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1 Transmission conditions

1.1 Question 1: Euler-Bernoulli beam

Given the weak form of the problem in 1D with homogeneous Dirchlet conditions (clamped
beam at both ends):

EI

∫ L

0

d2δv

dx2

d2v

dx2
=

∫ L

0

δvf

for all δv such that δv(0) = δv(L) = 0,
dδv

dx
(0) =

dδv

dx
(L) = 0

(a) The space of functions for v and δv are:

v ∈ H2(Ω) such that v|∂Ω =
dv

dx

∣∣∣∣
∂Ω

= 0

δv ∈ H2(Ω) such that δv|∂Ω =
dδv

dx

∣∣∣∣
∂Ω

= 0

where H2(Ω) is the space of functions that are defined in Ω such that a function plus its
first-order and second-order derivatives are square integrable, namely:

H2(Ω) :=

{
v : Ω→ R

∣∣∣∣ ∫
Ω

v2 <∞,
∫

Ω

|∇v|2 <∞,
∫

Ω

|∆v|2 <∞
}

The reason is that for the integral, appearing on the left-hand-side of the weak form, to be
bounded, the second-order derivatives of v and δv have to be square integrable.

(b) Based on the regularity requirements, v and
dv

dx
have to be continuous. Therefore, the

transmission conditions at point P implied by the regularity requirements are:

JvKP = 0 −→ 1st transmission condition - strong continuity

J
dv

dx
KP = 0 −→ 2nd transmission condition - strong continuity

where,
JvKP = lim

ε→0

[
v(P + ε)− v(P − ε)

]
J
dv

dx
KP = lim

ε→0

[dv
dx

(P + ε)− dv

dx
(P − ε)

]
Justification in 1D:
if v and

dv

dx
are discontinuous at P , therefore, the second-order derivative can be written
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in terms of the variable v, near the discontinuity, as:

d2vε

dx2
=



d2v

dx2
x < P − ε

1

2ε

(
v(P + ε)− 2v(P ) + v(P − ε)

)
P − ε < x < P + ε

d2v

dx2
x < P + ε

(1)

or alternatively in terms of the first-order derivative, near the discontinuity, as:

d2vε

dx2
=



d2v

dx2
x < P − ε

1

2ε

(
dv

dx
(P + ε)− dv

dx
(P − ε)

)
P − ε < x < P + ε

d2v

dx2
x < P + ε

(2)

Using the approximation given by (1), the square integral of the second-order derivative of
v is then evaluated as:∫ L

0

(
d2vε

dx2

)2

=

∫ P−ε

0

(
d2v

dx2

)2

+

∫ P+ε

P−ε

(
1

2ε

(
v(P + ε)− 2v(P ) + v(P − ε)

))2

+

∫ L

P+ε

(
d2v

dx2

)2

=

∫ P−ε

0

(
d2v

dx2

)2

+
1

2ε

(
v(P + ε)− 2v(P ) + v(P − ε)

)2

+

∫ L

P+ε

(
d2v

dx2

)2

ε −→ 0 =∞

This proves that if the variable v is discontinuous, then the second-order derivative
d2v

dx2
is

not square integrable, i.e. v /∈ H2.

Using the approximation given by (2), the square integral of the second-order derivative of
v is then evaluated as:∫ L

0

(
d2vε

dx2

)2

=

∫ P−ε

0

(
d2v

dx2

)2

+

∫ P+ε

P−ε

(
1

2ε

(
dv

dx
(P + ε)− dv

dx
(P − ε)

))2

+

∫ L

P+ε

(
d2v

dx2

)2

=

∫ P−ε

0

(
d2v

dx2

)2

+
1

2ε

(
dv

dx
(P + ε)− dv

dx
(P − ε)

)2

+

∫ L

P+ε

(
d2v

dx2

)2

ε −→ 0 =∞

This proves that if the first-order derivative
dv

dx
is discontinuous, then the second-order

derivative
d2v

dx2
is not square integrable, i.e. v /∈ H2.

2



(c) Considering the strong form of the equation:

EI
d4v

dx4
= f

Multiplying by a test function δv, and integrating over a domain Ω yields the following
weak form: ∫

Ω

δv EI
d4v

dx4
=

∫
Ω

δvf

Integrating by parts yields:

−
∫

Ω

dδv

dx
EI

d3v

dx3
+

∫
Ω

d

dx

(
δv EI

d3v

dx3

)
=

∫
Ω

δvf

Applying divergence theorem, the second term on the LHS will be a boundary integral:

−
∫

Ω

dδv

dx
EI

d3v

dx3
+

∫
∂Ω

δv EI
d3v

dx3
n =

∫
Ω

δvf (3)

For a domain Ω = Ω1 ∪ Ω2 with an interface Γ = Ω1 ∩ Ω2, the equation is written for each
domain as follows:

Domain Ω1:

−
∫

Ω1

dδv

dx
EI

d3v

dx3
+

∫
∂Ω1

δv EI
d3v

dx3
n1 =

∫
Ω1

δvf

splitting the second term on LHS,

−
∫

Ω1

dδv

dx
EI

d3v

dx3
+

∫
∂Ω1∩∂Ω

δv EI
d3v

dx3
n1 +

∫
∂Ω1∩Γ

δv EI
d3v

dx3
n1 =

∫
Ω1

δvf (4)

Domain Ω2:

−
∫

Ω2

dδv

dx
EI

d3v

dx3
+

∫
∂Ω2

δv EI
d3v

dx3
n2 =

∫
Ω2

δvf

splitting the second term on LHS,

−
∫

Ω2

dδv

dx
EI

d3v

dx3
+

∫
∂Ω2∩∂Ω

δv EI
d3v

dx3
n2 +

∫
∂Ω2∩Γ

δv EI
d3v

dx3
n2 =

∫
Ω2

δvf (5)

Summing equations (4) and (5) should return (3), this means that the extra terms are equal
to zero, therefore: ∫

∂Ω1∩Γ

δv EI
d3v

dx3
n1 +

∫
∂Ω2∩Γ

δv EI
d3v

dx3
n2 = 0

which is simply written as:∫
Γ

δv
(

(EI)1
d3v

dx3
n1 + (EI)2

d3v

dx3
n2

)
= 0 =⇒ JEI

d3v

dx3
nKΓ = 0
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Particularizing for the problem at hand, where the Γ = P , Ω1 = [0, P ], Ω2 = (P,L]
and n1 = −n2 = 1, yields the third transmission condition:

JEI
d3v

dx3
KP = 0 −→ 3rd transmission condition - weak continuity

Integrating (3) by parts again yields:∫
Ω

d2δv

dx2
EI

d2v

dx2
−
∫

Ω

d

dx

(dδv
dx

EI
d2v

dx2

)
+

∫
∂Ω

δv EI
d3v

dx3
n =

∫
Ω

δvf

Applying divergence theorem, the second term on the LHS will be a boundary integral:∫
Ω

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω

dδv

dx
EI

d2v

dx2
n+

∫
∂Ω

δv EI
d3v

dx3
n =

∫
Ω

δvf (6)

For a domain Ω = Ω1 ∪ Ω2 with an interface Γ = Ω1 ∩ Ω2, the equation is written for each
domain as follows:

Domain Ω1:∫
Ω1

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω1

dδv

dx
EI

d2v

dx2
n1 +

∫
∂Ω1

δv EI
d3v

dx3
n1 =

∫
Ω1

δvf

splitting the second and third terms on LHS,∫
Ω1

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω1∩∂Ω

dδv

dx
EI

d2v

dx2
n1 −

∫
∂Ω1∩Γ

dδv

dx
EI

d2v

dx2
n1

+

∫
∂Ω1∩∂Ω

δv EI
d3v

dx3
n1 +

∫
∂Ω1∩Γ

δv EI
d3v

dx3
n1 =

∫
Ω1

δvf

(7)

Domain Ω2:∫
Ω2

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω2

dδv

dx
EI

d2v

dx2
n2 +

∫
∂Ω2

δv EI
d3v

dx3
n2 =

∫
Ω2

δvf

splitting the second and third terms on LHS,∫
Ω2

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω2∩∂Ω

dδv

dx
EI

d2v

dx2
n2 −

∫
∂Ω2∩Γ

dδv

dx
EI

d2v

dx2
n2

+

∫
∂Ω2∩∂Ω

δv EI
d3v

dx3
n2 +

∫
∂Ω2∩Γ

δv EI
d3v

dx3
n2 =

∫
Ω2

δvf

(8)

Summing equations (7) and (8) should return (6), this means that the extra terms are equal
to zero, therefore:

−
∫
∂Ω1∩Γ

dδv

dx
EI

d2v

dx2
n1−

∫
∂Ω2∩Γ

dδv

dx
EI

d2v

dx2
n2+

∫
∂Ω1∩Γ

δv EI
d3v

dx3
n1+

∫
∂Ω2∩Γ

δv EI
d3v

dx3
n2 = 0
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which is simply written as:

−
∫

Γ

dδv

dx

(
(EI)1

d2v

dx2
n1 + (EI)2

d2v

dx2
n2

)
+

∫
Γ

δv
(

(EI)1
d3v

dx3
n1 + (EI)2

d3v

dx3
n2

)
= 0

Noting that the second term is zero (third transmission condition), therefore:∫
Γ

dδv

dx

(
(EI)1

d2v

dx2
n1 + (EI)2

d2v

dx2
n2

)
= 0 =⇒ JEI

d2v

dx2
nKΓ = 0

Particularizing for the problem at hand, where the Γ = P , Ω1 = [0, P ], Ω2 = (P,L]
and n1 = −n2 = 1, yields the fourth transmission condition:

JEI
d2v

dx2
KP = 0 −→ 4th transmission condition - weak continuity

5



1.2 Question 2: Maxwell problem

The Maxwell problem consists in finding a vector field u : Ω −→ R3 such that

ν ∇×∇× u = f in Ω

∇ · u = 0 in Ω

n× u = 0 on ∂Ω

where ν > 0, f is a divergence free force field and n the unit external normal. Equation
∇ · u = 0 is in fact redundant.

(a) To obtain the variational or weak form, pre-multiply by a vector test function δu and
integrate over the domain Ω:∫

Ω

δu · (ν ∇×∇× u) =

∫
Ω

δu · f (9)

For the integration by parts, first recall that:

∇·(δu×∇× u) = ∇·(δu×w) = ∇·v =
∂vi
∂xi

where,

vi = (δu×w)i = εijk δuj wk,

wk = (∇× u)k = εklm
∂um
∂xl

therefore,

∇·(δu×∇× u) =
∂

∂xi

(
εijk δuj εklm

∂um
∂xl

)
= εijk

∂δuj
∂xi

εklm
∂um
∂xl

+ εijk δuj
∂

∂xi

(
εklm

∂um
∂xl

)
= εkij

∂δuj
∂xi

εklm
∂um
∂xl
− δuj εjik

∂

∂xi

(
εklm

∂um
∂xl

)
=
(
εkij

∂δuj
∂xi

)(
εklm

∂um
∂xl

)
− δuj εjik

∂

∂xi

(
εklm

∂um
∂xl

)
= (∇× δu)k (∇× u)k − δuj

(
εjik

∂

∂xi
(∇× u)k

)
= (∇× δu)k (∇× u)k − δuj (∇×∇× u)j

= (∇× δu) · (∇× u)− δu · (∇×∇× u)

which is re-written as:

δu · (∇×∇× u) = (∇× δu) · (∇× u)−∇·(δu×∇× u) (10)

Using the information given by (10), integral (9) is written as:∫
Ω

(∇× δu) · (ν ∇× u)−
∫

Ω

∇·(ν δu×∇× u) =

∫
Ω

δu · f

6



Applying divergence theorem to the second term on the LHS yields:∫
Ω

(∇× δu) · (ν ∇× u)−
∫
∂Ω

n · (ν δu×∇× u) =

∫
Ω

δu · f (11)

Recalling the following relation for vectors:

u · (v ×w) = w · (u× v) = v · (w × u)

therefore, equation (11) is written as:∫
Ω

(∇× δu) · (ν ∇× u)−
∫
∂Ω

(ν ∇× u) · (n× δu) =

∫
Ω

δu · f (12)

Since n× u = 0 on ∂Ω (Dirchlet boundary only on ∂Ω, i.e. n× δu = 0 on ∂Ω), therefore
the weak form of the problem is written as:∫

Ω

(∇× δu) · (ν ∇× u) =

∫
Ω

δu · f (13)

where the space of functions for u and δu is:

u ∈ Hcurl(Ω) such that (n× u)|∂Ω = 0

δu ∈ Hcurl(Ω) such that (n× δu)|∂Ω = 0

where Hcurl(Ω) is the space of vector functions of dimension (d) that are defined in Ω such
that a function plus its curl are square integrable (belong to [L2(Ω)]d), namely:

Hcurl(Ω) :=
{
u : Ω→ Rd

∣∣∣ u ∈ [L2(Ω)
]d
, ∇× u ∈

[
L2(Ω)

]d}
The reason is that for the integrals, appearing in the weak form (13), to be bounded, ∇×u,
∇× δu and δu have to be square integrable.

(b) The transmission conditions that satisfy the regularity requirement is obtained by consid-
ering that: ∫

Ω

|∇× u|2 ≤ ∞

Jn× uKΓ = 0 −→ 1st transmission condition - strong continuity

Considering the simple schematic in Figure 1, the jump operator is:

Jn× uKΓ = lim
ε→0

[
n× u(xo + ε)− n× u(xo − ε)

]
Justification:
If n× u is discontinuous at Γ, therefore, we can define ∇× u as:

∇× u =



∇× u x ∈ Ω1

1

2ε

(
n× u(xo + ε)− n× u(xo − ε)

)
xo + ε < x < xo − ε

∇× u x ∈ Ω2

(14)

7



Figure 1: Maxwell problem interface schematic

Using the approximation given by (14), the square integral of ∇× u is then evaluated as:∫
Ω

(
∇× u

)2

=

∫
Ω1

(
∇× u

)2

+

∫ xo−ε

xo+ε

(
1

2ε

[
n× u(xo + ε)− n× u(xo − ε)

])2

+

∫
Ω2

(
∇× u

)2

=

∫
Ω1

(
∇× u

)2

+
1

2ε

[
n× u(xo + ε)− n× u(xo − ε)

]2
+

∫
Ω2

(
∇× u

)2

ε −→ 0 =∞

This proves that if n×u is discontinuous, then∇×u is not square integrable, i.e. u /∈ Hcurl.

(c) The transmission conditions by considering the fact that integrals of the weak form are
additive are obtained by writing the weak form (12) for the two domains split by the
interface Γ:
Domain 1: ∫

Ω1

(∇× δu) · (ν ∇× u)−
∫
∂Ω1∩∂Ω

δu · (ν ∇× u× n1)

−
∫
∂Ω1∩Γ

δu · (ν ∇× u× n1) =

∫
Ω1

δu · f
(15)

Domain 2: ∫
Ω2

(∇× δu) · (ν ∇× u)−
∫
∂Ω2∩∂Ω

δu · (ν ∇× u× n2)

−
∫
∂Ω2∩Γ

δu · (ν ∇× u× n2) =

∫
Ω2

δu · f
(16)

8



By adding the two equations (15) and (16) and comparing with the weak form (12) for the
full domain Ω, then the extra terms should be equal to zero, this yields:∫

Γ

δu · ν (∇× u× n1 + ∇× u× n2) = 0

therefore, the second transmission condition is:

Jν (∇× u× n)KΓ = 0 −→ 2nd transmission condition - weak continuity

9



1.3 Question 3: Navier equations for an elastic material

(a) The Navier equations for an elastic material can be written in three different ways:

−2µ∇ · ε(u)− λ∇(∇ · u) = ρb

−µ∆u− (λ+ µ)∇(∇ · u) = ρb

µ∇× (∇× u)− (λ+ 2µ)∇(∇ · u) = ρb

where u is the displacement field, ε(u) the symmetric part of ∇u, λ and µ the Lamé
coefficients, ρ the density of the material and b the body forces. Let us assume that u = 0
on δΩ.

First equation:
To obtain the variational or weak form, pre-multiply by a vector test function δu and
integrate over the domain Ω:∫

Ω

δu ·
(
− 2µ∇ · ε(u)

)
−
∫

Ω

δu · λ∇(∇ · u) =

∫
Ω

δu · ρb (17)

For the integration by parts, first recall that:

∇·(ε δu) = δu · (∇ · ε) + ε : ∇δu

∇·(δu(∇ · u)) = δu ·∇(∇ · u) + (∇ · δu)(∇ · u)

Using this information, the integral (17) is written as:∫
Ω

2µ∇δu : ε −
∫

Ω

2µ∇·(ε δu)+

∫
Ω

λ(∇·δu)(∇·u)−
∫

Ω

λ∇·
(
δu(∇·u)

)
=

∫
Ω

δu·ρb (18)

Applying divergence theorem to the second and fourth terms on the LHS yields:∫
Ω

2µ∇δu : ε −
∫
∂Ω

2µ(ε δu)·n+

∫
Ω

λ(∇·δu)(∇·u)−
∫
∂Ω

λ
(
δu(∇·u)

)
·n =

∫
Ω

δu·ρb (19)

Since u = 0 on ∂Ω (Dirchlet boundary only on ∂Ω, i.e. δu = 0 on ∂Ω), therefore the weak
form of the problem is written as:∫

Ω

2µ∇δu : ε+

∫
Ω

λ(∇ · δu)(∇ · u) =

∫
Ω

δu · ρb (20)

Recalling that ε = ∇su =
1

2
(∇u+(∇u)T ), it is seen from the integrals that ∇u and ∇ ·u

have to be square integrable. Therefore, u ∈ H1(Ω) and u ∈ Hdiv(Ω). In fact, u has to be
in the less regular space.

Therefore, the space of functions for u and δu is:

u ∈ H1(Ω) ∩Hdiv(Ω) = H1(Ω) such that u|∂Ω = 0

δu ∈ H1(Ω) ∩Hdiv(Ω) = H1(Ω) such that δu|∂Ω = 0
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where Hdiv(Ω) is the space of vector functions of dimension (d) that are defined in Ω such
that a function plus its divergence are square integrable, namely:

Hdiv(Ω) :=
{
u : Ω→ Rd

∣∣∣ u ∈ [L2(Ω)
]d
, ∇ · u ∈ L2(Ω)

}
and H1(Ω) is the space of vector functions of dimension (d) that are defined in Ω such that
a function plus its gradient are square integrable, namely:

H1(Ω) :=
{
u : Ω→ Rd

∣∣∣ u ∈ [L2(Ω)
]d
, ∇u ∈

[
L2(Ω)

]d×d}

Second equation:
To obtain the variational or weak form, pre-multiply by a vector test function δu and
integrate over the domain Ω:∫

Ω

δu · −µ∆u−
∫

Ω

δu · (λ+ µ)∇(∇ · u) =

∫
Ω

δu · ρb (21)

where ∆u = ∇ ·∇u.
For the integration by parts, first recall that:

∇·(∇u δu) = δu · (∇ ·∇u) + ∇u : ∇δu = δu ·∆u+ ∇u : ∇δu

∇·(δu(∇ · u)) = δu ·∇(∇ · u) + (∇ · δu)(∇ · u)

Using this information, the integral (21) is written as:∫
Ω

µ∇δu : ∇u−
∫

Ω

µ∇·(∇u δu)+

∫
Ω

(λ+µ)(∇·δu)(∇·u)−
∫

Ω

(λ+µ)∇·
(
δu(∇·u)

)
=

∫
Ω

δu·ρb

(22)

Applying divergence theorem to the second and fourth terms on the LHS yields:∫
Ω

µ∇δu : ∇u−
∫
∂Ω

µ(∇u δu)·n+

∫
Ω

(λ+µ)(∇·δu)(∇·u)−
∫
∂Ω

(λ+µ)
(
δu(∇·u)

)
·n =

∫
Ω

δu·ρb

(23)

Since u = 0 on ∂Ω (Dirchlet boundary only on ∂Ω, i.e. δu = 0 on ∂Ω), therefore the weak
form of the problem is written as:∫

Ω

µ∇δu : ∇u+

∫
Ω

(λ+ µ)(∇ · δu)(∇ · u) =

∫
Ω

δu · ρb (24)

It is seen from the integrals that ∇u and ∇ · u have to be square integrable. Therefore,
u ∈ H1(Ω) and u ∈ Hdiv(Ω). In fact, u has to be in the less regular space.

Therefore, the space of functions for u and δu is:

u ∈ H1(Ω) ∩Hdiv(Ω) = H1(Ω) such that u|∂Ω = 0

δu ∈ H1(Ω) ∩Hdiv(Ω) = H1(Ω) such that δu|∂Ω = 0
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where Hdiv(Ω) is the space of vector functions of dimension (d) that are defined in Ω such
that a function plus its divergence are square integrable, namely:

Hdiv(Ω) :=
{
u : Ω→ Rd

∣∣∣ u ∈ [L2(Ω)
]d
, ∇ · u ∈ L2(Ω)

}
and H1(Ω) is the space of vector functions of dimension (d) that are defined in Ω such that
a function plus its gradient are square integrable, namely:

H1(Ω) :=
{
u : Ω→ Rd

∣∣∣ u ∈ [L2(Ω)
]d
, ∇u ∈

[
L2(Ω)

]d×d}

Third equation:
To obtain the variational or weak form, pre-multiply by a vector test function δu and
integrate over the domain Ω:∫

Ω

δu · (µ∇×∇× u)−
∫

Ω

δu · (λ+ 2µ)∇(∇ · u) =

∫
Ω

δu · ρb (25)

For the integration by parts, first recall the proven definition given by (10):

δu · (∇×∇× u) = (∇× δu) · (∇× u)−∇·(δu×∇× u)

and also recall that:

∇·(δu(∇ · u)) = δu ·∇(∇ · u) + (∇ · δu)(∇ · u)

Therefore, using this information, the weak form given by (25) is written as:∫
Ω

(∇× δu) · (µ ∇× u)−
∫

Ω

∇·(µ δu×∇× u) +

∫
Ω

(λ+ 2µ)(∇ · δu)(∇ · u)

−
∫

Ω

(λ+ 2µ)∇ ·
(
δu(∇ · u)

)
=

∫
Ω

δu · ρb

Applying divergence theorem to the second and fourth terms on the LHS yields:∫
Ω

(∇× δu) · (µ ∇× u)−
∫
∂Ω

(µ ∇× u) · (n× δu) +

∫
Ω

(λ+ 2µ)(∇ · δu)(∇ · u)

−
∫
∂Ω

(λ+ 2µ)
(
δu(∇ · u)

)
· n =

∫
Ω

δu · ρb

(26)

Since u = 0 on ∂Ω (Dirchlet boundary only on ∂Ω, i.e. δu = 0 on ∂Ω), therefore the weak
form of the problem is written as:∫

Ω

(∇× δu) · (µ ∇× u) +

∫
Ω

(λ+ 2µ)(∇ · δu)(∇ · u) =

∫
Ω

δu · ρb (27)

It is seen from the integrals that ∇×u and ∇ ·u have to be square integrable. Therefore,
u ∈ Hcurl(Ω) and u ∈ Hdiv(Ω). In fact, u has to be in the less regular space.
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Therefore, the space of functions for u and δu is:

u ∈ Hcurl(Ω) ∩Hdiv(Ω) such that u|∂Ω = 0

δu ∈ Hcurl(Ω) ∩Hdiv(Ω) such that δu|∂Ω = 0

where Hdiv(Ω) is the space of vector functions of dimension (d) that are defined in Ω such
that a function plus its divergence are square integrable, namely:

Hdiv(Ω) :=
{
u : Ω→ Rd

∣∣∣ u ∈ [L2(Ω)
]d
, ∇ · u ∈ L2(Ω)

}
and Hcurl(Ω) is the space of vector functions of dimension (d) that are defined in Ω such
that a function plus its curl are square integrable, namely:

Hcurl(Ω) :=
{
u : Ω→ Rd

∣∣∣ u ∈ [L2(Ω)
]d
, ∇× u ∈

[
L2(Ω)

]d}

(b) First equation:
The transmission conditions by considering the fact that integrals of the weak form are
additive are obtained by writing the weak form (19) for the two domains Ω1 and Ω2 split
by the interface Γ:

Domain 1:∫
Ω1

2µ∇δu : ε −
∫
∂Ω1∩∂Ω

2µ(ε δu) · n1 −
∫
∂Ω1∩Γ

2µ(ε δu) · n1 +

∫
Ω1

λ(∇ · δu)(∇ · u)

−
∫
∂Ω1∩∂Ω

λ
(
δu(∇ · u)

)
· n1 −

∫
∂Ω1∩Γ

λ
(
δu(∇ · u)

)
· n1 =

∫
Ω1

δu · ρb

(28)

Domain 2:∫
Ω2

2µ∇δu : ε −
∫
∂Ω2∩∂Ω

2µ(ε δu) · n2 −
∫
∂Ω2∩Γ

2µ(ε δu) · n2 +

∫
Ω2

λ(∇ · δu)(∇ · u)

−
∫
∂Ω2∩∂Ω

λ
(
δu(∇ · u)

)
· n2 −

∫
∂Ω2∩Γ

λ
(
δu(∇ · u)

)
· n2 =

∫
Ω2

δu · ρb

(29)

By adding the two equations (28) and (29) and comparing with the weak form (19) for the
full domain Ω, then the extra terms should be equal to zero, this yields:∫

Γ

2
[
µ(ε δu) · n1 + µ(ε δu) · n2

]
= 0

ε=ε
T

−−−→
∫

Γ

2
[
µ ε n1 + µ ε n2

]
· δu

−→ Jµ ε nKΓ = 0 −→ weak continuity∫
Γ

[
λδu(∇ · u) · n1 + λδu(∇ · u) · n2

]
= 0 −→

∫
Γ

[
λ(∇ · u)n1 + λ(∇ · u)n2

]
· δu

−→ Jλ(∇ · u)nKΓ = 0 −→ weak continuity
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Second equation:
The transmission conditions by considering the fact that integrals of the weak form are
additive are obtained by writing the weak form (23) for the two domains Ω1 and Ω2 split
by the interface Γ:

Domain 1:∫
Ω1

µ∇δu : ∇u −
∫
∂Ω1∩∂Ω

µ(∇u δu) · n1 −
∫
∂Ω1∩Γ

µ(∇u δu) · n1 +

∫
Ω1

(λ+ µ)(∇ · δu)(∇ · u)

−
∫
∂Ω1∩∂Ω

(λ+ µ)
(
δu(∇ · u)

)
· n1 −

∫
∂Ω1∩Γ

(λ+ µ)
(
δu(∇ · u)

)
· n1 =

∫
Ω1

δu · ρb

(30)

Domain 2:∫
Ω2

µ∇δu : ∇u −
∫
∂Ω2∩∂Ω

µ(∇u δu) · n2 −
∫
∂Ω2∩Γ

µ(∇u δu) · n2 +

∫
Ω2

(λ+ µ)(∇ · δu)(∇ · u)

−
∫
∂Ω2∩∂Ω

(λ+ µ)
(
δu(∇ · u)

)
· n2 −

∫
∂Ω2∩Γ

(λ+ µ)
(
δu(∇ · u)

)
· n2 =

∫
Ω2

δu · ρb

(31)

By adding the two equations (30) and (31) and comparing with the weak form (23) for the
full domain Ω, then the extra terms should be equal to zero, this yields:∫

Γ

[
µ(∇u δu) · n1 + µ(∇u δu) · n2

]
= 0 −→

∫
Γ

[
µ(∇u)T n1 + µ(∇u)T n2

]
· δu

−→ Jµ(∇u)TnKΓ = 0 −→ weak continuity∫
Γ

[
(λ+ µ)δu(∇ · u) · n1 + (λ+ µ)δu(∇ · u) · n2

]
= 0

−→
∫

Γ

[
(λ+ µ)(∇ · u)n1 + (λ+ µ)(∇ · u)n2

]
· δu

−→ J(λ+ µ)(∇ · u)nKΓ = 0 −→ weak continuity

Third equation:
The transmission conditions by considering the fact that integrals of the weak form are
additive are obtained by writing the weak form (26) for the two domains Ω1 and Ω2 split
by the interface Γ:

Domain 1:∫
Ω1

(∇× δu) · (µ ∇× u)−
∫
∂Ω1∩∂Ω

(µ ∇× u) · (n1 × δu)−
∫
∂Ω1∩Γ

(µ ∇× u) · (n1 × δu)

+

∫
Ω1

(λ+ 2µ)(∇ · δu)(∇ · u)−
∫
∂Ω1∩∂Ω

(λ+ 2µ)
(
δu(∇ · u)

)
· n1

−
∫
∂Ω1∩Γ

(λ+ 2µ)
(
δu(∇ · u)

)
· n1 =

∫
Ω1

δu · ρb

(32)
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Domain 2:∫
Ω2

(∇× δu) · (µ ∇× u)−
∫
∂Ω2∩∂Ω

(µ ∇× u) · (n2 × δu)−
∫
∂Ω2∩Γ

(µ ∇× u) · (n2 × δu)

+

∫
Ω2

(λ+ 2µ)(∇ · δu)(∇ · u)−
∫
∂Ω2∩∂Ω

(λ+ 2µ)
(
δu(∇ · u)

)
· n2

−
∫
∂Ω2∩Γ

(λ+ 2µ)
(
δu(∇ · u)

)
· n2 =

∫
Ω2

δu · ρb

(33)

By adding the two equations (32) and (33) and comparing with the weak form (26) for the
full domain Ω, then the extra terms should be equal to zero, this yields:∫

Γ

[
(µ ∇× u) · (n1 × δu) + (µ ∇× u) · (n2 × δu)

]
−→

∫
Γ

δu · (µ∇× u× n1 + µ∇× u× n2) = 0

−→ Jµ∇× u× nKΓ = 0 −→ weak continuity∫
Γ

[
(λ+ 2µ)δu(∇ · u) · n1 + (λ+ 2µ)δu(∇ · u) · n2

]
= 0

−→
∫

Γ

[
(λ+ 2µ)(∇ · u)n1 + (λ+ 2µ)(∇ · u)n2

]
· δu

−→ J(λ+ 2µ)(∇ · u)nKΓ = 0 −→ weak continuity
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2 Coupling in space of homogeneous problems: Domain
decomposition methods

2.1 Question 1: Euler-Bernoulli beam

Considering the beam problem shown below, where the subdomains Ω1 and Ω2 and the over-
lapping Ω12 are defined:

and defining an operator T := EI
d4

dx4

(a) The iteration-by-subdomain scheme based on a Schwarz additive Domain Decomposition
Method (DDM) is written as:

T v(k)
1 = f in Ω1

v
(k)
1 = 0 on Γ1

dv
(k)
1

dx
= 0 on Γ1

v
(k)
1 = v

(k−1)
2 on Γ12

dv
(k)
1

dx
=
dv

(k−1)
2

dx
on Γ12

T v(k)
2 = f in Ω2

v
(k)
2 = 0 on Γ2

dv
(k)
2

dx
= 0 on Γ2

v
(k)
2 = v

(k−1)
1 on Γ21

dv
(k)
2

dx
=
dv

(k−1)
1

dx
on Γ21

(b) To obtain the matrix form using finite element discretization, first the domain Ω is divided
into finite element partitions (Ω = ∪ K).

The solutions of the displacement v and rotation θ are approximated as:

v ≈ vh, such that vh|K ∈ Pp(K)

θ =
dv

dx
≈ θh, such that θh|K ∈ Pp(K)

where Pp is the polynomial space of order p.

Furthermore, vh ∈ C1(Ω)

vh|K is a polynomial
vh ∈ H2(Ω)

}
⇒ vh ∈ C1(Ω)
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To achieve C1-continuity, Hermite shape functions are used in the finite element approxi-
mation [1]. For this, we define the scalar variable u which is used to approximate both the
displacement v and rotation θ.

Considering the Hermite interpolation:

u(x) ≈ uh(x) =
∑
a

(Na(x) V a +Ma(x) Θa) = {N1 M1 ... Nn Mn}



V 1

Θ1

...
V n

Θn


= Nv

δu(x) ≈ δuh(x) =
∑
b

(N b(x) δV b+M b(x) δΘb) = {δV 1 δΘ1 ... δV n δΘn}



N1

M1

...
Nn

Mn


= δv NT

where Na(x) and Ma(x) are the Hermite shape functions defined in [1], for a = 1, ..., n.
The nodal values V a, Θa, δV b, and δΘb are defined as:

V a = vh(x
a), Θa = θh(x

a), δV b = δvh(x
b), δΘb = δθh(x

b)

The discrete form of the problem is then written as:

EI

∫ L

0

d2δuh
dx2

d2uh
dx2

=

∫ L

0

δuh f

Substituting the Hermite interpolation yields:

EI

∫ L

0

d2NT

dx2

d2N

dx2
v =

∫ L

0

δNT f

That is denoted by:
Bv = f

Finally, the matrix version of the iteration-by-subdomain scheme based on a Schwarz ad-
ditive Domain Decomposition Method (DDM) considering the mesh shown in 2 is written
as:

B1v
(k)
1 = f 1 in Ω1

v1(1)(k) = 0 on Γ1

v1(2)(k) = 0 on Γ1

v1(2j − 1)(k) = v2(2(j − i) + 1)(k−1) on Γ12

v1(2j)(k) = v2(2(j − i) + 2)(k−1) on Γ12

B2v
(k)
2 = f 2 in Ω2

v2(2(n− i) + 1)(k) = 0 on Γ2

v2(2(n− i) + 2)(k) = 0 on Γ2

v2(1)(k) = v1(2i− 1)(k−1) on Γ21

v2(2)(k) = v1(2i)(k−1) on Γ21

where the vector v1 contains the nodal values associated to the nodes of the domain Ω1,
and it is of size 2j. The vector v2 contains the nodal values associated to the nodes of the
domain Ω2, and it is of size 2(n− i) + 2.
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Figure 2: Nodes at the boundaries and interfaces
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2.2 Question 2: Maxwell problem

Recalling the Maxwell problem which consists in finding a vector field u : Ω −→ R3 such that

ν ∇×∇× u = f in Ω

∇ · u = 0 in Ω

n× u = 0 on ∂Ω

where ν > 0, f is a divergence free force field and n the unit external normal. Equation
∇ · u = 0 is in fact redundant.

First, an operatorM which is applied to a vector u for the Maxwell problem is defined as:

Mu := ν ∇×∇× u

Furthermore, the arbitrary domain Ω is divided into two non-overlapping subdomains Ω1 and
Ω2 with boundaries ∂Ω1 and ∂Ω2, respectively. The interface Γ and the boundaries Γ1 and Γ2

are defined as:
Γ := ∂Ω1 ∩ ∂Ω2

Γ1 := ∂Ω ∩ ∂Ω1

Γ2 := ∂Ω ∩ ∂Ω2

Second, if ui := u|Ωi
, then the Maxwell problem is written for each subdomain Ωi for i = 1, 2:

Mui = f in Ωi

∇ · ui = 0 in Ωi

n× ui = 0 on Γi

Jn× uK = 0 on Γ −→ 1st transmission condition - strong continuity
Jν (∇× u× n)K = 0 on Γ −→ 2nd transmission condition - weak continuity

(a) Next, the iteration-by-subdomain scheme based on the Dirchlet-Neumann coupling is writ-
ten as:

Mu
(k)
1 = f in Ω1

∇ · u(k)
1 = 0 in Ω1

n× u(k)
1 = 0 on Γ1

ν1 (∇× u(k)
1 × n) = ν2 (∇× u(k−1)

2 × n) on Γ

Mu
(k)
2 = f in Ω2

∇ · u(k)
2 = 0 in Ω2

n× u(k)
2 = 0 on Γ2

n× u(k)
2 = −n× u(l)

1 on Γ

where l = k − 1 yields a Jacobi scheme which allows for parallel solve, while l = k yields a
Gauss-Seidel scheme with sequential solve. It has been used that n = n1 = −n2 on Γ.

(b) To obtain the expression of the Steklov-Poincaré operator of the problem, the variable ui
is defined as:

ui = uoi + ũi, for i = 1, 2

Therefore, the Maxwell problem can be split into two parts as follows:
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Muoi = f in Ωi

∇ · uoi = 0 in Ωi

n× uoi = 0 on Γi

n× uoi = 0 on Γ

Mũi = 0 in Ωi

∇ · ũi = 0 in Ωi

n× ũi = 0 on Γi

n× ũi = φ on Γ

The first part of the problem (to the left) can be solved independently for i = 1, 2 to obtain
uo1 and uo2.

The problem is now reduced to obtaining φ such that ui = uoi + ũi is u|Ωi
. For this, we

must satisfy the second transmission condition given by

ν1 (∇× u1 × n) = ν2 (∇× u2 × n)

which also reads

ν1 (∇× ũ1 × n) + ν1 (∇× uo1 × n) = ν2 (∇× ũ2 × n) + ν2 (∇× uo2 × n)

Re-arranging yields

ν1 (∇× ũ1 × n)− ν2 (∇× ũ2 × n) = −ν1 (∇× uo1 × n) + ν2 (∇× uo2 × n)

where the right-hand-side of the previous equation is known.

Next, the Steklov-Poincaré operator S and the known value G are defined as:

S :
[
H1/2(Γ)

]d −→
[
H−1/2(Γ)

]d
φ 7−→ ν1 (∇× ũ1 × n)− ν2 (∇× ũ2 × n)

G = −ν1 (∇× uo1 × n) + ν2 (∇× uo2 × n) ∈
[
H−1/2(Γ)

]d
Finally, the expression of the Steklov-Poincaré operator of the problem is: Find φ ∈[
H1/2(Γ)

]d such that
Sφ = G

(c) Recalling the weak form of the problem given earlier by equation (13):∫
Ω

(∇× δu) · (ν ∇× u) =

∫
Ω

δu · f

The variable u is approximated using polynomial interpolation as:

u =


u1

...
ud

 ≈

u1
h
...
udh

 =


∑n

i NiU
1
i

...∑n
i NiU

d
i

 =
n∑
i

Ni


U1
i
...
Ud
i

 =
n∑
i

NiU i =
n∑
i

N iU i

where Ni(xj) = δij is the shape function associated to the node i, and U j
i is the i-th nodal

value of the component j of the variable uh. It is important to note that the boldN i = NiI
where I is the identity matrix of dimension d.
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the test function δu is approximated in similar manner:

δu =


δu1

...
δud

 ≈

δu1

h
...
δudh

 =


∑n

j NjδU
1
j

...∑n
j NjδU

d
j

 =
n∑
j

Nj


δU1

j
...

δUd
j

 =
n∑
j

NjδU j =
n∑
j

N jδU j

Dropping the coefficients δU j of the test function and substituting the approximations for
u and δu into the weak form yield the discrete equation for node j as:∫

Ω

(∇×N j)(ν ∇×N i) U i =

∫
Ω

N jf

That is denoted by
AjiU i = F j =⇒ AU = F

Considering the weak forms of the problem in the two subdomain Ω1 and Ω2 that were
given earlier by equations (15) and (16), and applying the homogeneous Dirchlet boundary
conditions strongly on the Γ1 and Γ2, the following weak forms are obtained:

Domain 1:∫
Ω1

(∇× δu) · (ν1 ∇× u1)−
∫
∂Ω1∩Γ

δu · (ν1 ∇× u1 × n1) =

∫
Ω1

δu · f

Domain 2:∫
Ω2

(∇× δu) · (ν2 ∇× u2)−
∫
∂Ω2∩Γ

δu · (ν2 ∇× u2 × n2) =

∫
Ω2

δu · f

Now, the boundary conditions on the interface Γ are applied for each subdomain (Neumann
conditions imposed weakly on ∂Ω1 ∩ Γ, Dirchlet conditions imposed strongly on ∂Ω2 ∩ Γ)
yielding the following equations:

Domain 1:∫
Ω1

(∇× δu) · (ν1 ∇× u1)−
∫
∂Ω1∩Γ

δu · (ν2 ∇× u2 × n) =

∫
Ω1

δu · f

Domain 2: ∫
Ω2

(∇× δu) · (ν2 ∇× u2) =

∫
Ω2

δu · f

The discrete form can be written by separating the degrees of freedom of the two subdo-
mains Ω1, Ω2 and the interface Γ as:A11 A1Γ 0

AΓ1 AΓΓ AΓ2

0 A2Γ A22


U 1

UΓ

U 2

 =


F 1

F Γ

F 2


where the sub-indices 1 and 2 are denoting the set of nodes in the subdomains Ω1 and Ω2,
respectively. Moreover, the sub-index Γ denotes the set of nodes on the interface Γ.
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Manipulating the equations and recalling thatAΓΓ = A
(1)
ΓΓ+A

(2)
ΓΓ, the iteration-by-subdomain

scheme based on the Dirchlet-Neumann coupling is written in matrix form as:

[
A11 A1Γ

AΓ1 A
(1)
ΓΓ

]{
U

(k)
1

U
(k)
Γ

}
=

{
F 1

F Γ −AΓ2U
(k−1)
2 −A(2)

ΓΓU
(k−1)
Γ

}
←− Neumann conditions

A22U
(k)
2 = F 2 −A2ΓU

(l)
Γ ←− Dirchlet conditions

Again, l = k − 1 yields a Jacobi scheme which allows for parallel solve, while l = k yields
a Gauss-Seidel scheme with sequential solve.
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2.3 Question 3: Laplace equation

Considering the problem of finding u : Ω −→ R such that

−k∆u = f in Ω

u = 0 on δΩ

where k > 0. Let Γ be a surface crossing the domain Ω.

Furthermore, the arbitrary domain Ω is divided into two non-overlapping subdomains Ω1 and
Ω2 with boundaries ∂Ω1 and ∂Ω2, respectively. The interface Γ and the boundaries Γ1 and Γ2

are defined as:
Γ := ∂Ω1 ∩ ∂Ω2

Γ1 := ∂Ω ∩ ∂Ω1

Γ2 := ∂Ω ∩ ∂Ω2

The Laplace operator L applied to a scalar variable u is defined as:

Lu = −k∆u

if ui := u|Ωi
, then the Laplace problem is written for each subdomain Ωi for i = 1, 2:

Lui = f in Ωi

ui = 0 on Γi

JuK = 0 on Γ −→ 1st transmission condition - strong continuity

Jk
∂u

∂n
K = 0 on Γ −→ 2nd transmission condition - weak continuity

(a) Next, the iteration-by-subdomain scheme based on the Dirchlet-Robin coupling is written
as:

Lu(k)
1 = f in Ω1

u
(k)
1 = 0 on Γ1

k1
∂u

(k)
1

∂n
+ γu

(k)
1 = k2

∂u
(k−1)
2

∂n
+ γu

(k−1)
2 on Γ

Lu(k)
2 = f in Ω2

u
(k)
2 = 0 on Γ2

u
(k)
2 = u

(l)
1 on Γ

with γ > 0. Taking l = k − 1 yields a Jacobi scheme which allows for parallel solve,
while l = k yields a Gauss-Seidel scheme with sequential solve. It has been used that
n = n1 = −n2.

(b) To obtain the weak form of the problem, the strong form is multiplied by a test function
δu ∈ H1(Ω) such that δu = 0 on the the boundary ∂Ω, and integrated over the whole
domain: ∫

Ω

δu(−k∆u) =

∫
Ω

δu f

Integrating by parts yields:∫
Ω

∇δu · (k∇u)−
∫
∂Ω

δu(k
∂u

∂n
) =

∫
Ω

δu f

23



and since δu = 0 on ∂Ω, therefore the weak form is reduced to:∫
Ω

∇δu · (k∇u) =

∫
Ω

δu f

The variable u is approximated using polynomial interpolation as:

u ≈ uh =
n∑
i

NiUi

where Ni(xj) = δij is the shape function associated to the node i, Ui is the nodal value of
the variable uh at node i.

The test function is approximated in a similar manner:

δu ≈ δuh =
n∑
j

NjδUj

Dropping the coefficients δUj of the test function and substituting the approximations for
u and δu into the weak form yield the discrete equation for node j as:∫

Ω

∇Nj · (k∇Ni) Ui =

∫
Ω

Nj f

That is denoted by
AjiUi = Fj =⇒ AU = F

Considering the weak forms of the problem in the two subdomain Ω1 and Ω2 and applying
the homogeneous Dirchlet boundary conditions strongly on the Γ1 and Γ2, the following
weak forms are obtained:

Domain 1: ∫
Ω1

∇δu · (k1∇u1)−
∫
∂Ω1∩Γ

δu(k1
∂u1

∂n1

) =

∫
Ω1

δu f

Domain 2: ∫
Ω2

∇δu · (k2∇u2)−
∫
∂Ω2∩Γ

δu(k2
∂u2

∂n2

) =

∫
Ω2

δu f

Now, the boundary conditions on the interface Γ are applied for each subdomain (Robin
conditions imposed weakly on ∂Ω1 ∩ Γ instead of the Neumann condition appearing in the
previous equation, Dirchlet conditions imposed strongly on ∂Ω2 ∩Γ) yielding the following
equations:

Domain 1: ∫
Ω1

∇δu · (k1∇u1)−
∫
∂Ω1∩Γ

δu(k2
∂u2

∂n
+ γu2) =

∫
Ω1

δu f

Domain 2: ∫
Ω2

∇δu · (k2∇u2) =

∫
Ω2

δu f
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The discrete form can be written by separating the degrees of freedom of the two subdo-
mains Ω1, Ω2 and the interface Γ as:A11 A1Γ 0

AΓ1 AΓΓ AΓ2

0 A2Γ A22


U 1

UΓ

U 2

 =


F 1

F Γ

F 2

 (34)

where the sub-indices 1 and 2 are denoting the set of nodes in the subdomains Ω1 and Ω2,
respectively. Moreover, the sub-index Γ denotes the set of nodes on the interface Γ.

Manipulating the equations and recalling thatAΓΓ = A
(1)
ΓΓ+A

(2)
ΓΓ, the iteration-by-subdomain

scheme based on the Dirchlet-Robin coupling is written in matrix form as:

[
A11 A1Γ

AΓ1 A
(1)
ΓΓ

]{
U

(k)
1

U
(k)
Γ

}
=

{
F 1

F Γ −AΓ2U
(k−1)
2 −A(2)

ΓΓU
(k−1)
Γ

}
←− Robin conditions

A22U
(k)
2 = F 2 −A2ΓU

(l)
Γ ←− Dirchlet conditions

(35)
Again, l = k − 1 yields a Jacobi scheme which allows for parallel solve, while l = k yields
a Gauss-Seidel scheme with sequential solve.

(c) To obtain the Steklov-Poincaré operator S, the problem at hand is reduced to finding a
variable φ that satisfies the Robin condition at the interface Γ. After some manipulation
similar to what was done in the previous question, the Steklov-Poincaré operator S and
the known value G are defined as:

S : H1/2(Γ) −→ H−1/2(Γ)

φ 7−→ k1
∂ũ1

∂n
+ γũ1 − k2

∂ũ2

∂n
− γũ2

G = −k1
∂uo1
∂n
− γuo1 + k2

∂uo2
∂n

+ γuo2 ∈ H−1/2(Γ)

The expression of the Steklov-Poincaré operator of the problem is: Find φ ∈ H1/2(Γ) such
that

Sφ = G

The discrete version of the Steklov-Poincaré operator is the Schur complement which is
obtained by considering the matrix form of the problem given by equation (34), where the
first equation gives:

U 1 = A−1
11 (F 1 −A1ΓUΓ) (36)

the third equation gives:
U 2 = A−1

22 (F 2 −A2ΓUΓ) (37)

and the second equations gives:

AΓ1U 1 +AΓΓUΓ +AΓ2U 2 = F Γ (38)
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Eventually, after substituting (36) and (37) into (38), the following equation is obtained:

(AΓΓ −AΓ1A
−1
11A1Γ −AΓ2A

−1
22A2Γ) UΓ = F Γ −AΓ1A

−1
11 F 1 −AΓ2A

−1
22 F 2 (39)

which is written as:
SUΓ = G

where S is the Schur complement and is given as:

S = AΓΓ −AΓ1A
−1
11A1Γ −AΓ2A

−1
22A2Γ

and
G = F Γ −AΓ1A

−1
11 F 1 −AΓ2A

−1
22 F 2

(d) To identify the preconditioner for the Schur complement equation arising from the Dirchlet-
Robin iteration-by-subdomain scheme, we first define the following:

S = S1 + S2

where
S1 = A

(1)
ΓΓ −AΓ1A

−1
11A1Γ

S2 = A
(2)
ΓΓ −AΓ2A

−1
22A2Γ

Considering a Gauss-Seidel-type iteration-by-subdomain given by (35), we obtain the fol-
lowing equations:

U
(k)
1 = A−1

11 (F 1 −A1ΓU
(k)
Γ ) (40)

U
(k−1)
2 = A−1

22 (F 2 −A2ΓU
(k−1)
Γ ) (41)

AΓ1U
(k)
1 +A

(1)
ΓΓUΓ = F Γ −AΓ2U

(k−1)
2 −A(2)

ΓΓU
(k−1)
Γ (42)

Substituting (40) and (41) into (42) yields:

AΓ1A
−1
11 (F 1−A1ΓU

(k)
Γ ) +A

(1)
ΓΓU

(k)
Γ = F Γ−AΓ2A

−1
22 (F 2−A2ΓU

(k−1)
Γ )−A(2)

ΓΓU
(k−1)
Γ (43)

Re-arranging yields:

(A
(1)
ΓΓ −AΓ1A

−1
11A1Γ)U

(k)
Γ = F Γ −AΓ1A

−1
11 F 1 −AΓ2A

−1
22 F 2 − (A

(2)
ΓΓ −AΓ2A

−1
22A2Γ)U

(k−1)
Γ

(44)
That is equivalent to:

S1U
(k)
Γ = G− S2U

(k−1)
Γ

= G− SU (k−1)
Γ + S1U

(k−1)
Γ

(45)

Inverting the matrix S1 yields:

U
(k)
Γ = U

(k−1)
Γ + S−1

1 (G− SU (k−1)
Γ ) (46)

which is a Richardson iteration for the Schur complement equation with preconditioner
P = S1
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3 Coupling in space of heterogeneous problems

3.1 Question 1: Elasticity and beam-theory

(a) Taking into account the following definition:

∇S =


∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


Considering also the definitions of the displacement vector

u = [u, v]T ,

the strain vector

ε = [εxx, εyy, γxy]
T = [

∂u

∂x
,
∂v

∂y
,
∂u

∂y
+
∂v

∂x
]T = ∇Su,

the stress tensor
τ =

[
σxx τxy
τxy σyy

]
,

and the stress vector
σ = [σxx, σyy, τxy]

T

In addition, the constitutive law for the plane stress is σ = Dε where the matrix D is
given by:

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 (1− ν)/2


where E and ν are the Young’s modulus of elasticity and Poisson’s ration, respectively.

The equilibrium equations or the momentum equations for elasticity are given by:

∇T
Sσ + f = 0

where f = [fx, fy]
T is the body force vector.

For the problem of interest where the square wall [0, L]× [−L, 0] is clamped at all its sides
except the top side, the boundary conditions are:

Homogeneous Dirchlet on the bottom, left and right sides, i.e.

u = 0 on (x,−L), (0, y), (L, y)

and Neumann on the top side, that is the normal traction coming from the beam:

τn = T on (x, 0)

where n is the outward unit normal to the top side and T = [T1, T2]T is the normal traction
on the top side due to the beam load.
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(b) Before adding the elastic wall as a support to the beam, the strong form of the beam field
equation was:

EI
d4v

dx4
= f

By adding the elastic wall underneath the beam, the beam field equation is modified to:

EI
d4v

dx4
= f −R(v)

where the supporting wall is represented by a force R(v) opposite to the beam distributed
load f (in y−direction).

The boundary conditions of the beam are v(0) =
dv

dx
(0) = v(L) =

dv

dx
(L) = 0

(c) At the interface between the beam and the wall (at y = 0), the transmission conditions
are:

Continuity of the vertical displacements, i.e.

vb(x) = vw(x, 0) −→ strong continuity

Continuity of the normal traction, i.e.

[0, Rb]
T = (τn)w −→ weak continuity

and since n = [0, 1]T on the top side of the wall (at y = 0), this yields the following
transmission condition for the normal traction:

Rb = (σyy)w

and it is assumed that τxy = 0 so that the normal traction is in the vertical direction.

(d) For the Euler-Bernoulli beam theory to be valid, it must be satisfied that the horizontal
displacement is zero, i.e.

ub(x) = uw(x, 0) = 0

and the tangential component of the traction on the wall at y = 0 should be also zero, i.e.

0 = (τxy)w

If the horizontal components of the displacement and the traction were not assumed to
be zero, Euler-Bernoulli beam theory would not be valid and another theory for the beam
would be required.
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3.2 Question 2: Stoke’s and Darcy problems

Figure 3: Stoke’s and Darcy’s domains with boundaries and interface identified

(a) Stoke’s and Darcy’s problems are written in their respective subdomains ΩS and ΩD, re-
spectively.

−ν∆uS + ∇pS = f in ΩS

∇ · uS = 0 in ΩS

uS = uS on ΓS

k−1uD + ∇φ = 0 in ΩD

∇ · uD = 0 in ΩD

n · uD = un,D on ΓD

where the interface conditions on Γ are:

"Strongly" −→ n · uS = n · uD
"Weakly" −→ pS − (n · ν∇uS) · n = φ

"Weakly" −→ uS · t = −
√
k

αBJ
(n · ν∇uS) · t

where t is a unit tangential vector on Γ.

First, the weak forms of the Stoke’s problem are derived by multiplying the 1st equation
(the momentum equation) by an arbitrary vector test function δuS ∈ [H1(ΩS)]d and the 2nd
equation (the mass conservation equation) by an arbitrary scalar test function qS ∈ L2(ΩS)

−
∫

ΩS

δuS · ν∆uS +

∫
ΩS

δuS ·∇pS =

∫
ΩS

δuS · f (47a)∫
ΩS

qs(∇ · uS) = 0 (47b)

Integrating by parts and setting δuS = 0 on ΓS yields∫
ΩS

∇δuS : ν∇uS −
∫

ΩS

pS(∇ · δuS)−
∫

Γ

δuS ·
[
nS · (−pSI + ν∇uS)

]
=

∫
ΩS

δuS · f

(48a)∫
ΩS

qs(∇ · uS) = 0 (48b)
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Second, the weak forms of the Darcy’s problem are derived by multiplying the 1st equation
(the momentum equation) by an arbitrary vector test function δuD ∈ Hdiv(ΩD) and the 2nd
equation (the mass conservation equation) by an arbitrary scalar test function qD ∈ L2(ΩD)

∫
ΩD

δuD · k−1uD +

∫
ΩD

δuD ·∇φ = 0 (49a)∫
ΩD

qD(∇ · uD) = 0 (49b)

Integrating by parts and setting δuD = 0 on ΓD yields∫
ΩD

δuD · k−1uD −
∫

ΩD

φ(∇ · δuD) +

∫
Γ

δuD · φnD = 0 (50a)∫
ΩD

qD(∇ · uD) = 0 (50b)

Employing the following Galerkin finite element approximations for Stoke’s problem:

uS ≈ uhS =
nsd∑
i=1

uhS,iei =
nsd∑
i=1

∑
A

NA US,i,A ei, (51a)

δuS ≈ δuhS =
nsd∑
i=1

δuhS,iei =
nsd∑
i=1

∑
B

NB δUS,i,B ei, (51b)

pS ≈ phS =
∑
Â

N̂Â PÂ, (51c)

qS ≈ qhS =
∑
Â

N̂Â QS,Â. (51d)

and the following approximations for Darcy’s problem:

uD ≈ uhD =
nsd∑
i=1

uhD,iei =
nsd∑
i=1

∑
A

NA UD,i,A ei, (52a)

δuD ≈ δuhD =
nsd∑
i=1

δuhD,iei =
nsd∑
i=1

∑
B

NB δUD,i,B ei, (52b)

φ ≈ φh =
∑
Â

N̂Â ΦÂ, (52c)

qD ≈ qhD =
∑
Â

N̂Â QD,Â. (52d)

This will give rise to the matrix form of the Stokes’s problem as [2]:[
KS GS

GT
S 0

]{
US

P S

}
=

{
fS
hS

}
and the matrix form of the Darcy’s problem as:[

MD GD

GT
D 0

]{
UD

ΦD

}
=

{
fD
hD

}
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By separating the degrees of freedom of the velocity into interior and interface, i.e U =
[U intT ,λT ]T , the matrix forms of the Stoke’s (left) and Darcy’s (right) problems are written
as:

ASS ASΓ BSS

AΓS A
(S)
ΓΓ BSΓ

BT
SS BΓS 0

U
int
S

λ
P S

 =


fSS
fSΓ

hS


ADD ADΓ BDD

AΓD A
(D)
ΓΓ BDΓ

BT
DD BΓD 0

U
int
D

λ
ΦD

 =


fDD
fDΓ

hD


By combining the two problems together in one matrix form, i.e. monolithic scheme, it
yields: 

ASS BSS ASΓ 0 0
BT
SS 0 BΓS 0 0

AΓS BSΓ A
(S)
ΓΓ +A

(D)
ΓΓ AΓD BDΓ

0 0 ADΓ ADD BDD

0 0 BΓD BT
DD 0



U int
S

P S

λ
U int
D

ΦD

 =


fSS
hS

fSΓ + fDΓ

fDD
hD

 (53)

By combining all the degrees of freedom of velocity and pressure in each subdomain as
US = [U intT

S ,P T
S ]T and UD = [U intT

D ,ΦT
D]T , the matrix form is further simplified to:ASS ASΓ 0

AΓS AΓΓ AΓD

0 ADΓ ADD


US

λ
UD

 =


F S

F Γ

FD


the first equation gives:

US = A−1
SS(F S −ASΓλ) (54)

the third equation gives:
UD = A−1

DD(FD −ADΓλ) (55)

and the second equations gives:

AΓSUS + AΓΓλ+ AΓDUD = F Γ (56)

Eventually, after substituting (54) and (55) into (56), the following equation is obtained:

(AΓΓ −AΓSA−1
SSASΓ −AΓDA−1

DDADΓ) λ = F Γ −AΓSA−1
SSF 1 −AΓDA−1

DDF 2 (57)

which is written as:
(SS − SD)λ = G

where
SS = A

(S)
ΓΓ −AΓSA−1

SSASΓ

SD = AΓDA−1
DDADΓ −A(D)

ΓΓ

G = F Γ −AΓSA−1
SSF 1 −AΓDA−1

DDF 2

and for the problem at hand, G is given to be 0 in the question.
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(b) The Dirchlet-Neumann iteration-by-subdomain scheme is written as:

−ν∆u(k)
S + ∇p

(k)
S = f in ΩS

∇ · u(k)
S = 0 in ΩS

u
(k)
S = uS on ΓS

n · u(k)
S = n · u(k−1)

D on Γ

u
(k)
S · t = −

√
k

αBJ
(n · ν∇u(k)

S ) · t on Γ

k−1u
(k)
D + ∇φ(k) = 0 in ΩD

∇ · u(k)
D = 0 in ΩD

n · u(k)
D = un,D on ΓD

φ(k) = p
(l)
S −(n · ν∇u(l)

S ) · n on Γ

Again, l = k − 1 yields a Jacobi scheme which allows for parallel solve, while l = k yields
a Gauss-Seidel scheme with sequential solve.

Looking into equation (53), the matrix form of the scheme is:

ASS BSS ASΓ

BT
SS 0 BΓS

AΓS BSΓ A
(S)
ΓΓ



U int(k)

S

P
(k)
S

λ(k)

 =


fSS
hS

F Γ −A(D)
ΓΓ λ

(k−1) −AΓDU
int(k−1)

D


[
ADD BDD

BT
DD 0

]{
U int(k)

D

Φ
(k)
D

}
=

{
fDD −ADΓλ

(l)

hD

}

(c) The Richardson iteration scheme takes the form:
U int(k)

S

P
(k)
S

λ(k)

 =


U int(k−1)

S

P
(k−1)
S

λ(k−1)

+

GS −

ASS BSS ASΓ

BT
SS 0 BΓS

AΓS BSΓ A
(S)
ΓΓ



U int(k−1)

S

P
(k−1)
S

λ(k−1)




{
U int(k)

D

Φ
(k)
D

}
=

{
U int(k−1)

D

Φ
(k−1)
D

}
+

({
fDD −ADΓλ

(l)

hD

}
−
[
ADD BDD

BT
DD 0

]{
U int(k−1)

D

Φ
(k−1)
D

})

where

GS =


fSS
hS

F Γ −A(D)
ΓΓ λ

(k−1) −AΓDU
int(k−1)

D


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4 Coupling in time: Monolithic and partitioned schemes

4.1 Question 1: Discretization of transient heat transfer equation

Considering the one-dimensional, transient, heat transfer equation:

∂u

∂t
− κ∂

2u

∂x2
= f in [0,1]

u(x = 0, t) = 0

u(x = 1, t) = 0

u(x, t = 0) = 0

The weak form is obtained after pre-multiplying by a test function v ∈ H1(Ω) and integrating
over the whole domain Ω: (

v,
∂u

∂t

)
Ω
−
(
v, κ

∂2u

∂x2

)
Ω

=
(
v, f
)

Ω

Integrating by parts the 2nd term on the LHS yields:(
v,
∂u

∂t

)
Ω

+
(∂v
∂x
, κ
∂u

∂x

)
Ω
−
〈
v, κ

∂u

∂x
n
〉
∂Ω

=
(
v, f
)

Ω

Since we only have Dirchlet boundary conditions on ∂Ω, therefore, the boundary term is elim-
inated, which yields the final weak form as:(

v,
∂u

∂t

)
Ω

+
(∂v
∂x
, κ
∂u

∂x

)
Ω

=
(
v, f
)

Ω

Using Galerkin finite elements, the solution u and the test function v are approximated as:

u(x, t) ≈ uh(x, t) =
∑
i=1

Ui(t)Ni(x) = NU

v(x, t) ≈ vh(x, t) =
∑
i=1

Vi(t)Ni(x) = V TNT

where U is a column-vector containing the nodal values of u, V is a column-vector containing
the nodal values of v, and N is a row-vector of the nodal shape functions. By using the FE
approximations into the weak form we obtain:∫ 1

0

NTN dΩ
dU

dt
+

∫ 1

0

κ
∂NT

∂x

∂N

∂x
dΩ U =

∫ 1

0

NTf dΩ

which results in the following algebric problem:

M
dU

dt
+KU = F

where M is called mass matrix, K is the stiffness matrix and F is the right hand side forcing
vector.

The time discretization using BDF1 yields the following system of equations:

M
Un+1 −Un

δt
+KUn+1 = F n+1
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Considering a time step of δt = 1 and a source term f = 1 (not time-dependent), the system
of equations is written as:

(M +K)Un+1 = F +MUn

Let A = M +K and B = F +MUn, the nodal solution at time step n+ 1 is obtained as:

Un+1 = A−1B (58)

4.2 Question 2: Domain decomposition approach using Monolithic
scheme

By splitting the domain into two sub-domains Ω1 = [0, 0.4] and Ω2 = [0.4, 1], we define an
interface Γ at x = 0.4 (corresponding to the nodal value u2). Furthermore, the weak form of
the problem is written for the two subdomains as follows:

Sub-domain 1: (
v,
∂u

∂t

)
Ω1

+
(∂v
∂x
, κ
∂u

∂x

)
Ω1
−
〈
v, κ

∂u

∂x
n1

〉
Γ

=
(
v, f
)

Ω1

Sub-domain 2: (
v,
∂u

∂t

)
Ω2

+
(∂v
∂x
, κ
∂u

∂x

)
Ω2
−
〈
v, κ

∂u

∂x
n2

〉
Γ

=
(
v, f
)

Ω2

with the transmission conditions:

JuKΓ = 0 −→ 1st transmission condition - strong continuity

Jκ
∂u

∂x
nKΓ = 0 −→ 2nd transmission condition - weak continuity

In order to solve the problem in a monolithic way, the two equations for the two subdomains
are summed which yields:(

v,
∂u

∂t

)
Ω

+
(∂v
∂x
, κ
∂u

∂x

)
Ω
−

[〈
v, κ

∂u

∂x
n1

〉
Γ

+
〈
v, κ

∂u

∂x
n2

〉
Γ

]
︸ ︷︷ ︸

=0

=
(
v, f
)

Ω

where the boundary integrals at the interface Γ are equal to zero due to the 2nd transmission
condition. (n1 = −n2 has been used)

4.3 Question 3: Algebraic form of the Dirchlet-to-Neumann operator
for the left sub-domain

Considering the mesh with 6 nodes described in the question, the system of equations given
earlier by (58) is written as:

A00 A01 0 0 0 0
A10 A11 A12 0 0 0
0 A21 A22 A23 0 0
0 0 A32 A33 A34 0
0 0 0 A43 A44 A45

0 0 0 0 A54 A55





Un+1
0

Un+1
1

Un+1
2

Un+1
3

Un+1
4

Un+1
5


=



Bn
0

Bn
1

Bn
2

Bn
3

Bn
4

Bn
5


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The nodal values of U0 and U5 are prescribed by Dirchlet boundary conditions and both are
equal to zero. Imposing them strongly yields the following reduced system of equations:

A11 A12 0 0
A21 A22 A23 0
0 A32 A33 A34

0 0 A43 A44



Un+1

1

Un+1
2

Un+1
3

Un+1
4

 =


Bn

1

Bn
2

Bn
3

Bn
4


The system of equations for the left sub-domain (Ω1) is:[

A11 A12

A21 A22

]{
Un+1

1

Un+1
2

}
=

{
Bn

1

Bn
2

}
Departing from given values Un

i and an interface value Un+1
2 , the Dirchlet-to-Neumann operator

for the left sub-domain (Ω1) is:

A11U
n+1
1 = Bn

1 −A12U
n+1
2 ←− Dirchlet condition

4.4 Question 4: Algebraic form of the Neumann-to-Dirchlet operator
for the right sub-domain

Departing from given values of uni and an interface value for the fluxes φn+1 = κ∂xu
n+1 at the

coordinate of node 2, the system of equations for the right sub-domain (Ω2) is:A(Ω2)
22 A23 0
A32 A33 A34

0 A43 A44


Un+1

2

Un+1
3

Un+1
4

 =


Bn

2 −A21U
n+1
1 − A(Ω1)

22 Un+1
2

Bn
3

Bn
4


←− Neumann flux from Ω1

4.5 Question 5: Iterative algorithm for a staggered approach

For a staggered approach, we define a prediction Ũn+1 to replace all the unknowns on the RHS
of the equations. This allows for parallel computing which is faster but less accurate. The
prediction is defined as:

Ũ = Un ←− 1st order approximation

Ũ = 2Un − Un−1 ←− 2nd order approximation

The iterative scheme is written as follows: For each time step n+ 1, we iterate k until conver-
gence:

Sub-domain 2:A(Ω2)
22 A23 0
A32 A33 A34

0 A43 A44



U

(n+1)(k)
2

U
(n+1)(k)
3

U
(n+1)(k)
4

 =

B
n
2 − A21Ũ

(n+1)(k−1)
1 − A(Ω1)

22 Ũ
(n+1)(k−1)
2

Bn
3

Bn
4


sub-domain 1:

A11U
(n+1)(k)
1 = Bn

1 − A12Ũ
(n+1)(k)
2

If we reach convergence, we recover the solution of the monolithic problem. However, conver-
gence or stability of this scheme is not guaranteed.
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4.6 Question 6: A Substitution and an iteration-by-subdomains scheme

Substitution scheme:
The idea is based on only predicting the unknowns in one subdomain. This yields a serial scheme
(no parallelization) which is slower than the staggered approach but with higher accuracy.

The iterative scheme is written as follows: For each time step n+ 1, we iterate k until conver-
gence:

Sub-domain 2:A(Ω2)
22 A23 0
A32 A33 A34

0 A43 A44



U

(n+1)(k)
2

U
(n+1)(k)
3

U
(n+1)(k)
4

 =

B
n
2 − A21Ũ

(n+1)(k−1)
1 − A(Ω1)

22 Ũ
(n+1)(k−1)
2

Bn
3

Bn
4


sub-domain 1:

A11U
(n+1)(k)
1 = Bn

1 − A12U
(n+1)(k)
2

If we reach convergence, we recover the solution of the monolithic problem. However, conver-
gence or stability of this scheme is not guaranteed.

Iteration-by-subdomains scheme:
Here, the problem is solved iteratively without predictions. The iteration-by-subdomains
scheme is written as follows: For each time step n + 1, the following equations are solved
by iterating k until convergence:

Sub-domain 2:A(Ω2)
22 A23 0
A32 A33 A34

0 A43 A44



U

(n+1)(k)
2

U
(n+1)(k)
3

U
(n+1)(k)
4

 =

B
n
2 − A21U

(n+1)(k−1)
1 − A(Ω1)

22 U
(n+1)(k−1)
2

Bn
3

Bn
4


sub-domain 1:

A11U
(n+1)(k)
1 = Bn

1 − A12U
(n+1)(l)
2

where l = k − 1 yields a Jacobi scheme which allows for parallel solve, while l = k yields a
Gauss-Seidel scheme with sequential solve.

4.7 Question 7: Imposing Dirchlet boundary condition on the left
sub-domain using Nitche’s method

The weak form of the problem in sub-domain Ω1 was derived earlier as:(
v,
∂u

∂t

)
Ω1

+
(∂v
∂x
, κ
∂u

∂x

)
Ω1
−
〈
v, κ

∂u

∂x
n1

〉
∂Ω1

=
(
v, f
)

Ω1

After adding the terms associated to Nitche’s method to impose the Dirchlet boundary condi-
tions weakly in a symmetric way, we obtain the following weak form:(

v,
∂u

∂t

)
Ω1

+
(∂v
∂x
, κ
∂u

∂x

)
Ω1
−
〈
v, κ

∂u

∂x
n1

〉
∂Ω1

+ α
κ

h

〈
v, u
〉
∂Ω1
− κ
〈∂v
∂x
n1, u

〉
∂Ω1

=
(
v, f
)

Ω1

+ α
κ

h

〈
v, u
〉
∂Ω1
− κ
〈∂v
∂x
n1, u

〉
∂Ω1
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where α is a penalty parameter tuned to ensure stability, h is the element size, and u is the
prescribed Dirchlet function.

Considering the problem of interest in the left sub-domain Ω1 = [0, 0.4], and evaluating the
boundary terms yields:(

v,
∂u

∂t

)
Ω1

+
(∂v
∂x
, κ
∂u

∂x

)
Ω1
− κ
[(
v
∂u

∂x
n1

)
|x=0.4 −

(
v
∂u

∂x
n1

)
|x=0

]
+ α

κ

h

[(
vu
)
|x=0.4 −

(
vu
)
|x=0

]
− κ
[(∂v
∂x
n1u
)
|x=0.4 −

(∂v
∂x
n1u
)
|x=0

]
=
(
v, f
)

Ω1
+ α

κ

h

[(
vu
)
|x=0.4 −

(
vu
)
|x=0

]
− κ
[(∂v
∂x
n1u
)
|x=0.4 −

(∂v
∂x
n1u
)
|x=0

]
Recalling the fact that n1 = 1 at x = 0.4 and n1 = −1 at x = 0, the previous weak form is
simplified to:(

v,
∂u

∂t

)
Ω1

+
(∂v
∂x
, κ
∂u

∂x

)
Ω1
− κ
[
v
∂u

∂x
(0.4) + v

∂u

∂x
(0)
]

+ α
κ

h

[
vu(0.4)− vu(0)

]
− κ
[∂v
∂x
u(0.4) +

∂v

∂x
u(0)

]
=
(
v, f
)

Ω1
+ α

κ

h

[
vu(0.4)− vu(0)

]
− κ
[∂v
∂x
u(0.4) +

∂v

∂x
u(0)

]
Using the FE approximation presented earlier in Section 4.1, where the vector of shape functions
N = [N0, N1, N2] and the vector of nodal values U = [U0, U1, U2]T is used for the polynomial
approximation of the solution in Ω1. We obtain the following discrete problem in sub-domain
Ω1 = [0, 0.4]:∫ 0.4

0

NTN dΩ
dU

dt
+

∫ 0.4

0

κ
∂NT

∂x

∂N

∂x
dΩ U − κ

[
NT ∂N2

∂x
U2 +NT ∂N0

∂x
U0

]
+ α

κ

h

[
NTU2 −NTU0

]
− κ
[∂NT

∂x
U2 +

∂NT

∂x
U0

]
=

∫ 0.4

0

NTf dΩ + α
κ

h

[
NTU

(Ω2)
2 −NT (0)

]
− κ
[∂NT

∂x
U

(Ω2)
2 +

∂NT

∂x
(0)
]

where U (Ω2)
2 is Dirchlet value imposed at the interface and the superscript (Ω2) indicates that

this value is computed by solving the problem in sub-domain Ω2, M is the mass matrix, K is
the stiffness matrix, the vector C = NT while the vector D = ∂NT

∂x
. It has also been used the

fact that ∂N2

∂x
= ∂N0

∂x
= h

2
since we are using linear elements of equal size. The previous equation

is re-written as:

M
dU

dt
+KU − κh

2
C(U2 +U0) + α

κ

h
C(U2 −U0)− κD(U2 +U0) = F + α

κ

h
CU

(Ω2)
2 − κDU (Ω2)

2

Further simplification yields:

M
dU

dt
+KU − κ(

h

2
C − α

h
+D)U2 − κ(

h

2
C +

α

h
+D)U0 = F + (α

κ

h
C − κD)U

(Ω2)
2

Using BDF1 time discretization, the system of equations is written as:

M
Un+1 −Un

δt
+KUn+1−κ(

h

2
C−α

h
+D)Un+1

2 −κ(
h

2
C+

α

h
+D)Un+1

0 = F+(α
κ

h
C−κD)U

(n+1)(Ω2)
2
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Condition number:
Nitche’s method is better conditioned than the standard penalty method. For the heat transfer
problem, it is sufficient to take the penalty parameter α > 2ci to ensure stability where ci
depends on the shape of the elements, so for non-stretched elements ci = O

(
1
)
. It is also

known that increasing the value of α leads to a higher condition number, i.e. ill-conditioned
system. The advantage of Nitche’s method when compared to penalty method is that it allows
for lower values of α and thus, better conditioned systems.
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5 Coupling in time: Operator splitting techniques

Consider the 1D, transient, convection-diffusion equation:

∂u

∂t
− κ∂

2u

∂x2
+ a

∂u

∂x
= f in [0,1]

u(x = 0, t) = 0

u(x = 1, t) = 0

u(x, t = 0) = 0

with κ = 1, a = 1, f = 1.

1. Discretize it in space using finite elements (3 elements) and in time (finite dif-
ferences, BDF1). Solve the first step of the problem, writing the solution as a
function of the time step size δt.

• First, the weak form of the problem is obtain by pre-multiplying by a test function
v ∈ H1(Ω) and integrating over the whole domain Ω, then the term involving the
2nd-order spatial derivative is integrated by parts to give the boundary term which is
eliminated due to the absence of Neumann boundary conditions:(

v,
∂u

∂t

)
Ω

+ κ
(∂v
∂x
,
∂u

∂x

)
Ω

+ a
(
v,
∂u

∂x

)
Ω

=
(
v, f
)

Ω

• Using Galerkin finite elements, the solution u and the test function v are approximated
as:

u(x, t) ≈ uh(x, t) =
∑
i=1

Ui(t)Ni(x) = NU

v(x, t) ≈ vh(x, t) =
∑
i=1

Vi(t)Ni(x) = V TNT

where U is a column-vector containing the nodal values of u, V is a column-vector
containing the nodal values of v, and N is a row-vector of the nodal shape functions.
By using the FE approximations into the weak form we obtain:∫ 1

0

NTN dΩ
dU

dt
+

∫ 1

0

κ
∂NT

∂x

∂N

∂x
dΩ U +

∫ 1

0

aNT ∂N

∂x
dΩ U =

∫ 1

0

NTf dΩ

which results in the following algebric problem:

M
dU

dt
+KU +CU = F

where M is called mass matrix, K is the stiffness matrix, C is the convection matrix
and F is the right hand side forcing vector.
The time discretization using BDF1 yields the following system of equations:

M
Un+1 −Un

δt
+KUn+1 +CUn+1 = F n+1

Considering a source term f = 1 (not time-dependent), the system of equations is
written as:

(
1

δt
M +K +C)Un+1 = F +

1

δt
MUn
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Let A = 1
δt
M +K +C and B = F + 1

δt
MUn, the nodal solution at time step n+ 1

is obtained as:
Un+1 = A−1B

• Using a uniform mesh of 3 elements (4 nodes), and imposing the Dirchlet conditions
strongly on both ends of the domain (U1 = U4 = 0) yields a system of size 2× 2 where:

Un+1

reduced =

{
U2

U3

}

Areduced =

∫ 1

0

 1

δt

[
N2N2 N2N3

N3N2 N3N3

]
+


∂N2

∂x

∂N2

∂x

∂N2

∂x

∂N3

∂x

∂N3

∂x

∂N2

∂x

∂N3

∂x

∂N3

∂x

+


N2

∂N2

∂x
N2

∂N3

∂x

N3
∂N2

∂x
N3

∂N3

∂x


 dΩ

Breduced =

∫ 1

0

{
N2

N3

}
dΩ +

1

δt

∫ 1

0

[
N2N2 N2N3

N3N2 N3N3

]
dΩ Un

where the shape functions (N2(x), N3(x)) and their derivatives were computed as:

N2 =


3x 0 ≤ x ≤ 1/3
2− 3x 1/3 ≤ x ≤ 2/3
0 2/3 ≤ x ≤ 1

,
∂N2

∂x
=


3 0 ≤ x ≤ 1/3
−3 1/3 ≤ x ≤ 2/3
0 2/3 ≤ x ≤ 1

N3 =


0 0 ≤ x ≤ 1/3
3x− 1 1/3 ≤ x ≤ 2/3
3− 3x 2/3 ≤ x ≤ 1

,
∂N3

∂x
=


0 0 ≤ x ≤ 1/3
3 1/3 ≤ x ≤ 2/3
−3 2/3 ≤ x ≤ 1

• Solving the system of equations for the 1st time step using Symbolic Matlab (see ap-
pendix A.1) yields:

U 1 =


U1

U2

U3

U4

 =



0
6 δt (51 δt+ 1)

2943 δt2 + 324 δt+ 5

6 δt (57 δt+ 1)

2943 δt2 + 324 δt+ 5

0


2. Solve the same time step by using a first order operator splitting technique.

• The operator splitting technique consists of defining:

L = La + Lν

Lau = a
∂u

∂x

Lνu = −κ∂
2u

∂x2
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and therefore, the transient convection-diffusion equation is written as:

∂u

∂t
+ Lνu+ Lau = f

We introduce the splitting by defining intermediate variables ua and uν . Next, the
advance in time is done as follows:

First, we solve for ua:
ua(tn) = un

∂ua
∂t

+ Laua = 0

Second, we solve for uν , but the initial condition is ua(tn+1):

uν(tn) = ua(tn+1)

∂uν
∂t

+ Lνuν = f

Finally:
un+1 = uν(tn+1)

• The discrete form of this technique is written as:

First, we solve for U a:
Un
a = Un

(
1

δt
M +C)Un+1

a =
1

δt
MUn

a

Second, we solve for U ν , but the initial condition is Un+1
a :

Un
ν = Un+1

a

(
1

δt
M +K)Un+1

ν = F +
1

δt
MUn

ν

Finally:
Un+1 = Un+1

ν

• Particularize to the problem at hand:

First, solve: U 1
a = ( 1

δt
M +C)−1 1

δt
MU 0

a = 0 → (because U 0 = 0)

Second, solve: U 1
ν = ( 1

δt
M +K)−1 F → (use U 0

ν = U 1
a = 0)

The solution obtained using Symbolic Matlab (see appendix A.2) is:

U 1 = U 1
ν =



0
6 δt

54 δt+ 5

6 δt

54 δt+ 5

0


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3. Evaluate the error of the splitting approach with respect to the monolithic ap-
proach. Plot the splitting error vs. the time step size for δt = 1, δt = 0.5, δt = 0.25.
Comment on the results.

• The solution obtained by the monolithic scheme is:

U 1

reduced,monolithic =

{
U2

U3

}
=


6 δt (51 δt+ 1)

2943 δt2 + 324 δt+ 5

6 δt (57 δt+ 1)

2943 δt2 + 324 δt+ 5


• The solution obtained by the operator-splitting scheme is:

U 1

reduced,split =

{
U2

U3

}
=


6 δt

54 δt+ 5

6 δt

54 δt+ 5


• The absolute error of the operator-splitting technique is:

e =

{
e1

e2

}
= U 1

reduced,monolithic −U
1

reduced,split

Using δt = [1, 0.5, 0.25], the absolute errors are:

δt 1 0.5 0.25
|e1| 6.3e-3 5.7e-3 4.7e-3
|e2| 4.7e-3 4.3e-3 3.7e-3

• Figure 4 shows the splitting error as a function of δt, where the L∞-norm of the error
(|e|∞ = max

i
|ei|) is used.

Figure 4: Splitting error as a function of δt

• The splitting error at different values of δt indicates that this technique converges to
the solution of the monolithic scheme by reducing δt. It is actually expected because
the operator-splitting technique introduces a splitting error of O

(
δt
)
.
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6 Coupling in time: Fractional step methods

Consider the fractional step approach for the incompressible Navier-Stokes equations (Yosida
scheme):

M
1

δt

(
Û
n+1
−Un

)
+KÛ

n+1
= f −GP̃ n+1

(59a)

DM−1GP n+1 =
1

δt
DÛ

n+1
−DM−1GP̃

n+1
(59b)

M
1

δt

(
Un+1 − Û

n+1
)

+ αK
(
Un+1 − Û

n+1
)

+G
(
P n+1 − P̃ n+1

)
= 0 (59c)

1. Which is the optimal value for the α parameter?

• First, we recall the discrete form of the incompressible Navier-Stokes equations using
BDF1 time-integration without decoupling of pressure and velocity:

M
1

δt

(
Un+1 −Un

)
+KUn+1 = f −GP n+1 (60a)

DUn+1 = 0 (60b)

• Summing the two equations (59a) and (59c) yields:

M
1

δt

(
Un+1 −Un

)
+K

(
Û
n+1

+ αUn+1 − αÛ
n+1
)

= f −GP n+1

• By comparing the previous equation with equation (60a), it is observed that we obtain
the original scheme of the problem by setting α = 1. Therefore, the optimal value is
α = 1.

2. What is the source of error of the scheme?

• By setting α = 1, the sources of error are the approximations Û and P̂ for the velocity
and pressure which lead to the relaxation of the incompressibility constraint as given
by equation (59b), where the consistent incompressibility constraint should be:

DM−1GP n+1 = DM−1f −DM−1KUn+1 +
1

δt
DUn

• For values of α different from 1, the sources of error are the approximations Û and P̂
for the velocity and pressure as well as the value of the parameter α.
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7 ALE formulations

7.1 Question 1: Obtaining ALE description from spatial description

Given the spatial description of a property

γ(x, y, z, t) = [2x, yet, z]

the equations of movement:
x = Xet

y = Y + et − 1

z = Z

and the equations of the movement of the mesh:

xm = X + αt

ym = Y − βt
zm = Z

(a) To obtain the description of the property γ in terms of the ALE coordinates (X ,Y ,Z) we
substitute the equations of the movement of the mesh into the spatial description of the
property:

γALE(X ,Y ,Z, t) =
[
2(X + αt), (Y − βt)et,Z

]
(b) The velocity of the particles is:

v =
∂x(X, t)

∂t
=
[
Xet, et, 0

]
The velocity of the mesh is:

vmesh =
∂x(X , t)

∂t
= [α,−β, 0]

(c) The material temporal derivative of γALE(X , t) is computed as:

d

dt
γALE(X , t) =

∂γALE(X , t)

∂t
+ ∇γ(x, t) · (v − vmesh)

=


2α

(Y − β(1 + t)) et

0

+

2 0 0
0 et 0
0 0 1


Xet − α
et + β

0


=


2α

(Y − β(1 + t)) et

0

+


2Xet − 2α
e2t + βet

0


=


2Xet

(Y − βt+ et) et

0


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Recalling that x = Xet = X +αt, therefore, we get X = (X + αt) e−t. This yields the final
expression for the material derivative of γALE(X , t) as:

d

dt
γALE(X , t) =


2 (X + αt)

(Y − βt+ et) et

0


7.2 Question 2: ALE form of the incompressible Navier-Stokes equa-

tions

By defining the velocity vector c = v − vmesh, the momentum conservation equation in ALE
form is written as:

∂uALE(X , t)

∂t
+ c ·∇u(x, t)−∇·σ(x, t) = ρ(x, t)b(x, t)

For incompressible flow, the Cauchy stress tensor σ(x, t) is defined as:

σ(x, t) = −p(x, t)I + 2µ∇su(x, t)

Using this definition in the momentum equation yields:

∂uALE(X , t)

∂t
+ c ·∇u(x, t) + ∇p(x, t)− µ∇2u(x, t) = ρ(x, t)b(x, t)

On the other hand, the mass conservation equation in ALE form is written as:

∂ρALE(X , t)

∂t
+ c ·∇ρ(x, t) + ρ(x, t)∇·u(x, t) = 0

where for incompressible flow, it is simplified to:

∇·u(x, t) = 0

Therefore, the ALE form of the incompressible Navier-Stokes equations is written as:

∂uALE(X , t)

∂t
+ c ·∇u(x, t) + ∇p(x, t)− µ∇2u(x, t) = ρ(x, t)b(x, t)

∇·u(x, t) = 0
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7.3 Question 3: Methods for defining mesh movement in ALE formu-
lations

First of all, we state the requirements that mesh movement methods must satisfy:

• In some boundaries of the domain, it must follow the movement of the particles in the
boundaries (Lagrangian boundary). This means that the mesh displacement is equal to
the boundary displacement, i.e. dmesh = dL on ΓLagrangian.

• In some boundaries of the domain, it must remain static (Eulerian boundary). This means
that the mesh displacement is equal to zero, i.e. dmesh = 0 on ΓEulerian.

• In the interior of the domain, the mesh movement must not lead to excessively distorted
elements to avoid the increase in the numerical approximation error.

There are several possibilities for computing the mesh displacement in the interior of the domain
such as:

• Solving Poisson problem: −∇·∇d = 0 in Ω. This approach has the advantage of solving
independently for the displacement components which makes it computationally efficient.
However, it might give folded elements if the displacements of the mesh are large which
will ruin the simulation (due to the appearance of negative Jacobian).

• Solving elasticity problem: Kd = 0 in Ω. This approach yields less distorted elements
when compared to the approach of solving Poisson problem. However, it has higher com-
putational cost because of the coupling between the components of the mesh displacement.

However, it is not always possible to avoid mesh distortion. If displacements are too large, it
is necessary to re-mesh after a number of time steps. After re-meshing, all the results need to
be projected onto the new mesh.

Further methods for mesh movement exist in the literature, for instance, in [3]. The authors
identified two basic mesh movement strategies. The first strategy is mesh regularization which
aims at keeping the computational mesh as regular as possible and avoiding mesh entanglement
during the calculation. While the second strategy is mesh-adaptation which aims at concen-
trating elements in zones of steep solution gradient and again a suitable indication of the error
is required as a basic input to the re-mesh algorithm. The authors listed three methods for
mesh regulation which are:

• Transfinite Mapping Method : This method was originally designed for creating a mesh on
a geometric region with specified boundaries. The general transfinite method describes an
approximate surface or volume at a huge number of points. In the 2-D case, the transfinite
mapping can be made to exactly model all domain boundaries, and, thus, no geometric
error is introduced by the mapping. It induces a very low-cost procedure, since new nodal
coordinates can be obtained explicitly once the boundaries of the computational domain
have been discretized. The main disadvantage of this methodology is that it imposes
restrictions on the mesh topology, as two opposite curves have to be discretized with the
same number of elements.
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• Laplacian Smoothing and Variational Methods : Which is the same as the approach of
solving Poisson problem to obtain mesh displacements discussed earlier. This technique
has an important drawback: in a non-convex domain, nodes may run outside it. Tech-
niques to fix this issue either increase the computational cost enormously or introduce
new terms in the formulation, which are particular to each geometry.

• Mesh-Smoothing and Simple Interpolations : In fact, in ALE, it is possible to use any mesh-
smoothing algorithm designed to improve the shape of the elements once the topology
is fixed. Simple iterative averaging procedures can be implemented where possible. The
goal of this method is to minimize both the squeeze and distortion of each element in the
mesh. The main advantage of these mesh-regularization methods is that they are both
simple and rather general. They can in fact be applied to unstructured meshes consisting
of triangular and quadrilateral elements in 2-D, and to tetrahedral, hexahedral, prism,
and pyramidal elements in 3-D.

The second strategy of mesh-adaptation is concerned with using the ALE description as an
adaptive technique even if the physical domain does not evolve in time. It allows to concentrate
more elements in areas where the error is larger which is called r-adaptivity. This technique
requires an error estimator to control the mesh movement.
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8 Fluid-Structure Interaction

8.1 Question 1: Added mass effect

• The issue of added mass effect appear in Fluid-Structure Interaction when the densities of
an incompressible fluid and solid object are similar or close to each other. This issue is of
particular interest when using partitioned schemes because it does not always converge.

• The added mass effect is particularly challenging in problems such as in biomechanics or
modelling of the interaction between body tissues and water where the fluid and solid
densities are very similar.

• In order to fix the issue of non-convergence of partitioned schemes due to the added mass
effect, relaxation methods are used which aim at weighing the Dirchlet condition applied
at the interface of one of the sub-domains to control the instability. This helps to alleviate
the added mass effect.

• A widely used relaxation method is the Aitken relaxation scheme which uses the last two
iterates in order to approximate the next one.

• Other possibilities to solve the issue include Steepest Descent Methods and Robin-Robin
Boundary Conditions.

8.2 Question 2: Aitken relaxation applied on an iteration-by-subdomains
scheme

Considering the 1D, transient, heat transfer equation:

∂u

∂t
− κ∂

2u

∂x2
= f in [0,1]

u(x = 0, t) = uL

u(x = 1, t) = uR

u(x, t = 0) = u0

The iteration-by-subdomain scheme based on the Dirchlet-Neumann coupling is written as:

∂u
(n+1)(k)
1

∂t
− κ1

∂2u
(n+1)(k)
1

∂x2
= f in Ω1

u
(n+1)(k)
1 = uL on Γ1

κ1
∂u

(n+1)(k)
1

∂n
= κ2

∂u
(n+1)(k−1)
2

∂n
on Γ

∂u
(n+1)(k)
2

∂t
− κ2

∂2u
(n+1)(k)
2

∂x2
= f in Ω2

u
(n+1)(k)
2 = uR on Γ2

u
(n+1)(k)
2 = u

(n+1)(l)
1 on Γ

Taking l = k − 1 yields a Jacobi scheme which allows for parallel solve, while l = k yields a
Gauss-Seidel scheme with sequential solve.

It is important not to mix between the time step n and the iteration k in each time step.

For each time step n + 1, the initial guess for the iterations is set to be equal to the solution
from the previous time step n. i.e. u(n+1)(0) = un.
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The Aitken relaxation method uses the last two iterates in order to approximate the next one.
The first iteration is bit tricky in order to obtain two previous iterates. For simplicity, we will
write 2 iterations starting from iteration 2.

Using Gauss-Seidel scheme and Aitken relaxation, the 2nd iteration at time step n+1 is written
as:

∂u
(n+1)(2)
1

∂t
− κ1

∂2u
(n+1)(2)
1

∂x2
= f in Ω1

u
(n+1)(2)
1 = uL on Γ1

κ1
∂u

(n+1)(2)
1

∂n
= κ2

∂u
(n+1)(1)
2

∂n
on Γ

∂u
(n+1)(2)
2

∂t
− κ2

∂2u
(n+1)(2)
2

∂x2
= f in Ω2

u
(n+1)(2)
2 = uR on Γ2

u
(n+1)(2)
2 = u

(n+1)(1)
2 + w

(
u

(n+1)(2)
1 − u(n+1)(1)

2

)
on Γ

with w =
un2 − u

(n+1)(1)
2

un2 − u
(n+1)(1)
2 + u

(n+1)(2)
1 − u(n+1)(1)

1

where it has been used that u(n+1)(0)
2 = un2 .

The 3rd iteration at time step n+ 1 is written as:

∂u
(n+1)(3)
1

∂t
− κ1

∂2u
(n+1)(3)
1

∂x2
= f in Ω1

u
(n+1)(3)
1 = uL on Γ1

κ1
∂u

(n+1)(3)
1

∂n
= κ2

∂u
(n+1)(2)
2

∂n
on Γ

∂u
(n+1)(3)
2

∂t
− κ2

∂2u
(n+1)(3)
2

∂x2
= f in Ω2

u
(n+1)(3)
2 = uR on Γ2

u
(n+1)(3)
2 = u

(n+1)(2)
2 + w

(
u

(n+1)(3)
1 − u(n+1)(2)

2

)
on Γ

with w =
u

(n+1)(1)
2 − u(n+1)(2)

2

u
(n+1)(1)
2 − u(n+1)(2)

2 + u
(n+1)(3)
1 − u(n+1)(2)

1

8.3 Question 3: Monolithic solver with Dirchlet boundary conditions
applied using Lagrange multipliers

Considering the 1D, transient, heat transfer equation:

∂u

∂t
− κ∂

2u

∂x2
= f in [0,1]

u(x = 0, t) = uL

u(x = 1, t) = uR

u(x, t = 0) = u0

Following the same procedure done in section 4.1 and using BDF1 time discretization, it yields
the following system of equations:

(
1

δt
M +K)Un+1 = F n+1 +

1

δt
MUn

Let A = 1
δt
M +K and B = F n+1 + 1

δt
MUn, the nodal solution at time step n+ 1 is obtained

by solving the system:
AUn+1 = B (61)
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Using a uniform mesh of 4 elements (5 nodes), the global matrix A and vector B are written
as:

A = Ae

(
1

δt
M e +Ke

)

B = Ae

(
F n+1,e +

1

δt
M eUn,e

)
The shape functions of the reference element [-1,1] and their derivatives are recalled:

N e
1 (ξ) =

1

2
(1− ξ), ∂N e

1

∂ξ
=
−1

2

N e
2 (ξ) =

1

2
(1 + ξ),

∂N e
2

∂ξ
=

1

2

The elemental matrices are computed as (It is assumed that κ = f = 1):

M e =

∫ 1

−1

[
N e

1N
e
1 N e

1N
e
2

N e
2N

e
1 N e

2N
e
2

]
le

2
dξ =

le

6

[
2 1
1 2

]
=

1

24

[
2 1
1 2

]

Ke =

∫ 1

−1


∂N e

1

∂ξ

∂N e
1

∂ξ

∂N e
1

∂ξ

∂N e
2

∂ξ

∂N e
2

∂ξ

∂N e
1

∂ξ

∂N e
2

∂ξ

∂N e
2

∂ξ

 2

le
dξ = 4

[
1 −1
−1 1

]

F e =

∫ 1

−1

{
N e

1

N e
2

}
le

2
dξ =

1

8

{
1
1

}
Since all the elements are exactly the same (le = 1

4
), we compute the elemental matrices and

vectors once and then assemble into the global system. A time step of size δt = 1 is used. After
assembling the elemental contributions, the global system 61 is written as:

1

24


98 −95 0 0 0
−95 196 −95 0 0

0 −95 196 −95 0
0 0 −95 196 −95
0 0 0 −95 98



Un+1

1

Un+1
2

Un+1
3

Un+1
4

Un+1
5

 =
1

8


1
2
2
2
1

+
1

24


2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 2



Un

1

Un
2

Un
3

Un
4

Un
5

 =


B1

B2

B3

B4

B5


By imposing Dirchlet boundary conditions at x = 0 and x = 1 using Lagrange multipliers, the
system of equations is written as:

1

24



98 −95 0 0 0 24 0
−95 196 −95 0 0 0 0

0 −95 196 −95 0 0 0
0 0 −95 196 −95 0 0
0 0 0 −95 98 0 24
24 0 0 0 0 0 0
0 0 0 0 24 0 0





Un+1
1

Un+1
2

Un+1
3

Un+1
4

Un+1
5

λ1

λ2


=



B1

B2

B3

B4

B5

uL
uR


The condition number of the matrix A is computed using Matlab and it is equal to 38.3156 .
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8.4 Question 4: Monolithic solver for a domain with regions of dif-
ferent thermal conductivity

Considering the 1D, transient, heat transfer equation given in the previous question with a
variation in the diffusion coefficient κ within the domain [0,1]. The schematic in Figure 5
explains the problem of interest.

Figure 5: The 1D domain [0,1] with varying diffusion coefficient κ

Relating this problem to the previous problem, we note that the elemental mass matrices and
forcing vectors remains unchanged for all the elements. The elemental stiffness matrices for
elements 3 and 4 also remain unchanged as κ doesn’t change while the elemental stiffness matrix
for elements 1 is multiplied by 100 as κ is changed from 1 to 100.

M 1 = M 2 = M 3 = M 4 =
1

24

[
2 1
1 2

]

F 1 = F 2 = F 3 = F 4 =
1

8

{
1
1

}

K3 = K4 = 4

[
1 −1
−1 1

]

K1 = 400

[
1 −1
−1 1

]
The stiffness matrix for element 2 needs to be computed taking into account the variation of
κ within the element. This is done by dividing element 2 into two regions x ∈[0.25,0.4] and
x ∈[0.4,0.5] which are equivalent to the two regions ξ ∈[-1,0.2] and ξ ∈[0.2,1] in the reference
element. Next the stiffness matrix of element 2 is computed as follows:

K2 =

∫ 1

−1

κ


∂N e

1

∂ξ

∂N e
1

∂ξ

∂N e
1

∂ξ

∂N e
2

∂ξ

∂N e
2

∂ξ

∂N e
1

∂ξ

∂N e
2

∂ξ

∂N e
2

∂ξ

 2

le
dξ

= 2κ1

∫ 0.2

−1

[
1 −1
−1 1

]
dξ + 2κ2

∫ 1

0.2

[
1 −1
−1 1

]
dξ

= 240

[
1 −1
−1 1

]
+

8

5

[
1 −1
−1 1

]
= −241.6

[
1 −1
−1 1

]
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Assembling all the elemental contributions Ke yields the global stiffness matrix as:

K =


400 −400 0 0 0
−400 641.6 −241.6 0 0

0 −241.6 245.6 −4 0
0 0 −4 8 −4
0 0 0 −4 4


Using a time step of size δt = 1, the global system 61 is written as:

4801/12 −9599/24 0 0 0
−9599/24 19253/30 −28987/120 0 0

0 −28987/120 7373/30 −95/24 0
0 0 −95/24 49/6 −95/24
0 0 0 −95/24 49/12



Un+1

1

Un+1
2

Un+1
3

Un+1
4

Un+1
5

 =


B1

B2

B3

B4

B5



where


B1

B2

B3

B4

B5

 =
1

8


1
2
2
2
1

+
1

24


2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 2



Un

1

Un
2

Un
3

Un
4

Un
5


By imposing Dirchlet boundary conditions at x = 0 and x = 1 using Lagrange multipliers, the
system of equations is written as:

4801/12 −9599/24 0 0 0 1 0
−9599/24 19253/30 −28987/120 0 0 0 0

0 −28987/120 7373/30 −95/24 0 0 0
0 0 −95/24 49/6 −95/24 0 0
0 0 0 −95/24 49/12 0 1
1 0 0 0 0 0 0
0 0 0 0 1 0 0





Un+1
1

Un+1
2

Un+1
3

Un+1
4

Un+1
5

λ1

λ2


=



B1

B2

B3

B4

B5

uL
uR


The condition number of the matrix A is computed using Matlab and it is equal to 4696.8 .
This leads to an ill-conditioned system of equations as the condition number of matrix A is too
large.
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A Developed codes

A.1 Script for section 5 - question 1

% Operator splitting techniques
%
% Question 1:

syms x dt N2 N3;

% Initial U
U_0 = [0; 0];

% from x=0 to x=1/3
N2 = 3*x;
N3 = 0;
N = [N2 N3];
dN = [3 0];
M = N'.*N;
K = dN.'*dN;
C = N'.*dN;
A1 = int(1/dt*M + K + C, x, 0, 1/3);
B1 = int(N', x, 0, 1/3) + int(1/dt*M, x, 0, 1/3)*U_0;

% from x=1/3 to x=2/3
N2 = 2-3*x;
N3 = 3*x-1;
N = [N2 N3];
dN = [-3 3];
M = N'.*N;
K = dN.'*dN;
C = N'.*dN;
A2 = int(1/dt*M + K + C, x, 1/3, 2/3);
B2 = int(N', x, 1/3, 2/3) + int(1/dt*M, x, 1/3, 2/3)*U_0;

% from x=2/3 to x=1
N2 = 0;
N3 = 3-3*x;
N = [N2 N3];
dN = [0 -3];
M = N'.*N;
K = dN.'*dN;
C = N'.*dN;
A3 = int(1/dt*M + K + C, x, 2/3, 1);
B3 = int(N', x, 2/3, 1) + int(1/dt*M, x, 2/3, 1)*U_0;

% Global system
A = A1 + A2 + A3;
B = B1 + B2 + B3;

% System solve
U_1 = A\B;
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A.2 Script for section 5 - question 2

% Operator splitting techniques
%
% Question 2:

syms x dt N2 N3;

% Initial U
U_0 = [0; 0];

% from x=0 to x=1/3
N2 = 3*x;
N3 = 0;
N = [N2 N3];
dN = [3 0];
M = N'.*N;
K = dN.'*dN;
C = N'.*dN;
A1 = int(1/dt*M + K, x, 0, 1/3);
B1 = int(N', x, 0, 1/3);

% from x=1/3 to x=2/3
N2 = 2-3*x;
N3 = 3*x-1;
N = [N2 N3];
dN = [-3 3];
M = N'.*N;
K = dN.'*dN;
C = N'.*dN;
A2 = int(1/dt*M + K, x, 1/3, 2/3);
B2 = int(N', x, 1/3, 2/3);

% from x=2/3 to x=1
N2 = 0;
N3 = 3-3*x;
N = [N2 N3];
dN = [0 -3];
M = N'.*N;
K = dN.'*dN;
C = N'.*dN;
A3 = int(1/dt*M + K, x, 2/3, 1);
B3 = int(N', x, 2/3, 1);

% Global system
A = A1 + A2 + A3;
B = B1 + B2 + B3;

% System solve
U_1 = A\B;
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