fe = zeros(2,1);

101

102 for g = G

103 gradN = g.gradN * 2/h;

104

105 Ke = Ke + g.w * k * (gradN' * gradN);

106 Me = Me + g.w * (g.N' * g.N);

107 Fe = Fe + g.w * g.N' * f;

108 end

109

110 Me = h * Me;

111 Ke = h * Ke;

112 Fe = h * Fe;

113 end

114

115 function q = create_quadrature()

116 gpoints = [-1,1]*sqrt(1/3);

117 Nfun = {@(x)(0.5 - 0.5*x), @(x)(0.5 + 0.5*x)};

118 Nder = [-0.5,0.5];

119

120 q = [[],[]];

121

122 for i = 1:2

123 x = gpoints(i);

124 q(i).w = 0.5;

125 q(i).x = x;

126 q(i).N = [Nfun{1}(x), Nfun{2}(x)];

127 q(i).gradN = Nder;

128 end

129 end

Coupled Problems 55 Numerical Methods in Engineering

	Transmission Conditions
	Euler-Bernoulli beam theory
	The Maxwell problem
	The Navier equations

	Domain Decomposition Methods
	Schwartz method
	Dirichlet-Neumann Coupling
	Poisson equation

	Coupling of Heterogeneous Problems
	Plane stress
	 Dirichlet to Neumann operators

	Monolithic and Partitioned Schemes in Time
	FEM discretization
	Domain decomposition
	Dirichlet-to-Neumann operator
	Neumann-to-Dirichlet operator
	Staggered iteration scheme
	Substitution and iteration by subdomain
	Nitsche method for boundary conditons

	Operator Splitting Techniques
	FEM discretization
	Operator splitting technique
	Splitting error

	Fractional Step Methods
	Optimal alpha
	Error

	ALE Formulations
	Introduction
	Navier-Stokes
	Bibliographical search

	Fluid-Structure Interaction
	Added mass effect
	Aitken relaxation scheme
	Lagrange multipliers
	Split elements

	Appendix
	Code for Operator splitting
	Code for Aitken relaxation scheme comparisson
	Code for Lagrange multipliers conditioning analysis
	Code for elements with heterogeneous physical properties

