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1 Transmission conditions

1.1 First exercise
The deflection v(x) of an Euler-Bernoulli beam is governed by the differential equation

EI
d4v

dx4 = f

where EI is a mechanical property of the beam section and the beam material and f is the distributed load.
Assuming for example that the beam is clamped at x = 0 and x = L, the Principle of Virtual Work (PTV) states
that the solution v(x) satisfies

EI

∫ L

0

d2δv

dx2
d2v

dx2 =
∫ L

0
δvf

for all δv(0) = δv(L) = 0 and dδv(0)
dx = dδv(L)

dx = 0

(a) Postulate the space of functions where both v and δv must belong. Justify the answer.

(b) If [0, L] = [0, P ] ∪ (P,L] obtain the transmission conditions at P implied by regularity requirements.

(c) Obtain the transmission conditions at P that follow by imposing in the PTV integral is additive.

1.1.1 First task

Postulate the space of functions where both v and δv must belong. Justify the answer.

Our first objective would be to find functions belonging to the space of functions whose integrals are bounded.
These functions are the L2(Ω) functions :

L2(Ω) = {v(x) :
∫

Ω
v2 dΩ <∞}

Both u and δu functions must belong to the space of functions whose second derivatives can be integrated, these
Sobolev spaces are known as H2(Ω).

H2(Ω) = {v ∈ L2(Ω) : |∇2v| ∈ L2(Ω)}

Then if both δv and v belong to the H2(Ω) subspace, then their product belongs to the same subspace, which is
in L2: ∫

Ω
∇2δv · ∇2v dΩ <∞

1.1.2 Second task

If [0, L] = [0, P ] ∪ (P,L] obtain the transmission conditions at P implied by regularity requirements.

The idea is to split the domain in two different portions, one from [0, P ] and the other one from (P,L]. It is
important to state first, that physically there is no such discontinuity, therefore we expect no jump between these
two portions.

Ω1 = [0, P ]

Ω2 = (P,L]

The first transmission conditions for an H2(Ω) continuous function is that the displacements and fluxes (rotations)
in each side of the domain at a distance very small from the division say ε is equal in both sides:

[v] = 0[
dv

dx

]
= 0

1
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[v] = lim
ε→0

v(P + ε · n1)− v(P + ε · n2)[
dv

dx

]
= lim
ε→0

dv(P + ε · n1)− dv(P + ε · n2)
dx

Both conditions imposed with strong continuity.

1.1.3 Third task

Obtain the transmission conditions at P that follow by imposing in the PTV integral is additive.

When considering the strong form of the problem, EI d4v/dx4 = f for each of the domains:∫
Ω1

δv · EI d4v

dx4 dΩ1 =
∫

Ω1

δv f dΩ1

Applying integration by parts:

EI ·
[∫

Ω1

d

dx

(
δv

d3v(x)
dx3

)
dΩ−

∫
Ω1

dδv

dx

d3v(x)
dx3 dΩ

]
=
∫

Ω1

δv f dΩ

Applying integration by parts again:

EI ·
[∫

Ω1

d

dx

(
δv

d3v(x)
dx3

)
dΩ1 −

∫
Ω1

d

dx

(
dδv

dx

d2v(x)
dx2

)
dΩ1 +

∫
Ω1

d2δv

dx2
d2v(x)
dx2 dΩ1

]
=
∫

Ω1

δv f dΩ1

Applying Gauss Divergence Theorem and considering that the flux in the boundary is zero as a problem datum,
the only new boundary Γ = Γ12:

EI ·
[∫

Γ12

n1

(
δv

d3v(x)
dx3

)
dΓ12 −

∫
Γ12

n1

(
dδv

dx

d2v(x)
dx2

)
dΓ12 +

∫
Ω1

d2δv

dx2
d2v(x)
dx2 dΩ1

]
=
∫

Ω1

δv f dΩ1

Applying the exact same procedure in Ω2, adding both equations and stating Ω = Ω1 + Ω2:

EI·
[∫

Ω

d2δv

dx2
d2v(x)
dx2 dΩ−

∫
Γ12

[
n1

(
δv

d3v(x)
dx3 + dδv

dx

d2v(x)
dx2

)
+ n2

(
δv

d3v(x)
dx3 + dδv

dx

d2v(x)
dx2

)]
dΓ12

]
=
∫

Ω
δv f dΩ

(1)
From Eq. (1) it can be seen that the first term in the left and the only term in the right are the same as in problem
statement equation, therefore they can be canceled out.

EI ·
∫

Γ12

[
n1 ·

(
δv

d3v(x)
dx3 + dδv

dx

d2v(x)
dx2

)
+ n2 ·

(
δv

d3v(x)
dx3 + dδv

dx

d2v(x)
dx2

)]
dΓ12 = 0 (2)

Given the fact that the ’virtual displacements’ are every arbitrary displacements that satisfy δv(0) = δv(L) = 0
and dδv(0)/dx = dδv(L)/dx = 0, which provides no restriction to any relevant Γ12 splitting of the domain.

EI ·
∫

Γ12

[
δv ·

(
n1 ·

d3v(x)
dx3 + n2 ·

d3v(x)
dx3

)
+ dδv

dx
·
(
n1 ·

d2v(x)
dx2 + n2 ·

d2v(x)
dx2

)]
= 0 (3)

Then, for the equality in Eq. (3) to hold, the discretization should be regular enough to accomplish n = n1 = −n2,
which is granted for δv and v are H2(Ω) functions, this condition holds. And the conditions obtained are:

n1 ·
d3v(x)
dx3 = n2 ·

d3v(x)
dx3 (4)

n1 ·
d2v(x)
dx2 = n2 ·

d2v(x)
dx2 (5)

where Eq. (4) is the continuity in shear-associated strains and Eq. (5) is the continuity of the curvature in the
deformation which is related to the bending moment of the beam. Both conditions imposed with weak continuity.

2
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1.2 Second exercise
The Maxwell problem consists in finding a vector field u : Ω→ R3 such that

ν ∇×∇× u = f in Ω
∇ · u = 0 in Ω

n × u = 0 in ∂Ω

where ν > 0, f is a divergence-free force field and n the unit external normal. Equation∇·u = 0 is in fact redundant.

1.2.1 First task

Write a variational statement of the problem. Postulate the space of functions where u must belong. Justify the
answer.
To analyse the problem the first equation will be multiplied by a test function and integrate to get to its weak
form as made in section 1.1.1 to find the minimum continuity of the functions.∫

Ω
δu · (ν ∇×∇× u) dΩ =

∫
Ω
δu · f dΩ

Using the expression of the divergence of a curl of two vectors w and v:

∇ · (v × w) = w · (∇× v)− v · (∇× w)

Using v and w equal to:
v = ∇× u

w = δu

We get to the following expression:

∇ · (∇× u× δu) = (∇× u) · (∇× δu)− δu · (∇×∇× u)

And re-writing it:
δu · (∇×∇× u) = (∇× u) · (∇× δu)−∇ · (∇× u× δu)

The integral expression can be written as:∫
Ω
ν (∇× δu) · (∇× u) dΩ−

∫
Ω
ν ∇ · (δu×∇× u) dΩ =

∫
Ω
δu · f dΩ

Using Gauss divergence theorem in the second part of the integral:∫
Ω
ν (∇× δu) · (∇× u) dΩ−

∫
∂Ω
ν n · (δu×∇× u) d∂Ω =

∫
Ω
δu · f dΩ (6)

Using the vector product property: X · (Y × Z) = Z · (X × Y ) = Y · (Z ×X) and applying it to the integral on
the boundary considering X = n, Y = δu×∇ and Z = u:∫

Ω
(∇× δu) · (∇× u)dΩ +

∫
∂Ω

(δu×∇) · (u× n) d∂Ω =
∫

Ω
δu · f dΩ

where the product n×u = −u×n = 0 given that the test functions can be any function that comply the boundary
conditions of the problem.
Finally we get to the expression in Eq. (7) from which the continuity conditions can be obtained.∫

Ω
(∇× δu) · (∇× u) dΩ =

∫
Ω
δu · f dΩ (7)

3
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Both u and δu need to belong to a space whose integrals are bounded. In this case, the operation being performed
is not a dot product but a cross product.

L2(Ω) = {u(x) :
∫

Ω
||∇ × u||2 dΩ <∞}

Because the cross product involves only first order derivatives:

∇× u =
(
∂u(x)
∂x1

; ∂u(x)
∂x2

; ...; ∂u(x)
∂xn

)
It is enough for the to belong to first order Hilbert spaces

Both u and δu functions must belong to the space of functions whose first derivatives can be integrated, these
Sobolev spaces are known have to comply the continuity conditions of a cross-derivative of a normal H1(Ω) space,
and we can name it as HCurl(Ω).

HCurl(Ω) = {u ∈ L2(Ω) : |∇ × u| ∈ L2(Ω)}

1.2.2 Second task

If Γ is a surface that intersects Ω, obtain the transmission conditions across Γ implied by regularity requirements.
From problem statement we know the first transmission condition:

[n× u]Γ = 0

Imposed in a strong way. If we want to estimate how a this continuity affects the problem, a small region of
interest may be considered x0 ± ε.

[n× u] = lim
ε→0

[(n× u(x0 + ε))− (n× u(x0 − ε))]

If this continuity does not hold, we can estimate the value of the jump and the values of each of the domains Ω1
and Ω2 as:

[n× u] =


∇× u1 in Ω1

(1/2 · ε) · [(n× u(x0 + ε))− (n× u(x0 − ε))] x0 − ε ≤ x ≤ x0 + ε

∇× u2 in Ω2

Now integrating this expression:∫
Ω

(n× u)2
dΩ =

∫
Ω1

(n× u1)2
dΩ1+

∫ x0+ε

x0−ε
(1/2 · ε)·[(n× u(x0 + ε))− (n× u(x0 − ε))] dx+

∫
Ω2

(n× u1)2
dΩ2

Considering additive integrals:∫
Ω

(n× u)2
dΩ =

∫
Ω1+Ω2

(n× u)2
d(Ω1 + Ω2) +

∫ x0+ε

x0−ε
(1/2 · ε) · [(n× u(x0 + ε))− (n× u(x0 − ε))] dx

As LHS is equal to the first term of the LHS:∫ x0+ε

x0−ε
(1/2 · ε) · [(n× u(x0 + ε))− (n× u(x0 − ε))] dx = 0

Which clearly states that if u is not continuous in the boundaries, the transmission condition is not complied (as
ε→ 0 then 1/ε→∞).

4
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1.2.3 Third task

Obtain the transmission conditions across Γ that follow by imposing in the variational form of the problem that
the integral is additive.

To obtain the transmission conditions the weak form of the problem equations are used in both of the domains.∫
Ω1

ν (∇× δu)·(∇× u) dΩ1+
∫
∂Ω1

ν (δu×∇)·(u1 × n1) d∂Ω1+
∫
∂Ω12

ν (δu×∇)·(u1 × n1) d∂Ω12 =
∫

Ω1

δu·fdΩ1

(8)

∫
Ω2

ν (∇× δu)·(∇× u) dΩ2+
∫
∂Ω2

ν (δu×∇)·(u2 × n2) d∂Ω2+
∫
∂Ω12

ν (δu×∇)·(u2 × n2) d∂Ω12 =
∫

Ω1

δu·fdΩ2

(9)

Adding Eq. (8) and Eq. (9), considering that Ω1 + Ω2 = Ω, the equations fulfill the initial weak form of the
equations, therefore the terms (∇×δu)·(∇×u) dΩ and δu·f dΩ are cancelled out. Also, assuming ∂Ω1+∂Ω2 = ∂Ω
and imposing boundary boundary conditions (u× n = 0). We finally get to the expression in Eq. (10)∫

∂Ω12

ν (δu1 ×∇) · (u1 × n1) d∂Ω12 +
∫
∂Ω12

ν (δu2 ×∇) · (u2 × n2) d∂Ω12 = 0

Re-writting the equation, using properties of cross-product:∫
∂Ω12

ν δu1 · (∇× u1 × n1) d∂Ω12 +
∫
∂Ω12

ν δu2 · (∇× u2 × n1) d∂Ω12 = 0 (10)

[ν (∇× u× n)] = 0 (11)

In Eq. (11) the second transmission condition is shown, and it is imposed weakly on the splitting boundary.

1.3 Third exercise
The Navier equations for an elastic material can be written in three different ways:

−2µ∇ · (ε(u))− µ∇(∇ · u) = ρb

−µ∆u− (λ+ µ)∇(∇ · u) = ρb

µ∇× (∇× u)− (λ+ 2µ)∇(∇ · u) = ρb

where u is the displacement field, ε(u) is the symmetric part of ∇u, λ and µ the Lamé coefficients, ρ the density
of the material and b the body forces. Let us assume that u = 0 on ∂Ω.

1.3.1 First task

Write down the variational form of the previous equations in the appropriate functional spaces.
First equation:
The variational form of the equation considering both λ and µ constants:

ε(u) = ∇Su = 1
2
(
∇u +∇Tu

)
∫

Ω
−2µ w ∇ · ∇Su dΩ−

∫
Ω

wµ∇(∇ · u) dΩ =
∫

Ω
wρ · bdΩ

Integrating first term by parts:∫
Ω

w ∇ · ∇Su dΩ =
∫

Ω
∇ · (w · ∇Su) dΩ−

∫
Ω
∇w : ∇Su dΩ

5
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Using Gauss Theorem: ∫
Ω

w ∇ · ∇Su dΩ =
∫

Γ
n · (w · ∇Su) dΓ−

∫
Ω
∇w : ∇Su dΩ

Integrating second term by parts:∫
Ω

w ∇(∇ · u) dΩ =
∫

Ω
∇ · (w (∇ · u)) dΩ−

∫
Ω

(∇ ·w) (∇ · u)dΩ

Using Gauss Theorem: ∫
Ω

w ∇(∇ · u) dΩ =
∫

Γ
n · (w (∇ · u)) dΓ−

∫
Ω

(∇ ·w) (∇ · u)dΩ

Replacing in the general equation, and recalling that u = 0 in Γ = ∂Ω:

2µ
∫

Ω
∇w : ∇Su dΩ + µ

∫
Ω

(∇ ·w) (∇ · u) dΩ =
∫

Ω
wρ · b dΩ (12)

In Eq. (12) we determine by similarity of the operations involved (comparing with previous exercises gradients of
functions) that both w and u must belong to the subspace H1(Ω).

Second equation:

−
∫

Ω
w µ ∆u dΩ−

∫
Ω

w (λ+ µ)∇(∇ · u) dΩ =
∫

Ω
w ρ b dΩ

Applying integration by parts in the first term of the previous equation:∫
Ω

w ∆u dΩ =
∫

Ω
w ∇2u dΩ =

∫
Ω
∇ · (∇u ·w)dΩ−

∫
Ω
∇w : ∇u dΩ

Using Gauss Theorem: ∫
Ω

w ∇ · ∇u dΩ =
∫

Γ
n · (∇u ·w)dΓ−

∫
Ω
∇w : ∇u dΩ

Applying integration by parts in the second term of the equation:∫
Ω

w ∇(∇ · u) dΩ =
∫

Ω
∇ · (w (∇ · u)) dΩ−

∫
Ω

(∇ ·w)(∇ · u) dΩ

Using Gauss Theorem: ∫
Ω

w ∇(∇ · u) dΩ =
∫

Γ
n · (w (∇ · u)) dΓ−

∫
Ω

(∇ ·w)(∇ · u) dΩ

Replacing in the general equation, and recalling that u = 0 in Γ = ∂Ω:∫
Ω
µ ∇w : ∇u dΩ +

∫
Ω

(λ+ µ) (∇ ·w)(∇ · u) dΩ =
∫

Ω
w ρb dΩ (13)

In Eq. (13) we determine that both w and u must belong to the subspace H1(Ω).

Third equation: ∫
Ω
µ ∇× (∇× u) dΩ−

∫
Ω

(λ+ 2µ) ∇ (∇ · u) dΩ =
∫

Ω
w ρb dΩ

Before starting integrating by parts, in the first term a curl of the curl of a vector property will be used:

∇× (∇× X) = ∇(∇ ·X)−∆X = ∇(∇ ·X)−∆X = ∇(∇ ·X)−∇2X

6
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The replacing in the initial equation:∫
Ω
µ ∇(∇ · u) dΩ−

∫
Ω
µ∇2u dΩ−

∫
Ω

(λ+ 2µ) ∇ (∇ · u) dΩ =
∫

Ω
w ρb dΩ

Canceling the first term:

−
∫

Ω
µ∇2u dΩ−

∫
Ω

(λ+ µ) ∇ (∇ · u) dΩ =
∫

Ω
w ρb dΩ

Which is again the second equation, therefore the procedure is the same and so the results, shown in Eq. (13).

1.3.2 Second task

If Γ is a surface that intersects Ω, obtain the transmission conditions across Γ that follow by imposing in the
variational form of the problem that the integral is additive.
First equation:

To obtain the transmission conditions of the equations the full expressions before taking into account the boundary
conditions have to be used, as shown in Eq. (14) in each subdomain.

2µ
∫

Ω
∇w : ∇Su dΩ+

∫
Γ

2µ n · (w ·∇Su) dΓ+µ

∫
Ω

(∇·w) (∇·u) dΩ+
∫

Γ
µn · (w (∇·u)) dΓ =

∫
Ω

wρ ·b dΩ (14)

The boundary of the subdomains 1 and 2 are splitted into Γi = ∂Ωi + Γ12, where ∂Ωi belongs to the given
Boundary conditions and Γ12 is the new boundary where the transmission conditions have to be obtained. The
fact that u = 0 in ∂Ωi is taken into account for simplicity.

Subdomain 1:

2µ
∫

Ω1

∇w1 : ∇Su1 dΩ1+
∫

Γ12

2µ n1·(w1·∇Su1) dΓ12+µ
∫

Ω1

(∇·w1) (∇·u1) dΩ1+
∫

Γ12

µ n1·(w1 (∇·u1)) dΓ12 =
∫

Ω1

w1ρ·b dΩ1

Subdomain 2:

2µ
∫

Ω2

∇w2 : ∇Su2 dΩ2+
∫

Γ12

2µ n2·(w2·∇Su2) dΓ12+µ
∫

Ω2

(∇·w2) (∇·u2) dΩ2+
∫

Γ12

µ n2·(w2 (∇·u2)) dΓ12 =
∫

Ω2

w2ρ·b dΩ2

Adding both expressions and considering the additive integrals:

2µ
∫

Ω
∇w : ∇Su dΩ = 2µ

∫
Ω1

∇w1 : ∇Su1 dΩ1 + 2µ
∫

Ω2

∇w2 : ∇Su2 dΩ2

µ

∫
Ω

(∇ ·w) (∇ · u) dΩ = µ

∫
Ω1

(∇ ·w1) (∇ · u1) dΩ1 + µ

∫
Ω2

(∇ ·w2) (∇ · u2) dΩ2∫
Ω

wρ · b dΩ =
∫

Ω1

w1ρ · b dΩ1 +
∫

Ω2

w2ρ · b dΩ2

We get to:∫
Γ12

2µ n1·(w1·∇Su1) dΓ12+
∫

Γ12

µ n1·(w1 (∇·u1)) dΓ12+
∫

Γ12

2µ n2·(w2·∇Su2) dΓ12+
∫

Γ12

µ n2·(w2 (∇·u2)) dΓ12 = 0

Considering that both wi can be equal as long as they fulfill the Dirichlet boundary conditions:∫
Γ12

w(2µ n1 · ∇Su1 + 2µ n2 · ∇Su2) dΓ12

∫
Γ12

w(µ n1∇ · u1 + µ n2∇ · u2) dΓ12

7
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The transmission conditions weakly impossed are shown in Eq. (15) and (16).[
2µ n · ∇Su

]
= 0 (15)

[µ n(∇ · u)] = 0 (16)

Second equation:

In this case, directly writing the non-zero terms in the addition of the splitting of subdomains 1 and 2, as shown
in Eq. (17)∫

Γ12

µ n1 (∇u1·w1) dΓ12+
∫

Γ12

(λ+µ) n1(w1(∇·u1) dΓ12+
∫

Γ12

µ n2 (∇u2·w2) dΓ12+
∫

Γ12

(λ+µ) n2(w2(∇·u2) dΓ12

(17)
Considering the same weighting function in both subdomains:∫

Γ12

w (µ n1 · ∇u1 + µ n2 · ∇u2) dΓ12∫
Γ12

w ((λ+ µ) n1 (∇ · u1) + (λ+ µ) n2 (∇ · u2)) dΓ12

The transmission conditions weakly impossed are shown in Eq. (18) and (19).

[µ n · ∇u] = 0 (18)

[(µ+ λ) n (∇ · u)] = 0 (19)

And the third equation has the same transmission conditions as shown to have the same equation than the second
when using the curl property.

2 Domain decomposition methods

2.1 First exercise
Consider Problem 1 of Section 1. Let [0, L] = [0, L1] ∪ [L2, L], with L2 < L1.

2.1.1 First task

Write down an iteration-by-subdomain scheme based on a Schwarz additive domain decomposition method.
The Schwarz additive domain decomposition method is based on overlapping domain decomposition as seen in
Figure 2a. Our case, is a 1D problem, and in Figure 2b closer geometry is shown, where Ω1 = [0, L1] and
Ω2 = [L1, L2].

(a) Split of the domain

(b) Variation of the solution

Figure 1: Overlapping domain decomposition.
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In subdomain 1

EI
d4vk1 (x)
dx4 = f in Ω

uk1 = u1 on Γ1

uk1 = uk−1
2 on Γ12

In subdomain 2

EI
d4vk2 (x)
dx4 = f in Ω

uk2 = u2 on Γ1

uk2 = ul1 on Γ12

where l = k for Gauss-Seidel scheme and l = k − 1 for Jacobi.

2.1.2 Second task

Obtain the matrix version of the previous scheme once space has been discretized using finite elements.
Considering we have reached the expressions corresponding to the linear system of equations A · x = b where A
represents the matrix version of the strong form of the problem of interest and x are the unknown nodal values
we aim to find.
After splitting these domains, we can calculate the matrices corresponding to domain 1 (A11 in Ω1) and domain
2 (A22 in Ω2), also defining the values of the matrices in the boundaries (A1Γ in Ω1 and A2Γ in Ω2).

Aii = RTi ·A ·Ri
with a restrictor operator Ri that suppress the whole space of functions V h (Ω)→ V h(i) (Ω).
Then the iterative scheme of the solution is:

[
A11 A1Γ

AΓ1 A
(1)
ΓΓ

]
·
[
Uk1
UkΓ

]
=
[

F1

FΓ −AΓ2 · U (k−1)
2 −A(2)

ΓΓ · U
(k−1)
Γ

]
A22 · Uk2 = F2 −A2Γ · U lΓ

where l = k − 1 for Jacobi scheme and l = k for Gauss-Seidel.

2.2 Second exercise
Consider the problem 2 of Section 1. Let Γ be a surface that intersects Ω.

2.2.1 First task

Write down an iteration-by-subdomain scheme based on the Dirichlet-Neumann coupling.
The Maxwell problem consists in finding a vector field u : Ω→ R3 such that:

ν ∇×∇× u = f in Ω
∇ · u = 0 in Ω
n× u = 0 on Γ

The iteration by domain consists in analysing the in both domains Dirichlet conditions and Neumman transmitted
among them.

[Ω1] =


ν∇×∇× uk1 = f1 in Ω1

∇ · uk1 = 0 in Ω1

n1 × uk1 = 0 on Γ1

n1 × (∇× uk1) = n2 × (∇× uk+1
2 ) on Γ12 [Neumann BC]

[Ω2] =


ν∇×∇× uk2 = f1 in Ω2

∇ · uk2 = 0 in Ω2

n2 × uk2 = 0 on Γ2

n2 × uk2 = n1 × uk1 on Γ12 [Dirichlet BC]

9
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2.2.2 Second task

Obtain the expression of the Steklov-Poincaré operator of the problem.
To obtain the Steklov-Poincaré operator, a description of u is proposed as:

ui = u0
i + ũi for i = 1, 2

Then, the problem is written as:

ν ∇×∇× u0
i = f in Ωi ν ∇×∇× ũi = 0 in Ωi

∇ · u0
i = f in Ωi ∇ · ũi = 0 in Ωi

ni × u0
i = 0 in Γi ni × ũi = ui in Γi

ni × u0
i = 0 in Γ12 ni × ũi = ϕ in Γ12

The original problem is equivalent to this modification if ϕ complies: ui = u0
i + ũi = u|Ωi

. To accomplish this,
the second transmission condition obtained must be satisfied:

[ν n (∇× u)] = 0

ν n
(
∇× (u0

1 + ũ1)
)

= ν n
(
∇× (u0

2 + ũ2)
)

ν n (∇× (ũ1 − ũ2)) = ν n
(
∇× (−u0

1 + u0
2)
)

Then we state: ϕ = ν n (∇× (ũ1 − ũ2)), and G = ν n
(
∇× (−u0

1 + u0
2)
)
. The continuity and injection of the

functions is:
S = H1/2(Γ12)→ H−1/2(Γ12)

G ∈ H−1/2(Γ12)

The Steklov-Poincaré operator for the problem reads:

Sϕ = G

2.2.3 Third task

Obtain the matrix version of the previous scheme once space has been discretized using finite elements.
Considering Eq. (6) on both subdomains and imposing Dirichlet Boundary conditions of the whole domain, the
matrices will be obtained from the following equations.∫

Ω1

ν (∇×w) · (∇× u) dΩ1 −
∫
∂Γ12

ν w · (∇× u1 × n1) dΓ12 =
∫

Ω1

w · f dΩ1

∫
Ω2

ν (∇×w) · (∇× u) dΩ2 −
∫
∂Γ12

ν w · (∇× u2 × n2) dΓ12 =
∫

Ω1

w · f dΩ2

The Dirichlet-Neumann algorithm imposes the strongly Dirichlet conditions on Ω2 and flux (Neumann) conditions
weakly on Ω1, and the algorithm is as follows.

A11 A1Γ 0
AΓ1 AΓΓ AΓ2

0 A2Γ A22

 ·
U1
UΓ
U2

 =

F1
FΓ
F2


Integrating by subdomains, imposing Neumann conditions on Ω1:[

A11 A1Γ

AΓ1 A
(1)
ΓΓ

]
·
[
Uk1
UkΓ

]
=
[

F1

FΓ −AΓ2 · Uk−1
2 −A(2)

ΓΓ · U
k−1
Γ

]
And imposing Dirichlet conditions in Ω2 with l = k Gauss-Seidel and l = k − 1 Jacobi scheme:

A22 · Uk2 = F2 −A2Γ · U lΓ
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2.3 Third exercise
Consider the problem of finding u : Ω→ R such that:{

−k∆u = f in Ω
u = 0 on ∂Ω

where k > 0. Let Γ be a surface crossing Ω.

2.3.1 First task

Write down an iteration-by-subdomain scheme based on the Dirichlet-Robin coupling.
The idea of the Dirichlet-Robin coupling requires the strong imposition of Dirichlet conditions in Ω2 and the
relaxed Robin conditions over the flux in Ω1. Considering the problem being study it is known the transmission
conditions as:

[u] = 0[
k
∂u

∂n

]
= 0

Then the iterative scheme method, applying Robin conditions in Ω1:
−k1∆u1 = f in Ω1

u1 = 0 on ∂Ω1

k1 · ∂u
k
1

∂n + γ uk1 = k2 ·
∂uk−1

2
∂n + γ uk−1

2 on Γ12

And applying Dirichlet conditions in Ω2, with l corresponding to Gauss-Seidel or Jacobi Schemes:
−k2∆u2 = f in Ω2

u2 = 0 on ∂Ω2

uk2 = u
(l)
1 on Γ12

2.3.2 Second task

Obtain the matrix version of the previous scheme once space has been discretized using finite elements.
The weak form of the problem will allow to calculate the matrices by means of the interpolation functions of the
finite elements method. ∫

Ω1

∇w · (k∇u1) dΩ1 −
∫

Γ12

w (n1 · ∇u1) dΓ12 =
∫

Ω1

w · f dΩ1∫
Ω2

∇w · (k∇u2) dΩ2 −
∫

Γ12

w (n2 · ∇u2) dΓ12 =
∫

Ω2

w · f dΩ2

Using these integrals and:

u ∼ uh(x) =
Nnodes∑
i=1

ui ·Ni(x)

Same weighting functions and interpolation functions (Galerkin method):

w = Nj(x)

Then the matrices will be in the general shape of:

K
(i)
jk =

∫
Ω(i)
∇w · (k∇u(i)) dΩ(i) = wT

∫
Ω(i)

(∇Nj)T · (ν ∇Nk) dΩ(i) · u(i)

As stated previously, the domain Ω1 applies the Robin conditions and the subdomain Ω2 applies the Dirichlet
boundary conditions, to clarify this the weak form of this coupling is written as.∫

Ω1

∇w · (k∇u1) dΩ1 −
∫

Γ12

w (n2 · ∇u2 + γ · uk−1
2 ) dΓ12 =

∫
Ω1

w · f dΩ1

11
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Ω2

∇w · (k∇u2) dΩ2 =
∫

Ω2

w · f dΩ2

Afterwards the matrix of the problem reads:

A11 A1Γ 0
AΓ1 AΓΓ AΓ2

0 A2Γ A22

 ·
U1
UΓ
U2

 =

F1
FΓ
F2


Integrating by subdomains, imposing Robin conditions on Ω1:[

A11 A1Γ

AΓ1 A
(1)
ΓΓ

]
·
[
Uk1
UkΓ

]
=
[

F1

FΓ − AΓ2 · Uk−1
2 −A(2)

ΓΓ · U
k−1
Γ

]
And imposing Dirichlet conditions in Ω2 with l = k Gauss-Seidel and l = k − 1 Jacobi scheme:

A22 · Uk2 = F2 −A2Γ · U lΓ

2.3.3 Third task

Obtain the Schur complement as discrete version of the Steklov-Poincaré operator.

S = H1/2(Γ12)→ H−1/2(Γ12)

G ∈ H−1/2(Γ12)
The Steklov-Poincaré operator for the problem reads:

Sϕ = G

where S and G are obtained by finding the values of U1 and U2 from first and third equations of the general matrix
in the previous task, and replacing in the second equation:

S =
(
AΓΓ −AΓ1A

−1
11 A1Γ −AΓ2A

−1
22 A2Γ

)
G = FΓ −AΓ1A

−1
11 F1 −AΓ2A

−1
22 F2

2.3.4 Fourth task

Identify the preconditioner for the Schur complement equation arising from the iterative scheme of section (2.3.1).
To obtain the preconditioner for the Dirichlet-Robin the Schur matrix is written as:

S = S1 + S2

Si = A
(i)
ΓΓ −A

(i)
Γ i(A

−1
i i )Ai Γ

Considering the Gauss-Seidel scheme, the first and third equations of the general matrix are:

Uk1 = A−1
11 · (F1 −A1Γ UkΓ)

Uk−1
2 = A−1

22 · (F2 −A2Γ Uk−1
Γ )

Replacing these values in the second equation:

AΓ1U
k
1 +A

(1)
ΓΓU

k
Γ = FΓ −AΓ2U

k−1
2 −A(2)

ΓΓU
k−1
2

AΓ1A
−1
11 · (F1 −A1Γ UkΓ) +A

(1)
ΓΓU

k
Γ = FΓ −AΓ2A

−1
22 · (F2 −A2Γ Uk−1

Γ )−A(2)
ΓΓU

k−1
Γ

(A(1)
ΓΓ −AΓ1A

−1
11 A1Γ) UkΓ = (FΓ −AΓ1A

−1
11 F1 −AΓ2A

−1
22 F2)− (A(2)

ΓΓ −AΓ2A
−1
22 A2Γ UkΓ)Uk−1

Γ

S1 U
k
Γ = G− S2U

k−1
Γ

S1 U
k
Γ = G− (S − S1)Uk−1

Γ

We get to the iterative scheme:
UkΓ = Uk−1

Γ + S−1
1 · (G− S · Uk−1

Γ )
That is a Richardson iteration for the Schur complement with preconditioner P = S1.

12



Homework - Coupled Problems Mariano Tomás Fernandez

3 Coupling heterogeneous problems

3.1 First exercise
Consider the beam described in Problem 1 of Section 1. Apart from being clamped at x = 0 and x = L, the beam
is supported on an elastic wall that occupies the square [0, L] x [−L, 0], where y = 0 corresponds to the beam axis.
The wall is clamped everywhere except on the upper wall, where the beam is. The wall displacements in the x− and
y−directions are u and v, respectively, and the elastic properties E (Young modulus) and ν (Poisson’s coefficient).
No loads are applied on the wall, except for those coming from the beam.

3.1.1 First task

Write down the equations in the wall assuming a plane stress behavior.
Considering elastic wall behaviour it can be written:

u =
[
u
v

]
 εxεy
γxy

 =

 ∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x


Then the plane-stresses description is:σxσy

τxy

 = E

1− ν2

1 ν 0
ν 1 0
0 0 (1− ν)/2

 εxεy
γxy


The momentum equation for the problem reads:

∇ · σ + b = 0

where b represents the body forces of the problem.
For the weak form of the problem, the boundary conditions are everywhere Dirichlet but in the top where Neumann
boundary conditions of normal traction are applied.

3.1.2 Second task

Write down the equations for the beam modified because of the presence of the wall.
The general Euler-Bernoulli equations now needs to take into account the reaction of the elastic deformable wall
which will be related to the vertical deformation v:

EI
d4v

dx4 = f −R(v)

EI
d4v

dx4 = f − σwallY · v

the boundary conditions for the beam remain unchanged v(0) = v(L) = dv(0)/dx = dv(L)/dx = 0.

3.1.3 Third task

Obtain the adequate transmission conditions for v and the normal component of the traction on the wall at y = 0.
The transmission conditions to couple a Bernoulli-Euler with an elastic wall will require the strong imposition of
displacements and rotations and the weak imposition of bending moment and shear forces.
First transmission condition for v reads:

vB(x) = vW (x, y = 0)
Afterwards, the tractions between the bottom face of the beam and the upper face of the wall, in contact need to
ensure weakly. For this end the integration of the strong form describing the wall behaviour is shown:∫

Ω
w ∇ · σ dΩ +

∫
Ω
w · b dΩ = 0

13



Homework - Coupled Problems Mariano Tomás Fernandez∫
Ω
∇w · σ dΩ−

∫
Γ
w · (σ · n) dΓ =

∫
Ω
w · b dΩ

Then the second transmission condition for the system is:

τB · nB = σ
w
· nw

(a) Scheme (b) Normals

Figure 2: Beam+Wall structure.

3.1.4 Fourth task

Suggest transmission conditions for u and the tangent component of the traction on the wall at y = 0. Discuss the
implications if this component is not assumed to be zero.
Since no friction is considered between the elements the displacements in the x-direction are different, and moreover
the tractions are also different.

[u(x)] 6= 0

[τ · nx] 6= 0

If these components are not zero, a friction term will appear and therefore the u in the wall and in the beam will
be equal, and will generate a flux of stresses between the structures.

3.2 Second exercise
Let SD and SS be the Dirichlet-to-Neumann operators for the Darcy and the Stokes problems, respectively (see the
class notes, chapter 3). The Steklov-Poincaré equation can be written as

SS(λ) = SD(λ)

where λ is the velocity on Γ, the interface between Darcy and the Stokes region.

3.2.1 First task

Obtain the discrete version of the previous equation when space is discretized using finite elements. Relate the
resulting matrices to those arising from the discretization of the Darcy and the Stokes problems separately.

In Figure 3 an sketch of the problem is shown. Also, each of the differential equations in strong form are are shown.
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Figure 3: Stokes - Darcy coupled problem.

Stokes problem: 
−ν ∆uS +∇pS = f in ΩS
∇ · uS = 0 in ΩS
uS = uS on ΓS

Darcy problem: 
uD +K · ∇ϕ = 0 in ΩD
∇ · uD = 0 in ΩD

n · us = un,D on ΓD
Deriving first the weak form of the Stokes problem:∫

ΩS

w · (−ν∆uS +∇pS) dΩS =
∫

ΩS

w · f dΩS

∫
ΩS

w · ∇uS dΩS = 0

Integrating by parts and using Divergence theorem:∫
ΩS

ν ∇w : ∇uS dΩS −
∫

ΩS

pS ∇ ·w dΩS −
∫

ΓS

w · [n · (−pS · I + ν∇uS)] dΓ =
∫

ΩS

w · f dΩS

Deriving the weak form of the Darcy problem:∫
ΩD

p · (K−1 · uD +∇ϕ) dΩD = 0

Integrating by parts and using Divergence theorem:∫
ΩD

p ·K−1 · uD dΩD +
∫

ΩD

ϕ ∇ · p dΩD −
∫

Γ
ϕ p · n dΓ = 0

The continuity of fluxes is:
n · us = n · uD

Considering a 2-dimension problem:
wS = wnSn + wτSt

pD = pnDn + pτDt

Then using these expressions on the flux boundary conditions in Stokes problem:

wS · [n · (psI − ν∇uS)] = psw
n
S − ν n · ∇uS · n wnS − ν n · ∇uS · t wtS

Doing the same for Darcy’s problem:
ϕ n · pD = ϕ pnD
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Now, the continuity of normal tractions reads, considering for any two weighting functions accomplishing Dirichlet
Boundary conditions:

ϕ = ps − ν n · ∇uS · n

The tangential component of the velocity does not need to be continuous, commonly the Balled-Joseph transmission
condition is imposed as:

ν t · (n · ∇us) = −αBJ√
K

(uS − uD) · t on Γ

It is considered that |uD| � |uS | and the multiplication (us−uD) · t ≈ us · t. Finally, the transmission conditions
on Γ are:

n · us = n · uD
ps − ν n · ∇uS · n = ϕ

us · t +
√
K

αBJ
ν t · (n · ∇us) = 0

These expressions into the weak forms would be:∫
ΩS

ν ∇wS : ∇uS dΩS−
∫

ΩS

pS ∇·wS dΩS−
∫

ΓS

wn
S ·(ps−ν n·∇uS ·n) dΓ−

∫
ΓS

wt
S ·(us ·t+

√
K

αBJ
ν t·(n·∇us)) dΓ

=
∫

ΩS

wS · f dΩS

And the incompressibility:
−
∫

ΩS

q ∇ · uS dΩS = 0

The finite element representations of the variables of interest will be of the shape shown as follows, considering
Galerkin:

uS ≈ uhS =
ndof∑
i=0

Ni · Ũsd=i
Si

· ei

pS ≈ phS =
ndof∑
i=0

Ñi · P̃ sdSi

wS =
nn∑
i=0

Ni W̃Si · ei

qS = Ñi QS

Darcy approximations:

uD ≈ uhD =
ndof∑
i=0

Ni · Ũsd=i
Di

· ei

ϕD ≈ ϕhD =
ndof∑
i=0

Ñi · Φ̃Di
· ei

wD =
nn∑
i=0

Ni

qD = Ñi QD

Using these expressions, the problems can be expressed in a discrete manner using the matrix descriptions first
for the Stokes problem: ASS ASΓ GSS

AΓS AΓΓ GΓS
GTSS GTSΓ 0

USλ
PS

 =

fSSfSΓ
hS
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The Darcy problem: ADD ADΓ GDD
AΓD AΓΓ GΓD
GTDD GTDΓ 0

UDλ
ΦD

 =

fDDfDΓ
hD


It is possible to write in a single matrix system:

ASS GSS ASΓ 0 0
GTSS 0 GΓS 0 0
AΓS GSΓ A

(S)
ΓΓ +A

(D)
ΓΓ AΓD GDΓ

0 0 ADΓ ADD GDD
0 0 GTDΓ GTDD 0



US
PS
λ
UD
ΦD

 =


fSS
hS

fSΓ + fDΓ
fDD
hD


3.2.2 Second task

Write down the matrix form of a Dirichlet-Neumann iteration-by-subdomain using the matrices of the Darcy and
the Stokes problems.
The iterative scheme reads:ASS ASΓ GSS

AΓS AΓΓ GΓS
GTSS GSΓ 0

UkSλk
P kS

 =

 fSS
fSΓ −ADD · λk−1 −AΓDU

k−1
D

hS


And the Darcy part of the algorithm:[

ADD GDD
GTDD 0

] [
UkD
ΦkD

]
=
[
fDD −ADΓλ

(l)

hD

]
where again, l = k for Gauss-Seidel and l = k − 1 for Jacobi.

3.2.3 Third task

Identify the Richardson iteration for the algebraic problem in section 3.2.1 resulting from section 3.2.2.
The Richardson iteration resulting from previous sections, have the shape: uk+1 = uk + (G− S UkΓ). In this way,
using the previous expressions:UkSλk

P kS

 =

Uk−1
S

λk−1

P k−1
S

+

 fSS

FΓ −A(D)
ΓΓ λk−1 −AΓDU

k−1
D

hS

−
ASS ASΓ GSS
AΓS AΓΓ GΓS
GTSS GSΓ 0

Uk−1
S

λk−1

P k−1
S


Then, the Darcy part of the problem can be written as:[

UkD
ΦkD

]
=
[
Uk−1
D

Φk−1
D

]
+
([
fDD −ADΓλ

(l)

hD

]
−
[
ADD GDD
GTDD 0

] [
Uk−1
D

Φk−1
D

])

4 Monolithic and partitioned schemes in time

4.1 First exercise
Consider the one-dimensional, transient, heat transfer equation:

∂u
∂t − k

∂2u
∂x2 = f in [0, 1]

u(x = 0, t) = 0
u(x = 1, t) = 0
u(x, t = 0) = 0

17
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4.1.1 First task

Discretize it using the finite element method (linear elements, element size h) for the discretization in space, and
a BDF1 scheme for the discretization in time. Write down the weak form of the problem and the resulting matrix
form of the problem, including the corresponding boundary integrals if necessary. Consider κ = 1, f = 1, δt = 1.

The time integration with discretization on time using θ method is:

∆u
∆t − θ∆ut = ∂tu

n

where ∆u = un+1 − un and ∆ut = ∂tu
n+1 − ∂tun.

Replacing these scheme into the governing equation:

∆u
∆t + θ

(
−k∂

2un+1

∂x2 − θ fn+1
)

+ (1− θ)
(
−k∂

2un

∂x2 − θ f
n

)
= 0 (20)

The previous equation allow to calculate the time integration, now it is necessary to integrating spatially the
governing equations. ∫

Ω
v ·
(
∂u

∂t
− k∂

2u

∂x2

)
dΩ =

∫
Ω
v · f dΩ

Integrating by parts: ∫
Ω
v ·
(
−k∂

2u

∂x2

)
dΩ = −

∫
Ω

∂

∂x
·
(
v · k ∂u

∂x

)
dΩ +

∫
Ω

∂v

∂x
k
∂u

∂x
dΩ

Replacing in the equation and using the divergence theorem:∫
Ω
v · ∂u

∂t
dΩ−

∫
Γ
v ·
(
k
∂u

∂x
· n
)
dΓ +

∫
Ω

∂v

∂x
k
∂u

∂x
dΩ =

∫
Ω
v · f dΩ

This expression can be written as, describing the spatial discretization of the problem.

(v, ∂tu) + k(∇v, ∇u)− < v, n · ∇u >Γ − < v, f >= 0

Replacing this equation into the time integration scheme in Eq. (20) considering Dirichlet boundary conditions,
the expression reads:(

v,
∆u
∆t

)
+ θ · (k(∇v, ∇un+1)− < v, fn+1 >) + (1− θ) · (k(∇v, ∇un)− < v, fn >) = 0

Considering the Finite Element + Galerkin description, the above expressions can be written in terms of different
matrices K, M :

K =
∫

Ω
k ∇v · ∇u dΩ ≈

n∑
i=1

n∑
j=1

k ∇NT
i · ∇Nj wgp

M =
∫

Ω
v · u dΩ ≈

n∑
i=1

n∑
j=1

k NT
i ·Nj wgp

which allows to write the complete BDF1 and considering f a constant source term, θ = 1:

(M + ∆t K) ·∆u =< v, fn+1 >

(M + ∆t K) uk+1 =< v, fn+1 > +Muk + ∆t K uk

This is the iterative scheme, and the matrices and vectors will be replaced for A = (M + ∆t K), B =< v, fn+1 >
+Muk + ∆t K uk.

uk+1 = A−1 ·B
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4.1.2 Second task

Consider a domain decomposition approach for the previous problem. The left subdomain is composed of 2 elements
(h = 0.2), while the right subdomain is composed of 3 elements (h = 0.2). Show that, if a monolithic approach is
adopted, no boundary integrals are required at the interface. From now on, we denote the values at the nodes of
the mesh as u0, u1, u2, u3, u4, u5. The interface is at u2.

Considering the split of domain given in the exercise, the weak form of the problem reads:(
v, ∂u∂t

)
Ω1

+ k(∇v, ∇u)Ω1 − k < v, n1 · ∇u >Γ12 − < v, f >Ω1= 0 in Ω1(
v, ∂u∂t

)
Ω1

+ k(∇v, ∇u)Ω1 − k < v, n2 · ∇u >Γ12 − < v, f >Ω1= 0 in Ω2

To solve the problem in a monolithic way, the two equations are sum.(
v,
∂u

∂t

)
Ω

+ k(∇v, ∇u)Ω − k (< v, n1 · ∇u >Γ12 + < v, n2 · ∇u >Γ12)− < v, f >Ω= 0

where the term: k (< v, n1 · ∇u >Γ12 + < v, n2 · ∇u >Γ12) = 0 due to the transmission conditions of the problem.

4.1.3 Third task

Obtain the algebraic form of the Dirichlet-to-Neumann operator (Steklov-Poincaré operator) for the left subdomain,
departing from given values of uni at time step n, and an interface value un+1

2 .

The time integration algorithm of the 6-noded mesh of the problem is A · Un+1 = B · Un:
A00 A01 0 0 0 0
A10 A11 A12 0 0 0
0 A21 A22 A23 0 0
0 0 A32 A33 A34 0
0 0 0 A43 A44 A45
0 0 0 0 A54 A55





Un+1
0

Un+1
1

Un+1
2

Un+1
3

Un+1
4

Un+1
5

 =


Bn0
Bn1
Bn2
Bn3
Bn4
Bn5


Considering from the given conditions that both U0 and U5 have Dirichlet homogeneous boundary conditions the
system is reduced to: 

A11 A12 0 0
A21 A22 A23 0
0 A32 A33 A34
0 0 A43 A44



Un+1

1
Un+1

2
Un+1

3
Un+1

4

 =


Bn1
Bn2
Bn3
Bn4


where node 1 is the only node in the subdomain Ω1, nodes 3, 4 are in Ω2 and node 2 is on the boundary.
The system for subdomain Ω1 is given by:[

A11 A12
A21 A22

] [
Un+1

1
Un+1

2

]
=
[
Bn1
Bn2

]
Then, solving for the first row considering there is information for Un1 and Un+1

2 :

A11 · Un+1
1 = Bn1 −A12 · Un+1

2

4.1.4 Fourth task

Obtain the algebraic form of the Neumann-to-Dirichlet operator for the right subdomain, departing from given
values of uni and an interface value for the fluxes φn+1 = k ∂xu

n+1 at the coordinate of node 2.

The second subdomain time integration scheme + fluxes conditions:A(Ω2)
22 A23 0
A32 A33 A34

0 A43 A44

Un+1
2

Un+1
3

Un+1
4

 =

Bn2 −A21 · Un+1
1 −A(Ω1)

22 · Un+1
2

Bn3
Bn4
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4.1.5 Fifth task

Write down the iterative algorithm for a staggered approach applying Dirichlet boundary conditions at the interface
to the left subdomain and Neumann boundary conditions at the interface for the right subdomain.

The staggered approach consists in sending the off-diagonal terms to the RHS of the problem using a prediction
of the variable Ũn+1

i .
AXX

n+1 = FX + CXX
n −AX∗Ũn+1

i

And the prediction can be made using a first order approach Ũn+1
i = Un or a second order Taylor expansion as

Ũn+1
i = 2Un − Un−1.

At the left side of the subdomain (Ω2) the equations are:A(Ω2)
22 A23 0
A32 A33 A34

0 A43 A44

Un+1
2

Un+1
3

Un+1
4

 =

Bn2 −A21 · Ũn+1
1 −A(Ω1)

22 · Ũn+1
2

Bn3
Bn4


At the right side of the subdomain (Ω1) the equations are:

A11 · Un+1 = Bn1 −A12 · Ũn+1
2

4.1.6 Sixth task

Do the same for a substitution and an iteration by subdomains scheme.

To introduce a substitution scheme, once the first equation is used and the value of interest is determined, this
value is replaced in the next equation instead of using prediction. At the left side of the subdomain (Ω2) the
equations are: A(Ω2)

22 A23 0
A32 A33 A34

0 A43 A44

Un+1
2

Un+1
3

Un+1
4

 =

Bn2 −A21 · Ũn+1
1 −A(Ω1)

22 · Ũn+1
2

Bn3
Bn4


At the right side of the subdomain (Ω1) the equations are:

A11 · Un+1 = Bn1 −A12 · Un+1
2

4.1.7 Seventh task

Rewrite the algebraic system associated to the left subdomain (Dirichlet boundary conditions at the interface), using
Nitsche’s method for applying the boundary conditions. How does the condition number of the resulting system of
equations vary with the penalty parameter α?

The Nitsche method enforces boundary conditions (ũ) and makes use of a version of the Penalty method (α)
maintaining the problem symmetric. The weak version of the problem obtained before is re-written as:(

v,
∂u

∂t

)
Ω1

+ k (∇v,∇u)Ω1 − k < v,n1 · ∇u >Γ12 +αk
h

(v, u)Γ12 − k < n1 · ∇v, u >Γ12=< v, f >Ω1

+αk
h

(v, ũ)Γ12 − k < n · ∇v, ũ >Γ12

In which the ũ enforces the boundary conditions. Replacing the values of the solution and the fluxes in the left
subdomain:(
v,
∂u

∂t

)
Ω1

−k (∇v,∇u)Ω1−k [v n1 · (∇u)x=0.4−v n2 · (∇u)x=0]+α
k

h
[(v u)x=0.4 − (v u)x=0]−k [(n1 · ∇v u)x=0.4

− (n2 · ∇v u)x=0] = < v, f >Ω1 +α k

h
[(v ũ)x=0.4 − (v ũ)x=0]− k [(n1 · ∇v ũ)x=0.4 − (n2 · ∇v ũ)x=0]

It is clear from the geometry of the problem (1D), the outgoing n entity has to accomplish n1 = −n2, moreover it
has to be equal to 1, but the expression will be left in terms of n.(
v,
∂u

∂t

)
Ω1

−k (∇v,∇u)Ω1−k [v n1 ·(∇u)x=0.4 +v n1 ·(∇u)x=0]+αk
h

[(v u)x=0.4 − (v u)x=0]−k [(n1 · ∇v u)x=0.4
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+ (n1 · ∇v u)x=0] = < v, f >Ω1 +α k

h
[(v ũ)x=0.4 − (v ũ)x=0]− k [(n1 · ∇v ũ)x=0.4 + (n1 · ∇v ũ)x=0]

Using Galerkin description for the weighting functions equal to those approximating the unknown of interest u, it
is possible to write the terms of the previous equation in terms of the matrices K, M .

MΩ1 ·
∂U

∂t
−KΩ1 · U − k

[
Nj

∂N2

∂x
Ux=0.4 +Nj

∂N0

∂x
Ux=0

]
+ α

k

h
[NjN2 Ux=0.4 +NjN0 Ux=0]

−k
[
∂Nj
∂x

N2 Ux=0.4 + ∂Nj
∂x

N0 Ux=0

]
= (Nj , f)Ω1 + α

k

h

[
NjN2 Ũx=0.4 +NjN0 Ũx=0

]
−k

[
∂Nj
∂x

N2 Ũx=0.4 + ∂Nj
∂x

N0 Ũx=0

]
From where it can be seen that the products between Nj ·N0, 2 will give as a result a vector as well as for their
derivatives. Considering ∂N0, 2/∂x = h/2 for linear 1D elements and simplifying the expressions.

MΩ1 ·
∂U

∂t
−KΩ1 · U + k Nj

((
α

h
N2 −

h

2

)
Ux=0.4 +

(
α

h
N0 −

h

2

)
Ux=0

)
− k∂Nj

∂x
· [N2 · Ux=0.4 +N0 · Ux=0]

= (Nj , f)Ω1 + α
k

h
Nj

[
N2 Ũx=0.4 +N0 Ũx=0

]
− k∂Nj

∂x

[
N2 Ũx=0.4 +N0 Ũx=0

]
Replacing this expression in an iterative time integration scheme using Nitsche method with Dirichlet boundary
conditions Ũ2 is replaced by the Dirichlet boundary conditions from subdomain Ω2 and imposing global Dirichlet
boundary conditions of the problem (U0 = 0, ∀ t). Using theta method for time integration, precisely BDF1
scheme.

MΩ1 ·
Un+1 − Un

∆t −KΩ1 ·Un+1+k Nj
((

α

h
N2 −

h

2

)
Un+1
x=0.4

)
−k∂Nj

∂x
N2·Un+1

x=0.4 = f+
(
α
k

h
Nj − k

∂Nj
∂x

)
N2U

n
x=0.4 (Ω2)

Condition number
As mentioned previously, the Nitsche method is better conditioned than the regular Penalty Method by enforcing
boundary conditions and including terms to make the method symmetric (even though this substract some stabil-
ity). In the case of a heat transfer equation, like this case, the parameter α > 2 ci is sufficient to ensure stability.
This parameter ci depends on the shape of the elements, for a non-stretched element ci = O(1). The value of α
needs to be devised for different physical problems.

5 Operator splitting technique

5.1 First exercise
Consider the one-dimensional, transient, convection-diffusion equation:

∂u
∂t − k

∂2u
∂x2 + ax

∂u
∂x = f in [0, 1]

u(x = 0, t) = 0
u(x = 1, t) = 0
u(x, t = 0) = 0

with k = 1, ax = 1 and f = 1.

5.1.1 First task

Discretize it in space using finite elements (3 elements) and in time (finite differences, BDF1). Solve the first
step of the problem, writing the solution as a function of the time step size δt.

The transient convection-diffusion strong form is pre-multiplied by a weighting function and then integrated by
parts to get the weak form of the problem:∫

Ω
w
∂u

∂t
dΩ−

∫
Ω
w

(
k
∂2u

∂x2

)
dΩ +

∫
Ω
w

(
ax ·

∂u

∂x

)
dΩ =

∫
Ω
wf dΩ
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The weak form of the problem reads:∫
Ω
w
∂u

∂t
dΩ +

∫
Ω

∂w

∂x
·
(
k
∂u

∂x

)
dΩ−

∫
Γ
w
∂u

∂x
· n dΓ +

∫
Ω
w

(
ax ·

∂u

∂x

)
dΩ =

∫
Ω
wf dΩ

Now, the description of these functions using finite elements and Galerkin weighting functions, and taking into
account that the time will be also discretized:

u(x) ≈ uh(x) =
nn∑
i=1

Ni(x) · Ui(t)

w(x) =
nn∑
i=1

Nj(x), ∀ Wi

Then the discrete matrices are found as:

Mij =
∫

Ω
Nj ·Ni dΩ =

nn∑
j=1

nn∑
i=1

Nj(zGP ) ·Ni(zGP ) wGP

Kij =
∫

Ω

∂Nj
∂x
· ν ∂Ni

∂x
dΩ =

nn∑
j=1

nn∑
i=1

∂Nj(zGP )
∂x

· ν ∂Ni(zGP )
∂x

wGP

Cij =
∫

Ω
Nj ax ·

∂Ni
∂x

dΩ =
nn∑
j=1

nn∑
i=1

Nj(zGP ) ax ·
∂Ni(zGP )

∂x
wGP

Fi =
∫

Ω
Nj · f dΩ =

nn∑
j=1

Nj(zGP ) · f wGP

With these definitions, introducing the fact that every boundary has an homogeneous Dirichlet condition, the
weak form of the problem can be written as:

M · ∆u
δt

+K · U + ·C · U = F

Using backward differences in time scheme:

M
∆u
δt

+ θ ·
(
K · Un+1 + C · Un+1 − Fn+1)+ (1− θ) · ( K · Un + C · Un − Fn) = 0

When using BDF1, θ = 1:

M
(
Un+1 − Un

)
+ δt

(
K · Un+1 + C · Un+1 − Fn+1) = 0

Considering f is a constant:
(M + δt ( K + C)) · Un+1 = δt F +M · Un

Considering both terms in the LFS are known, a new matrix is introduced A = (M + δt ( K + C)) and a vector
B = δtF +M · Un. Then, the iterative scheme takes the form:

A · Un+1 = B

The idea now is to solve the first step of the iterative scheme with a 3 element mesh (4 nodes for linear interpolation)
and homogeneous Dirichlet Boundary conditions in both ends (Node 0 and Node 3), this reduction of the matrices
have to be made have the whole system is calculated and the matrices assembled. Also the given values ν = 1,
ax = 1 and f = 1 are used.

Ni(ξ) =
{

1
2 (1− ξ)
1
2 (1 + ξ)

dNi(ξ)
dx

=
{
−1
2

1
2
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J = le

2
The initial condition for U(x, t = 0) = 0 therefore, in the expression solved is:

Un+1 = (M + δt (K + C))−1 · δt · F

M = le

3


1 1/2 0 0

1/2 2 1/2 0
0 1/2 2 1/2
0 0 1/2 1



K = 1
le


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1



C =


−1/2 1/2 0 0
−1/2 0 1/2 0

0 −1/2 0 1/2
0 0 −1/2 1/2



F =


1/6
1/3
1/3
1/6


Using le = 1/3 to the expressions:

A = M + δt (K + C) =
[

2/9 + 6δt 1/18− 5/2δt
1/18− 7/2δt 2/9 + 6δt

]
The inverse of a 2x2 matrix is:

A−1 = (M + δt (K + C))−1 = 1
(15/324) + (13/3) δt+ (109/4) δt2 ·

[
2/9 + 6δt −1/18 + 5/2δt

−1/18 + 7/2δt 2/9 + 6δt

]
We get to the following expression of the first iteration step of the solution:

Un+1 = A−1 · F = 1
15/108 + 13 δt+ (327/4) δt2 ·

 3
18 + 17

2 δt

3
18 + 19

2 δt


5.1.2 Second exercise

Solve the same time step by using a first order operator splitting technique.

The idea of the splitting operator techniques is to decouple the equations of the strong form of the problem in order
to lower computational cost of solving the coupled problem in an iteration. To this end, the convection-diffusion
equation is split as:

L u = La u+ Lν u = ax · ∇u− ν ∆u

∂tu+ Lau+ Lνu = f

The first step is to calculate the step forward in the convection problem as:

ua(tn) = un

∂tua + Laua = 0

Then we solve for the diffusion problem using the convection problem solution as initial data:

uν(tn) = ua(tn+1)

∂tuν + Lνuν = f
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Using BDF1 scheme, the first step reads:

un+1
a −un

a

δt + Lau
n+1
a = 0 =⇒ un+1

a = (I + δt La)−1un

Then the second step is:

un+1−un
a

δt + Lνu
n+1 = 0 =⇒ un+1 = (I + δt Lν)−1(un+1

a + f δt)

Now into the discrete form of the problem, considering that the operators La and Lν will constitute the already
obtained matrices C and K respectively, the problem can be written as:

Una = Un = [0; 0]T

Un+1
a = (M + δt C)−1 ·M Una = [0; 0]T

The second step is:
Unν = Un+1

a = [0; 0]T

Un+1 = (M + δt K)−1 ·
(
M Un+1

a + F
)

= (M + δt K)−1 · F

Considering the values from previous exercise and taking into account the boundary conditions:

M + δt ·K =
[

2/9 + 6 δt 1/18− 3 δt
1/18− 3 δt 2/9 + 6 δt

]
The matrix is inverted and multiplied by F :

Un+1 = 1
15/108 + 9 δt+ 81 δt2

[
2/9 + 6 δt −1/18 + 3 δt
−1/18 + 3 δt 2/9 + 6 δt

]
·
[
1
1

]
= 1

15/108 + 9 δt+ 81 δt2

[
3/18 + 9δt
3/18 + 9δt

]

5.1.3 Third task

Evaluate the error of the splitting approach with respect to the monolithic approach. Plot the splitting error vs. the
time step size for δt = 1, δt = 0.5 and δt = 0.25. Comment on the results.
In Figure 4a, Figure 4b and Figure 5a the results obtained in the previous two tasks are shown. The results show
how for the different component there are slight differences according to each of the approaches (Figure 4a and
Figure 4b) which cannot be noticed when analysing the norm of the components as in Figure 5a. This is due to the
fact that the Partitioned Scheme with the initial guess of the solution made supress the effect of the non-symmetric
Convection matrix and both U(1) = U(2) which is not the case for the monolithic case. This can be confirmed by
seeing how in Figure 4a and Figure 4b the Monolithic is below and above the Partitioned ’constant’ solution, in
this way is not surprising the results found in Figure 5a, as these differences are canceled for the Monolithic when
in sum and tend to the mid point where the Partitioned results are. Finally, the error in the partitioned scheme
method is plotted against the monolithic scheme (ε = abs[(Upart(i)−Umonolithic(i))/Umonolithic(i)]), in Figure 5b
where it is observed how as the time step δt is reduced, the error is diminished.
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Figure 4: Monolithic vs. Partitioned time integration schemes.
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Figure 5: Monolithic vs. Partitioned time integration schemes and error in partitioned scheme.

6 Fractional step methods

6.1 First exercise
Consider the fractional step approach for the incompressible Navier-Stokes equations (Yosida scheme):

M
1
δt

(
Ûn+1 − Un

)
+K Ûn+1 = f −G P̃n+1

D M−1 G Pn+1 = 1
δt
D Ûn+1 −D M−1 G P̃n+1

M
1
δt

(
Un+1 − Ûn+1

)
+ αK (Un+1 − Ûn+1) +G (Pn+1 − P̃n+1) = 0

6.1.1 First task

Which is the optimal value for α parameter?
Analysing the problem of interest, it is seen that the problem involves an unsteady version of the Navier-Stokes
equation, which will be fully implicitly integrated with BDF1:

M
1
δt

(
Un+1 − Un

)
+K Un+1 +G Pn+1 = f

If the Yosida scheme recovers the implicit time integration, the method would be optimal. To this end, considering
we want to enforce no second step to be performed (as would be performed in a one-step implicit method) the
first and third equations are used:

M

δt
Ûn+1 − M

δt
Un +K Ûn+1 = f −G P̃n+1

M

δt
Un+1 − M

δt
Ûn+1 + αK Un+1 − αK Ûn+1 +GPn+1 −GP̃n+1 = 0

Now we sum both equations:

M

δt
Ûn+1 − M

δt
Ûn+1 + M

δt
Un+1 − M

δt
Un + αK Un+1 +K Ûn+1 − αK Ûn+1 +GPn+1 −GP̃n+1 = f −G P̃n+1

M

δt
(Un+1 − Un) + α K Un+1 +K Ũn+1 (1− α) +G Pn+1 = f

It is clearly seen that for α = 1 the above equation is equal to that in the fully implicitly integration with BDF1.
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6.1.2 Second task

What is the source of error of the scheme?
The source of error of the scheme is the calculation of the first inverse used. In the Yosida scheme the fractional
step is introduced by converting the original system into a LU matrix as:[

K G
D 0

]
=
[
K 0
D −D H1 G

] [
I H2 G
0 I

]
=
[
K K H2 G
D D (H2 −H1) G

]
From these expressions, the Yosida scheme has H1 = δtM−1 and H2 = K−1, and this is the source of the error
which can clearly be reduced for H1 = H2 = δt [I − δt M−1(νL+N)] M .

It is pointed out here that in these exercises K = M/δt + νL + N , M = (Ni, Nj , L = (∂Ni, ∂Nj) and N =
(Ni,a · ∂Nj).

7 ALE formulations

7.1 First exercise
Given the spatial description of a property:

γ(x, y, z, t) = [2x, yet, z]T

The equations of movement:
x = Xet

y = Y + et − 1

z = Z

And the equations of movement of the mesh:
xm = X + αt

ym = Y − βt

zm = Z

7.1.1 First task

Obtain the description of the property in terms of the ALE coordinates (X ,Y ,Z ).
The idea is to obtain the description of the property γ(x, y, z, t) as γ(xm(X ), t). This is to say:

γALE(X , t) =
[
2 (X + αt), (Y − βt) et,Z

]
7.1.2 Second task

Compute the velocity of the particles and the mesh velocity.
The velocity of the particles can be obtained by deriving ∂x(X)/∂t:

vp(X) = ∂x(X)
∂t

= [X et, et, 0]

The velocity of the mesh is obtained as ∂xm(X )/∂t:

vm(X ) = ∂xm(X )
∂t

= [α,−β, 0]
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7.1.3 Third task

Compute the ALE description of the material temporal derivative of γ.
The material temporal derivative of a property has to take into account the partial time derivative ∂γ/∂t and the
associated convection fluxes v · ∇γ (x, t). Therefore the derivative of interest is:

d

dt
γALE(X , t) = ∂γ(x, t)

∂t
+ (vp − vm)T · ∇γ(x, t) =

 2 α
(Y − β (1 + t)) et

0

T +

X et − α
et + β

0

T 2 0 0
0 et 0
0 0 1


d

dt
γALE(X , t) =

[
2 X et (Y − β t+ et) et 0

]
To fully express the above expression in terms of the ALE coordinates, introduce the relationship Xet = x =
X + α t.

d

dt
γALE(X , t) =

[
2 (X + α t) (Y − β t+ et) et 0

]
7.2 Second exercise
Write down the ALE form of the incompressible Navier-Stokes equations. Where (in time and space) is each of
the terms of the equation evaluated? How are temporal derivatives computed?
The incompressible Navier-Stokes equation, consider the conservation of momentum, the Newtonian fluid stress
tensor and, of course, the mass conservation of an incompressible fluid. To this end, first the momentum conser-
vation in ALE form is:

uALE(∂X , t)
∂t

+ c · ∇ u(x, t) = ∇ · σ(x, t) + b(x, t) ρ(x, t) (21)

The definition of the Newtonian fluid stress tensor σ(x, t) is:

σ(x, t) = −p(x, t) I + 2µ ∇su(x, t)

Considering this definition in Eq. (21) reads:

uALE(∂X , t)
∂t

+ c · ∇ u(x, t) +∇p(x, t)− µ ∇2u(x, t) = b(x, t) ρ(x, t)

where c = vp − vmesh
Then the mass conservation in ALE description is:

∂ρALE(X , t)
∂t

+ c · ∇ρ(x, t) = −ρ ∇ · u(x, t)

Considering the fluid incompressible, the first two terms in the above equation constitutes a material derivative of
ρ and for mass conservation are zero, therefore the final expression is:

∇ · u(x, t) = 0

The final expression of an incompressible Navier-Stokes in ALE description are described in Eq. (22) and Eq.
(23).

uALE(∂X , t)
∂t

+ c · ∇ u(x, t) +∇p(x, t)− µ ∇2u(x, t) = b(x, t) ρ(x, t) (22)

∇ · u(x, t) = 0 (23)

7.3 Third exercise
Do a bibliographical research on existing methods for the definition of the mesh movement in ALE formulations
(Poisson problem, Elasticity problem, etc.). Describe the main advantages of each of these methods.

In ALE formulations neither the material (RX) nor the spatial (Rx) configurations are taken as reference, thus a
third domain is needed, the referential configuration (RX ). This new domain relates to the previously mentioned
two using Ψ and Φ and the particle motion can be recovered as: ϕ = Φ o Ψ−1 clearly stating there is a dependency
between these maps, as seen in Figure 6 [1]. Both the material and the mesh move with respect to a fixed point.
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Thus, the corresponding material and mesh velocities are defined, deriving with respect to time the equations of
material motion and mesh motion respectively defining the convective velocity c, the relative velocity between the
material and the mesh. The ALE formulation enables to conveniently deal with moving boundaries, free surfaces
and large deformations, and interface contact problems, [2].

Figure 6: Arbitrary Lagrangian-Eulerian description scheme, Donea [1].

Given this description one of the key points in ALE formulations is the automatic mesh displacement algorithm.
To this end, different approaches for various natures were developed, and are explained in the following lines.

Mesh dynamics

The methods to handle this can be classified into fixed and moving grid approaches Figure 7. Fixed-grid methods
can be employed together with fictitious domain, level set, or Chimera techniques. Moving mesh approaches can be
realized either by simple interpolation techniques or by more sophisticated pseudo-structure techniques of varying
complexity.

Figure 7: Examples of moving (left) and fixed (right) grids, Benson [3].

Poisson problem

One of the typical methods for generating moving meshes is based on elliptic approaches of the strong form
of the elliptic Poisson equation. In this way, the method changes the position of nodes without modifying the
topology of the mesh. As an advantage, the method is relatively inexpensive to compute and allows to adapt the
mesh refinement in high gradients generating orthogonal meshes therefore suppressing the inversion errors. As a
drawback it does not guarantee an improvement in the mesh quality for all cases.
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Algebraic interpolation

This family of methods include interesting and versatile approaches for different nature of problems. One of these
methods are the algebraic grid generation, that are faster, have direct control over the node location loosing control
over the grid smoothness. Another important drawback is the imposition of restrictions on the mesh topology,
when two curves are discretized with the same number of elements.

Mesh adaptitivity

This method is of special interest for highly variable solutions. The idea is to control the density of a mesh by
adapting to geometric, analysis, or predefined properties. These adaptations can be applied with fixed intervals
or through sizing functions. Some of the typical strategies for defining sizing functions are based on the analysis
of previous solutions.

8 Fluid-Structure interaction

8.1 First exercise
Describe the added mass effect problem for fluid-structure interaction problems. When does it appear, what kind
of problems suffer from it? What are the main methods for dealing with it?

The effect appears when using partitioned approaches (explicit and iterating within a time step) the convergence
is not guaranteed for incompressible flows, when the fluid’s density is similar to the solid’s density (biomechanics,
body tissues vs. water). The methods for overcoming this issue are the Aitken relaxation method, the steepest
descend methods and applying Robin-Robin boundary conditions.

8.2 Second exercise
Consider the iteration by subdomain scheme for the heat transfer problem described in problem 1. Apply 2 iterations
of the AITKEN relaxation scheme to it.

The one dimensional heat transfer problems is given in Eq. (24).

∂u
∂t − k

∂2u
∂x2 = f in [0, 1]

u(x = 0, t) = 0 = Ũ1

u(x = 1, t) = 0 = Ũ2

u(x, t = 0) = 0
k = f = 1

(24)

The domain is subdivided into two parts. In subdomain 1 reads:
∂u

(n+1)(i)
1
∂t − k1

∂2u
(n+1)(i)
1
∂x2 = f in Ω1

u
(n+1)(i)
1 = Ũ1 in Γ1

k1
∂u

(n+1)(i)
1
∂n = k2

∂u
(n+1)(i−1)
2
∂n in Γ12

Subdomain 2 reads: 
∂u

(n+1)(i)
2
∂t − k2

∂2u
(n+1)(i)
2
∂x2 = f in Ω2

u
(n+1)(i)
2 = Ũ2 in Γ2

u
(n+1)(i)
2 = u

(n+1)(l)
1 in Γ12

where l = i− 1 is Jacobi scheme and l = i is for Gauss-Seidel.
The Aitken relaxation method needs three iterations for the calculus of the relaxation parameter, for this reason
the first iteration adopted is i = 2 and the second will be i = 3.

First iteration (i = 2): 
∂u

(n+1)(2)
1
∂t − k1

∂2u
(n+1)(2)
1
∂x2 = f in Ω1

u
(n+1)(2)
1 = Ũ1 in Γ1

k1
∂u

(n+1)(2)
1
∂n = k2

∂u
(n+1)(1)
2
∂n in Γ12
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Subdomain 2 reads, considering Jacobi Scheme:

∂u
(n+1)(2)
2
∂t − k2

∂2u
(n+1)(2)
2
∂x2 = f in Ω2

u
(n+1)(2)
2 = Ũ2 in Γ2

u
(n+1)(2)
2 = u

(n+1)(1)
1 + ω

(
u

(n+1)(2)
1 − u(n+1)(1)

2

)
in Γ12

ω = un
2−u

(n+1)(1)
2

un
2−u

(n+1)(1)
2 +u(n+1)(2)

1 −u(n+1)(1)
1

Second iteration (i = 3): 
∂u

(n+1)(3)
1
∂t − k1

∂2u
(n+1)(3)
1
∂x2 = f in Ω1

u
(n+1)(3)
1 = Ũ1 in Γ1

k1
∂u

(n+1)(3)
1
∂n = k2

∂u
(n+1)(2)
2
∂n in Γ12

Subdomain 2 reads, considering Jacobi Scheme:

∂u
(n+1)(3)
2
∂t − k2

∂2u
(n+1)(3)
2
∂x2 = f in Ω2

u
(n+1)(3)
2 = Ũ2 in Γ2

u
(n+1)(3)
2 = u

(n+1)(2)
1 + ω

(
u

(n+1)(3)
1 − u(n+1)(2)

2

)
in Γ12

ω = u
(n+1)(1)
2 −u(n+1)(2)

2
u

(n+1)(1)
2 −u(n+1)(2)

2 +u(n+1)(3)
1 −u(n+1)(2)

1

8.3 Third exercise
Consider the monolithic (1 domain), transient (BDF1), finite element (linear elements, h = 1/4) approximation
of the heat transfer equation in problem 1. Enforce the Dirichlet boundary conditions in x = 0 and x = 1 by using
Lagrange multipliers. What is the form of the discrete system? What is the condition number of the resulting
matrix?

From the results obtained in Section 5.1.1, the discrete matrices of interest can be written as:

KG = 1
le


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1



MG = le

3


1 1/2 0 0 0

1/2 2 1/2 0 0
0 1/2 2 1/2 0
0 0 1/2 2 1/2
0 0 0 1/2 1


The imposition of Dirichlet boundary conditions using Lagrange multipliers has the associated matrix:

Lλ =
[
1 0 0 0 0
0 0 0 0 1

]
Then the system is: [

M
δt +K LTλ
Lλ 0

] [
Un+1

λ

]
=
[
f + M

δt U
n

ŨΩi

]
The condition number of the resulting matrix is using kA = ||A|| · ||A||−1, the result for δt = 0.1 is kA = 58.5 and
δt = 1.0 is kA = 38.3 (using matlab).
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8.4 Fourth exercise
Consider the monolithic (1 domain), transient (BDF1), finite element (linear elements, h = 1/4) approximation
of the heat transfer equation in problem 1. Suppose that a level set function (Ψ = 0 at x = 0.4) divides the
domain into a high thermal conductivity (k = 100) subdomain (x ∈ [0, 0.4]) and a low thermal conductivity (k = 1)
subdomain (x ∈ [0.4, 1.0]). Build the system matrix for this problem. Take into account the need for subintegrating
the element cut by the level set function.

It is clear from the data given that the elements have a length h = 0.25 and the first subdomain ends at Ω1 = [0, 0.4]
therefore the domain is split through the second element. From the previous exercise, the difference can only be
noticed when analysing the stiffness matrix of element no. 2. Therefore, the integration of the matrix, needs to
be recalculated as (considering the integration in isoparametric coordinates goes from [−1.0; 1.0] and the element
goes from [0.25; 0.4] ∪ [0.4; 0.5], then in isoparametric coordinates the domain spliting is [−1.0; 0.2] ∪ [0.2; 1.0]).

K22 =
∫

Ω2

∂Ni(ξ)
∂ξ

· ∂Nj(ξ)
∂ξ

J dξ =
∫ 0.2

−1.0

∂Ni(ξ)
∂ξ

· ∂Nj(ξ)
∂ξ

J dξ +
∫ 1.0

0.2

∂Ni(ξ)
∂ξ

· ∂Nj(ξ)
∂ξ

J dξ

K22 = k1
2
le

[
3/10 −3/10
−3/10 3/10

]
+ k2

2
le

[
1/5 −1/5
−1/5 1/5

]
=
[

241.6 −241.6
−241.6 241.6

]
Assembling considering that element 1 has k = 100 and element 3 has k = 1:

KG =


400 −400 0 0 0
−400 641.6 −241.6 0 0

0 −241.6 245.6 −4 0
0 0 −4 8 −4
0 0 0 −4 4


Considering the mass matrix does not modify its expression in the splitting of the domain of the element:

MG = le

3


1 1/2 0 0 0

1/2 2 1/2 0 0
0 1/2 2 1/2 0
0 0 1/2 2 1/2
0 0 0 1/2 1


Then the system for the problem reads:(

MG

δt
+KG

)
Un+1 = f + MG

δ
Un

That can be solved applying Lagrange multipliers or direct reduction of the matrices and unknowns.
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