
Coupled Problems Computer Assignment

By
Ahmed Saeed Sherif

May 18, 2018

Contents

Contents ii

1 Question 1: Solving a single heat problem 1

2 Question 2: Solving two independent heat problems in two adjacent subdo-
mains with no conditions applied at the interface 3

3 Question 3: Solving two heat problems in two adjacent subdomains in a
Monolithic way 3

4 Question 4: Solving two heat problems in two adjacent subdomains using
Dirchlet-Neumann iterations 4

5 Question 5: Relaxation for the iterative Dirchlet-Neumann coupling 6

A Developed codes for question 1 10

A.1 New script mainPoisson.m . 10

B Developed codes for questions 2 and 3 13

B.1 New script main_partitioned_and_monolithic.m 13

C Developed codes for question 4 15

C.1 New script main_iterative.m . 15

D Developed codes for question 5 17

D.1 New script main_iterative_relaxation.m . 17

ii

1 Question 1: Solving a single heat problem

(a) Studying the effect of changing the value of the thermal diffusion coefficient

It is noticed that the higher the value of the diffusion coefficient, the more diffusive the
solution is. This means that as the diffusion coefficient increase, the maximum temperature
in the domain is going to be smaller, see Figure 1.

Figure 1: Effect of diffusion coefficient (kappa)

(b) Studying the effect of changing the source term value

By increasing the value of the source term, the temperature profile is increased as seen in
Figure 2.

Figure 2: Effect of source term value (s)

1

(c) Studying the effect of changing the number of elements

By increasing the number of elements, the accuracy of the solution is increased as seen
in Figure 3. The effect of changing the number of elements is studied by observing the
convergence of the maximum temperature value which happens for this problem to be in
the middle of the domain. For this, different number of elements have been used and the
error in the maximum value of the temperature has been recorded and plotted against
the element size using a log-log plot as seen in Figure 4. It is observed that the optimal
convergence rate (p+1) is obtained, for p being the order of the finite element. The slope of
the plot is 2 because linear elements were used, i.e. p = 1. In this analysis, it is important
to use odd number of elements so that no node is positioned in the middle of the domain,
otherwise the maximum value of the temperature associated to that node would be exact
and the analysis wouldn’t give meaningful results.

Figure 3: Effect of number of elements (nelem)

Figure 4: Mesh convergence plot

2

2 Question 2: Solving two independent heat problems in
two adjacent subdomains with no conditions applied at
the interface

By solving two independent problems in two adjacent subdomains without imposing any trans-
mission condition at the interface, the obtained solution is shown in Figure 5. It is clearly seen
that the solution at the interface doesn’t match. This happens because there is no restriction
from one problem on the other. This in fact corresponds to solving the two problems with zero
Neumann flux at the interface, that’s why the slope of the solution is zero at the interface from
both sides.

Figure 5: Solution of two uncoupled problems

3 Question 3: Solving two heat problems in two adjacent
subdomains in a Monolithic way

(a) Solving using the Monolithic solver with same κ parameter in the two subdo-
mains

By solving the two problems using a Monolithic solver, the obtained solution is shown
in Figure 6. It is clearly seen that the solution matches at the interface. The reason is
that the Monolithic solver solves the two problems as one and combines the two degrees
of freedom at the interface from both subdomains into one degree of freedom, this in fact
assure the continuity of the solution and the fluxes at the interface. Since the flux is defined
as n · κ∇u, and since the value of κ is the same for both subdomains, this means that the
gradient of the solution (the slope) will be continuous at the interface.

3

Figure 6: Solution of the two problems (same κ) using Monolithic solver

(b) Solving using the Monolithic solver with different κ parameter in the two sub-
domains

By setting the value of κ to different values in the two subdomain, the obtained solution is
shown in Figure 7. Again, it is noticed that the solution matches at the interface, but the
slope of the solution is now discontinuous at the interface. the reason is that the fluxes are
continuous while κ is different, so the slope varies on each side to assure the continuity of
the fluxes at the interface.

Figure 7: Solution of the two problems (different κ) using Monolithic solver

4 Question 4: Solving two heat problems in two adjacent
subdomains using Dirchlet-Neumann iterations

(a) Evaluating the convergence of the iterative scheme

4

The iterative scheme is designed so that Neumann boundary conditions (from the second
subdomain) are applied at the interface in the first (left) subdomain, and Dirichlet boundary
conditions (from the first subdomain) at the interface in the second (right) subdomain. The
iterations goes on until convergence to a certain tolerance (∼1e-6) is achieved. The obtained
solution is shown in Figure 8. It is noticed that the solution is very much the same as the
solution obtained using the Monolithic solver shown in Figure 6. The converged solution
was obtained after 13 iterations and the difference in the solution at the interface from the
left and the right is (5.231926e-15).

Figure 8: Solution of the two problems (κ1 = κ2 = 1) using iterative solver

(b) Increasing the value for kappa at subdomain 1 (x100)

By increasing the value of κ1 (the diffusion coefficient in subdomain 1) to 100 and keeping
κ2 equal to 1, the obtained solution is shown in Figure 9. The convergence of the scheme
was much faster as it took only 4 iterations to converge to the selected tolerance (1e-6).
The jump in the solution at the interface is (9.202708e-16).

Figure 9: Solution of the two problems (κ1 = 100, κ2 = 1) using iterative solver

5

(c) Diminishing the value for kappa at subdomain 1 (/100)

By decreasing the value of κ1 to 0.01 and keeping κ2 equal to 1, the iterative scheme simply
doesn’t converge, see Figure 10 that shows the obtained solution after 100 iterations. The
solution grows to (∼4.8e+149). The solution at the interface is in fact not-matching, where
the jump in the solution is (∼2.6e+135).

Figure 10: Solution of the two problems (κ1 = 0.01, κ2 = 1) using iterative solver

(d) Stability of the coupling scheme

As seen from the results shown in Figures 9 and 10, the Dirchlet-Neumann iteration scheme
gives stable solution only when the Dirchlet conditions are applied at the interface to the
subdomain of the lower diffusion coefficient κ. This in fact is similar to the added mass
effect in fluid-structure interaction problems where the Dirchlet boundary conditions should
be applied to the subdomain of the higher density.

In order for the scheme to work in the case shown in point (c), a relaxation scheme is
used, where the Dirchlet boundary condition applied at the interface of subdomain 2 is
computed from the solution from subdomain 1 at the current iteration and the solution at
the interface of subdomain 2 at the previous iteration.

5 Question 5: Relaxation for the iterative Dirchlet-Neumann
coupling

(a) Relaxation scheme in terms of a fixed relaxation parameter w

In a relaxation scheme with a fixed relaxation parameter w, the Dirchlet boundary condition
applied to the second (right) subdomain is relaxed, meaning that the value obtained from
subdomain 1 is not applied automatically, but an average of it and the solution from the
previous iteration is applied. The implemented code is shown in Appendix D.

• Same values of diffusion coefficient in the two subdomains, κ1 = κ2 = 1

6

Using a fixed relaxation parameter (w) for the case of equal κ gives a stable solu-
tion similar to what was obtained before without relaxation in Figure 8. Setting
w = 1 means no relaxation and exactly the same solution as shown in Figure 8 is ob-
tained in 13 iterations. It is important to note that the relaxation parameter should
be chosen closer to 1 to obtain the solution in less iterations. For example, setting
w = 0.8 yields convergence after 7 iterations (jump at the interface is 2.381345e-08)
while setting w = 0.1 yields convergence after 68 iterations (jump at the interface is
8.514346e-06). As a conclusion, the use of a fixed relaxation scheme with a param-
eter closer to 1 improves the convergence compared to the case of having no relaxation.

• Different values of diffusion coefficient in the two subdomains, κ1 = 100 and
κ2 = 1

The case of having κ1 > κ2 in fact doesn’t need relaxation because it already gives a
stable solution without relaxation as was shown earlier in Figure 9. However, if a fixed
relaxation scheme is used, the parameter w should be chosen closer to 1. By setting
the value of w to 1, 0.8, and 0.1, the converged solutions is obtained in 4, 7, and 48 it-
erations, respectively, and the jumps in the solution at the interface are 9.202708e-16,
5.904766e-08, and 8.382958e-06, respectively. This shows that the drawbacks of using
a fixed relaxation for this case.

• Different values of diffusion coefficient in the two subdomains, κ1 = 0.01
and κ2 = 1

For this case, the use of the relaxation scheme is of a great benefit where it allows to
obtain a stable solution, unlike what was shown earlier in Figure 10. It is important
for this case that we choose a small value for the relaxation parameter. By setting
w = 0.01, the converged solution shown in Figure 11 is obtained after 30 iterations
and the jump in the solution at the interface is (8.599098e-05). It is also observed
that the stability of the scheme is very sensitive to the value of w, where the highest
possible value that could be used to obtain a stable solution is w ≈ 0.054 in about 95
iterations.

Figure 11: Solution of the two problems (κ1 = 0.01, κ2 = 1) using iterative solver with fixed
relaxation (w = 0.01)

7

(b) Aitken relaxation scheme

Aitken relaxation scheme overcomes the drawbacks of the fixed relaxation scheme, where
the value of the relaxation parameter (w) is computed automatically from the solution
at the interface from both subdomains considering two previous iterations and the current
iteration. Therefore, there is no need to adjust the parameter w manually. The implemented
code is shown in Appendix D.

• Same values of diffusion coefficient in the two subdomains, κ1 = κ2 = 1

Figure 12: Solution of the two problems (κ1 = κ2 = 1) using iterative solver with Aitken
relaxation

• Different values of diffusion coefficient in the two subdomains, κ1 = 100 and
κ2 = 1

Figure 13: Solution of the two problems (κ1 = 100, κ2 = 1) using iterative solver with Aitken
relaxation

8

• Different values of diffusion coefficient in the two subdomains, κ1 = 0.01
and κ2 = 1

Figure 14: Solution of the two problems (κ1 = 0.01, κ2 = 1) using iterative solver with Aitken
relaxation

In all of the three cases, the converged solutions were obtained in only 2 iterations which
shows the huge improvement in terms of convergence. The last case where κ1 < κ2 is the
one with the highest benefit from this scheme where the number of iterations is reduced
from 30 to 2 when compared to the fixed relaxation scheme with w = 0.01. It is also worth
noting that the absolute jump in the solution at the interface is much less in case of Aitken
relaxation scheme where it is of order O

(
10−15

)
for both cases of κ1 = κ2 and κ1 > κ2, and

of order O
(
10−13

)
for the case of κ1 < κ2.

9

A Developed codes for question 1

A.1 New script mainPoisson.m

% Solve a single Poisson's problem in 1D

clc
close all
clear variables

%% Effect of kappa value
kappaValues = [0.5 1 2];

for i = 1:length(kappaValues)

%Domain
Data.inix = 0;
Data.endx = 1;
Data.nelem = 100;
%Physical
Data.kappa = kappaValues(i);
Data.source = 1;
%Boundary conditions
%Dirichlet
Data.FixLeft = 1; %0, do not fix it, 1: fix it
Data.LeftValue = 0;
Data.FixRight =1;
Data.RightValue = 0;
%Neumann
Data.FixFluxesLeft = 0;
Data.LeftFluxes = 0;
Data.FixFluxesRight = 0;
Data.RightFluxes = 0;

HeatProblem = HP_Initialize(Data);
HeatProblem = HP_Build(HeatProblem);
HeatProblem = HP_Solve(HeatProblem);

fignum = 1;
legendKappa = (['kappa = ',num2str(Data.kappa)]);
HP_PlotQ1(HeatProblem,fignum,legendKappa);
grid on
hold on
title('kappa effect (source = 1, elements = 100)')
legend('show')

end

%% Effect of source term
sourceValues = [0.5 1 2];

for i = 1:length(sourceValues)

%Domain

10

Data.inix = 0;
Data.endx = 1;
Data.nelem = 100;
%Physical
Data.kappa = 1;
Data.source = sourceValues(i);
%Boundary conditions
%Dirichlet
Data.FixLeft = 1; %0, do not fix it, 1: fix it
Data.LeftValue = 0;
Data.FixRight =1;
Data.RightValue = 0;
%Neumann
Data.FixFluxesLeft = 0;
Data.LeftFluxes = 0;
Data.FixFluxesRight = 0;
Data.RightFluxes = 0;

HeatProblem = HP_Initialize(Data);
HeatProblem = HP_Build(HeatProblem);
HeatProblem = HP_Solve(HeatProblem);

fignum = 2;
legendSource = (['s = ',num2str(Data.source)]);
HP_PlotQ1(HeatProblem,fignum,legendSource);
grid on
hold on
title('source value effect (kappa = 1, elements = 100)')
legend('show')

end

%% Effect of number of elements
nOfElements = [5 11 21 41]; % odd numbers so that no nodes in the middle ...

of the domain
error = zeros(length(nOfElements),1);
h = zeros(length(nOfElements),1);

for i = 1:length(nOfElements)

%Domain
Data.inix = 0;
Data.endx = 1;
Data.nelem = nOfElements(i);
%Physical
Data.kappa = 1;
Data.source = 1;
%Boundary conditions
%Dirichlet
Data.FixLeft = 1; %0, do not fix it, 1: fix it
Data.LeftValue = 0;
Data.FixRight =1;
Data.RightValue = 0;
%Neumann
Data.FixFluxesLeft = 0;
Data.LeftFluxes = 0;
Data.FixFluxesRight = 0;

11

Data.RightFluxes = 0;

HeatProblem = HP_Initialize(Data);
HeatProblem = HP_Build(HeatProblem);
HeatProblem = HP_Solve(HeatProblem);

fignum = 3;
legendElem = (['nelem = ',num2str(Data.nelem)]);
HP_PlotQ1(HeatProblem,fignum,legendElem);
grid on
hold on
title('no. of elements effect (kappa = 1, source = 1)')
legend('show')

% Data needed to produce the mesh convergence plot
Umax = max(HeatProblem.Solution.U);
error(i) = abs(0.125 - Umax);
h(i) = (Data.endx - Data.inix)/nOfElements(i);

end

% Plotting a mesh convergence plot
figure
plot(log10(h),log10(error),'-o');
grid on
xlabel('log10(h)')
ylabel('log10(error)')
title('Mesh convergence plot')
% Compute slopes
n = length(h);
for i=1:n-1

Slopes(i) = log10(error(i+1)/error(i)) / log10(h(i+1)/h(i));
end
% Write the slopes over the plot
x = log10(h(end))+0.2*abs(log10(h(end))-log10(h(end-1)));
y = log10(error(end))+0.5*abs(log10(error(end))-log10(error(end-1)));
text(x,y,['Slope = ',num2str(Slopes(end),'%2.2f')],'FontSize',10)

12

B Developed codes for questions 2 and 3

B.1 New script main_partitioned_and_monolithic.m

% Solving two Poisson's problems independently or using monolithic scheme

clc
close all
clear variables

method = 'monolithic'; % 'monolithic' , 'partitioned'
sameKappa = 1; % 1 --> 'yes' , 0 --> 'no'

%Domain 1
Data.inix = 0;
Data.endx = 0.25;
Data.nelem = 25;
%Physical
Data.kappa = 1;
Data.source = 1;
%Boundary conditions
%Dirichlet
Data.FixLeft = 1; %0, do not fix it, 1: fix it
Data.LeftValue = 0;
Data.FixRight =0;
Data.RightValue = 1;
%Neumann
Data.FixFluxesLeft = 0;
Data.LeftFluxes = 0;
Data.FixFluxesRight = 0;
Data.RightFluxes = 25;

%Domain 2
Data2.inix = 0.25;
Data2.endx = 1;
Data2.nelem = 75;
%Physical
if sameKappa == 1

Data2.kappa = Data.kappa;
strKappa = 'same kappa';

else
Data2.kappa = 2*Data.kappa;
strKappa = 'different kappa';

end
Data2.source = 1;
%Boundary conditions
%Dirichlet
Data2.FixLeft = 0; %0, do not fix it, 1: fix it
Data2.LeftValue = 0;
Data2.FixRight = 1;
Data2.RightValue = 0;
%Neumann
Data2.FixFluxesLeft = 0;
Data2.LeftFluxes = 0;
Data2.FixFluxesRight = 0;
Data2.RightFluxes = 25;

13

%Problem 1
HeatProblem = HP_Initialize(Data);
HeatProblem = HP_Build(HeatProblem);
%Problem 2
HeatProblem2 = HP_Initialize(Data2);
HeatProblem2 = HP_Build(HeatProblem2);

if strcmp(method,'partitioned')
HeatProblem = HP_Solve(HeatProblem);
HeatProblem2 = HP_Solve(HeatProblem2);
elseif strcmp(method,'monolithic')
[HeatProblem,HeatProblem2] = HP_SolveMonolithic(HeatProblem,HeatProblem2);
end

fignum = 1;
legendName = 'Problem 1';
HP_PlotQ1(HeatProblem,fignum,legendName);
legendName = 'Problem 2';
HP_PlotQ1(HeatProblem2,fignum,legendName);
title(['Solution of two problems with ',strKappa,' using ',method, ' ...

scheme'])
grid on
legend('show','Location','northeast')

14

C Developed codes for question 4

C.1 New script main_iterative.m

% Solving two Poisson problems using iterative Dirchlet-Neumann scheme

clc
close all
clear variables

method = 'iterativeDN'; % 'iterativeDN'
sameKappa = 1; % 1 --> 'yes' , 0 --> 'no'

%Domain 1
Data.inix = 0;
Data.endx = 0.25;
Data.nelem = 25;
%Physical
Data.kappa = 1;
Data.source = 1;
%Boundary conditions
%Dirichlet
Data.FixLeft = 1; %0, do not fix it, 1: fix it
Data.LeftValue = 0;
Data.FixRight = 0;
Data.RightValue = 1;
%Neumann
Data.FixFluxesLeft = 0;
Data.LeftFluxes = 0;
Data.FixFluxesRight = 1;
Data.RightFluxes = 0;

%Domain 2
Data2.inix = 0.25;
Data2.endx = 1;
Data2.nelem = 75;
%Physical
if sameKappa == 1

Data2.kappa = Data.kappa;
strKappa = 'same kappa';

else
Data2.kappa = 2*Data.kappa;

% Data2.kappa = 1;
strKappa = 'different kappa';

end
Data2.source = 1;
%Boundary conditions
%Dirichlet
Data2.FixLeft = 1; %0, do not fix it, 1: fix it
Data2.LeftValue = 0;
Data2.FixRight = 1;
Data2.RightValue = 0;
%Neumann
Data2.FixFluxesLeft = 0;
Data2.LeftFluxes = 0;
Data2.FixFluxesRight = 0;

15

Data2.RightFluxes = 25;

% Dirchlet-Neumann Iterations
iter = 1;
tol = 1e-6;
maxIter = 20;
while iter < maxIter

fprintf('Iteration = %d\n',iter);

% The previous value of the solution at the left side of domain 2
Uprev = Data2.LeftValue;

% Solve in domain 1
HeatProblem = HP_Initialize(Data);
HeatProblem = HP_Build(HeatProblem);
HeatProblem = HP_Solve(HeatProblem);
% Transfer Dirichlet BC from domain 1 to domain 2:
Data2.LeftValue = HeatProblem.Solution.uRight;

% Solve in domain 2
HeatProblem2 = HP_Initialize(Data2);
HeatProblem2 = HP_Build(HeatProblem2);
HeatProblem2 = HP_Solve(HeatProblem2);
% Transfer Neumann BC from domain 2 to domain 1:
Data.RightFluxes = - HeatProblem2.Solution.FluxesLeft;

% Check convergence
solChange = abs(Data2.LeftValue - Uprev);
disp(['Solution change = ',num2str(solChange)])

if solChange ≤ tol
fprintf('\nConvergence achieved in iteration number %g\n',iter);
break

end

iter = iter + 1;
end

% Plot the converged solution
fignum = 2;
legendName = 'Problem 1';
HP_PlotQ1(HeatProblem,fignum,legendName);
legendName = 'Problem 2';
HP_PlotQ1(HeatProblem2,fignum,legendName);
title(['Solution of two problems with ',strKappa,' using ',method,' scheme'])
grid on
legend('show','Location','northeast')

% Difference in the solution at the interface from the left and the right
differenceU = HeatProblem2.Solution.uLeft - HeatProblem.Solution.uRight;
fprintf('difference in U at the interface = %e\n',abs(differenceU));

16

D Developed codes for question 5

D.1 New script main_iterative_relaxation.m

% Solving two Poisson problems using iterative Dirchlet-Neumann scheme

clc
close all
clear variables

method = 'iterativeDN'; % 'iterativeDN'
relaxation = 'aitken'; % 'no' , 'fixed' , 'aitken'
w_fixedRelaxation = 0.01;
sameKappa = 0; % 1 --> 'yes' , 0 --> 'no'

%Domain 1
Data.inix = 0;
Data.endx = 0.25;
Data.nelem = 25;
%Physical
Data.kappa = 0.01;
Data.source = 1;
%Boundary conditions
%Dirichlet
Data.FixLeft = 1; %0, do not fix it, 1: fix it
Data.LeftValue = 0;
Data.FixRight = 0;
Data.RightValue = 1;
%Neumann
Data.FixFluxesLeft = 0;
Data.LeftFluxes = 0;
Data.FixFluxesRight = 1;
Data.RightFluxes = 0;

%Domain 2
Data2.inix = 0.25;
Data2.endx = 1;
Data2.nelem = 75;
%Physical
if sameKappa == 1

Data2.kappa = Data.kappa;
strKappa = 'same kappa';

elseif sameKappa == 0
% Data2.kappa = 2*Data.kappa;

Data2.kappa = 1;
strKappa = 'different kappa';

end
Data2.source = 1;
%Boundary conditions
%Dirichlet
Data2.FixLeft = 1; %0, do not fix it, 1: fix it
Data2.LeftValue = 0;
Data2.FixRight = 1;
Data2.RightValue = 0;
%Neumann
Data2.FixFluxesLeft = 0;

17

Data2.LeftFluxes = 0;
Data2.FixFluxesRight = 0;
Data2.RightFluxes = 25;

% Dirchlet-Neumann Iterations
iter = 1;
tol = 1e-6;
maxIter = 100;
while iter < maxIter

fprintf('Iteration = %d\n',iter);

if strcmp(relaxation,'aitken')
if iter == 1

U2prev = Data2.LeftValue;
% Solve in domain 2
HeatProblem2 = HP_Initialize(Data2);
HeatProblem2 = HP_Build(HeatProblem2);
HeatProblem2 = HP_Solve(HeatProblem2);
% Transfer Neumann BC from domain 2 to domain 1:
Data.RightFluxes = - HeatProblem2.Solution.FluxesLeft;
% Solve in domain 1
HeatProblem = HP_Initialize(Data);
HeatProblem = HP_Build(HeatProblem);
HeatProblem = HP_Solve(HeatProblem);
% Transfer Dirichlet BC from domain 1 to domain 2:
Data2.LeftValue = HeatProblem.Solution.uRight;
% Solve in domain 2
HeatProblem2 = HP_Initialize(Data2);
HeatProblem2 = HP_Build(HeatProblem2);
HeatProblem2 = HP_Solve(HeatProblem2);
% Transfer Neumann BC from domain 2 to domain 1:
Data.RightFluxes = - HeatProblem2.Solution.FluxesLeft;

end
% The previous value of the solution at the right side of domain 1
U1prev = HeatProblem.Solution.uRight;
% Before previous value of the solution at the left side of ...

domain 2
U2prevprev = U2prev;
% The previous value of the solution at the left side of domain 2
U2prev = HeatProblem2.Solution.uLeft;

else
% The previous value of the solution at the left side of domain 2
U2prev = Data2.LeftValue;

end

% Solve in domain 1
HeatProblem = HP_Initialize(Data);
HeatProblem = HP_Build(HeatProblem);
HeatProblem = HP_Solve(HeatProblem);
% Transfer Dirichlet BC from domain 1 to domain 2:
if strcmp(relaxation,'fixed')

w = w_fixedRelaxation;
Data2.LeftValue = w*HeatProblem.Solution.uRight + (1-w)*U2prev;
strRelax = ([' with fixed relaxation',' (w = ',num2str(w),')']);

elseif strcmp(relaxation,'aitken')
w = (U2prevprev - U2prev)/(U2prevprev - U2prev + ...

HeatProblem.Solution.uRight - U1prev);

18

Data2.LeftValue = U2prev + w*(HeatProblem.Solution.uRight - U2prev);
strRelax = ' with Aitken relaxation';

elseif strcmp(relaxation,'no')
Data2.LeftValue = HeatProblem.Solution.uRight;
strRelax = '';

end

% Solve in domain 2
HeatProblem2 = HP_Initialize(Data2);
HeatProblem2 = HP_Build(HeatProblem2);
HeatProblem2 = HP_Solve(HeatProblem2);
% Transfer Neumann BC from domain 2 to domain 1:
Data.RightFluxes = - HeatProblem2.Solution.FluxesLeft;

% Check convergence
solChange = abs(Data2.LeftValue - U2prev);
disp(['Solution change = ',num2str(solChange)])

if solChange ≤ tol
fprintf('\nConvergence achieved in iteration number %g\n',iter);
break

end

iter = iter + 1;
end

% Plot the converged solution
fignum = 2;
legendName = 'Problem 1';
HP_PlotQ1(HeatProblem,fignum,legendName);
legendName = 'Problem 2';
HP_PlotQ1(HeatProblem2,fignum,legendName);
title({['Solution of two problems with ',strKappa,' using ',method,' ...

scheme'],strRelax})
grid on
legend('show','Location','northeast')

% Difference in the solution at the interface from the left and the right
differenceU = HeatProblem2.Solution.uLeft - HeatProblem.Solution.uRight;
fprintf('difference in U at the interface = %e\n',abs(differenceU));

19

	Contents
	1 Question 1: Solving a single heat problem
	2 Question 2: Solving two independent heat problems in two adjacent subdomains with no conditions applied at the interface
	3 Question 3: Solving two heat problems in two adjacent subdomains in a Monolithic way
	4 Question 4: Solving two heat problems in two adjacent subdomains using Dirchlet-Neumann iterations
	5 Question 5: Relaxation for the iterative Dirchlet-Neumann coupling
	A Developed codes for question 1
	A.1 New script mainPoisson.m

	B Developed codes for questions 2 and 3
	B.1 New script main_partitioned_and_monolithic.m

	C Developed codes for question 4
	C.1 New script main_iterative.m

	D Developed codes for question 5
	D.1 New script main_iterative_relaxation.m

