
Universitat Politècnica de Catalunya

Coupled Problems
Master’s Degree in Numerical Methods in Engineering

Iterative schemes for coupling in space

Authors:

Pau Márquez
Supervisor:

Prof. J. Baiges

Academic Year 2019-2020

Contents

1 Task 1 1

2 Task 2 3

3 Task 3 4

4 Task 4 5

5 Task 5 8

A Appendix: Codes 12

1 Task 1
This first task is oriented to study which is the effect of the problem variables when solving the
one-dimensional problem k ∂2u

∂x2 + f = 0 by numerical methods. Specifically, it will be solved in
a unique domain with 100 elements. For this, the two boundaries are fixed with a value of zero.

1.1 Effect of changing the thermal diffusion coefficient
The results are shown in Fig. 1. As clearly could be expected, if a higher diffusion coefficient
κ is used, the gradient of temperature will have to be lower in order to reach the same source
term. In other words, as the problem is symmetric, the temperature will experience a higher
diffusivity and thus the temperature maps reflect lower values throughout the domain.

Figure 1: Map of temperatures with different values of κ.

1.2 Effect of changing the source term value
The result is shown in Fig. 2. Here, the same principle can be applied. If the conductivity is
the same, the gradient of the temperature has to be higher in order to reach a higher source
term in the equation, and a higher value of the solution is seen throughout the domain if a
higher source term is added, as is would be expected from the analytical solution.

1

Figure 2: Map of temperatures with different values of source term.

1.3 Convergence rate of the error
Here it will be shown the evolution of the error as a function of the mesh size h. The analytical
solution at the nodes may be computed resorting to the solution of the differential equation:

u(x) = f(1− x)x
2k (1)

In particular, the analyical value is computed at the maximum heat value in the domain, that
is, x = 0.5. Then, after solving this example with different mesh sizes h, it can verified that
the evolution of the infinite norm, e = |u(0.5)− uh(0.5)| as a function of h, follows the trend in
Fig. 3. Indeed, the decrease of the error with mesh size in a logarithmic plot should be a line.
The exact value is u(0.5) = 0.125.

2

Figure 3: Logarithmic plot showing the linear reduction of the error with mesh size.

2 Task 2

2.1 Two independent heat transfer problems
This is the first case in which we consider two sub-domains. When this is done, care must
be taken at the interface, where appropriate transmission conditions must be set if we want a
coupled problem. This is an example of what happens if such transmission conditions are not
set, or, in other words, if the two problems are solved independently regardless of the interface.
Indeed, the only boundary conditions are set at the extreme values u(0) = 0, u(1) = 0, therefore
observing a discontinuous solutions at the interface as there is no communication between both
solvers whatsoever. The results are in Fig. 4.

3

Figure 4: Outcome when solving two independent problems.

3 Task 3

3.1 Monolithic implementation on both sub-domains
In a monolithic implementation of the problem, the system is assembled globally so that there
is only one coefficient matrix and one right-hand side matrix. The code takes the contributions
from each subdomain and assembles each matrix K and each matrix F into a global matrix
named Kmono and Fmono which are used to obtain the global solution vector Umono, which
contains the solution of both sub-domains. Then, as the problem at hand is linear, the solver
can be a simple Matlab backslash, Kmono\Fmono = Umono, and there is no need to use an
iterative solver, therefore the solution of the global matrix is computed directly.

If both sub-domains have the same properties as the single domain in task 1, then the results
are expected to be the same, as the transmission conditions are met at the interface. This is
seen in Fig. 5.

3.2 Effect of modifying the conductivity
When the conductivity is modified in one of the dub-domains, the other sub-domain will see its
solution modified due to the coupling of the problem. In particular, if the sub-domain increases
κ from 1 to 3, then it will be seen a change in the shape of the curve, since one material will
dissipate heat more than the other. In the second sub-domain it is seen the parabolic shape
with higher temperature distribution product of the lower κ and in the first sub-domain the
slope is smaller compared to the case in which κ = 1, as mentioned before. Results are seen in

4

Fig. 5.

Figure 5: Different κ parameters and their effect on the monolithic approach.

4 Task 4

4.1 Convergence of the iterative scheme
The iterative scheme developed will have the following patters for each iteration:

1. Both problems are initialized and built with the updated problem Data.

2. The first sub-domain is solved. This first sub-domain will have a prescribed Neumann bc
at the interface, therefore it has fixed the value at the left extreme and the flux at the right
extreme. When the solution is computed for this domain, the solution at the interface is
assigned to the prescribed value for the Dirichlet boundary of the second-subdomain.

3. The second sub-domain is solved with only Dirichlet boundary conditions, and the flux
obtained at the left extreme is assigned as the Neumann flux for the right boundary of
the first sub-domain.

4. The convergence is checked and if there is no convergence the cycle is repeated.

The convergence of this scheme should lead to the monolithic value if the same parameters are
used. This is shown in Fig. 6, where after 11 iterations of the Dirichlet-Neumann scheme, the
value at the middle converges to the Monolithic value. The convergence of the error will be

5

studied in the next section, where it is compared with different values of the κ parameter. The
error chosen here is the relative, computed as (for the first or second subdomain),

e = 100u
i
Γ − ui−1

Γ

ui−1
Γ

(2)

Figure 6: Convergence of the iterative scheme towards the monolithic value.

4.2 Augmented κ at sub-domain 1
When κ1 = 100, κ2 = 1, the convergence rate is seen to be approximately five times to that of
κ1 = κ2 = 1 for a given tolerance, as seen in Fig. 7. The temperature map is seen in Fig. 8a,
and at the first sub-domain the average temperature is close to zero given the high diffusivity
of the solution.

4.3 Diminished κ at sub-domain 1
In this case it is interesting to see that the convergence rate for this problem, when κ1 =
0.01, κ2 = 1 is non-existing, as seen in Fig. 7. Whereas for moderate to high values of κ1 was
reached, the solution was reached in a number of iterations, here the relative error is not seen
to reduce with the number of iterations. The temperature map for this problem subscribes this
aspect, as there is no continuity of the solution at the interface, and a very high value of the
temperature is observed throughout the first sub-domain, product of its low diffusivity.

6

Figure 7: Convergence rates for different values of κ.

(a) Temperature map for κ1 = 100. (b) Temperature map for κ1 = 0.01.

Figure 8: Solution values for different values of κ on the sub-domains.

4.4 Stability of the coupling scheme
One may ask the question of whether when increasing 100 times κ1 convergence was reached but
not when it is diminished 100 times. If the theory of non-overlapping domain decomposition
methods is employed on the homogeneous coupling of a heat transfer problem, then we reached
that the following transmission conditions must hold point-wise

7

u1 = u2

κ1
∂u1
∂n1

= −κ2
∂u2
∂n2

(3)

That it, there must be continuity of solution and fluxed. It has been seen that, for a Dirichlet-
Neumann method, the solution of the flux on the left boundary of the second sub-domain is
imposed as the Neumann flux on the right boundary of the first sub-domain. The stability
problem remains when a flux is imposed on a domain with very low κ, which means that the
gradient of temperature that this domain will hold will be very high. This is actually what
has been observed in Fig. 8b, where the distribution of temperature is very pronounced. This
is different as in the first case, when a flux is imposed in a domain with very high diffusivity,
which is no problem as the gradient of temperatures will be small. The problem thus is that in
the first iteration, the solution goes from zero to a very high value, and therefore instabilities
appear and there is no convergence.

In order to overcome this issue, when such differences exist on the diffusivity of the sub-domains,
the sub-domain with higher κ is the in which the Neumann condition has to be imposed.

5 Task 5

5.1 Fixed relaxation parameter
To overcome the instabilities observed in the previous section, a relaxation scheme can be
implemented, which ensures that at each iteration the jump of the value of the solution at the
interface is progressive and not drastic. For this, we say

ui
Γ21 = wui

Γ12 + (1− w)ui−1
Γ21 (4)

We will see which is the effect of such an scheme on a diverging problem κ1 = 0.01, κ2 = 1, and
a problem which converges with no difficulty, κ1 = κ2 = 1. If we analyze Fig. 9, we see that,
for the convergent case, the best results in terms of number of iterations to achieve a relative
error of 1e − 4 is when we set w = 0.5, as it takes 17 iterations. Then, when setting w for
other values, w = 0.75 takes 21 iterations, w = 1 takes 25 iterations and eventually w = 0.25
takes 29 iterations, which is the worst case. w = 0 gives interesting results, as convergence is
achieved very fast but there is no continuity at the interface, which would be similar to solve
two independent problems.

8

Figure 9: Convergence rates for different w parameters and κ1 = κ2 = 1.

Now let’s see which is the effect of w on the divergent problem that has been seen. It is
clear that the value of w has to be very small in order to ensure a progressive increase on
the value at the interface. With that, interesting results are shown in Fig. 10. For w = 0.01
convergence is achieved after 32 iterations, although for smaller values w = 0.005, it takes more
(69 iterations), and for higher values w = 0.02, it takes also more (74 iterations). For even
higher values w = 0.03, it starts diverging.

9

Figure 10: Convergence rates for different w parameters and κ1 = κ2/100 = 0.01.

Another interesting thing is that, in both Figures it is observed that, although very small values
of w may take for iterations, the convergence of the error is smooth and do not present spurious
oscillations as in the other cases.

5.2 Aitken relaxation scheme
The Aitken relaxation scheme provides a method to calculate w at each iteration, therefore it
will not be fixed. It is calculated as

w = ui
Γ21 = ui−1

Γ21 − ui−2
Γ21

ui−1
Γ21 − ui−2

Γ21 + ui−1
Γ12 − ui−2

Γ12
(5)

Which implies that we need at least two iterations in order to start computing this value. Before
that, w can simply be 0.5. Let’s see which is the effect on the previous problems, compared
to the cases of no relaxation, w = 0.5 all the time and Aitken scheme. We see, for the case
κ1 = κ2 = 1, the Aitken scheme achieves results in 16 iterations, with a smooth convergence.
As for the case for κ1 = κ2/100 = 0.01, the Aitken scheme reaches convergence in less iterations
and smoothly.

10

Figure 11: Different relaxation schemes for equal conductivity in the sub-domains.

Figure 12: Different relaxation schemes for adiminished conductivity in the first sub-domain.

Aitken scheme also provides a convergence of the error which is very smooth compared with
the other cases.

11

A Appendix: Codes

A.1 Script to solve task 1

1 clc; close all;
2

3 %% Solve task 1, part c)
4 Num_domains = 1;
5 Domain = [0 1];
6 legendText = {};
7 exact = -0.5*1*(0.5-1)*0.5;
8

9 vec = [10000 1000 100 10]; %this vector contains the values for the
10 %parameter to be studied, in this case the number of nodes
11

12 for i = 1:4
13 Num_elem = vec(i);
14 vec_h(i) = 1/vec(i);
15 kappa = 1;
16 source = 1;
17 Fix_boundary = [1 1 0 0]; %[Dir_left Dir_right Neu_left Neu_right]
18 Value_boundary = [0 0 0 25]; %[Dir_left Dir_right Neu_left Neu_right]
19

20 Data = HP_Define(Domain,Num_elem,kappa,source,Fix_boundary,...
21 Value_boundary);
22

23 HeatProblem = HP_Initialize(Data); %Initializing
24 HeatProblem = HP_Build(HeatProblem); %Building
25 HeatProblem = HP_Solve(HeatProblem); %Solving
26 vec_e(i) = abs(exact - HeatProblem.Solution.U(vec(i)/2));
27 end
28

29 HP_Plot_error(vec_h,vec_e);%Discomment to plot error

12

A.2 Script to solve task 2

1 clc; close all; clear all;
2 %% Solve task 2
3 Num_domains = 2;
4 Domains = [0 0.25; 0.25 1];
5 Num_elem = [100 100];
6 kappa = [1 1];
7 source = [1 1];
8 Fix_boundary = [1 0 0 0; 0 1 0 0]; %[Dir_left Dir_right Neu_left Neu_right]
9 Value_boundary = [0 0 0 0; 0 0 0 0]; %[Dir_left Dir_right Neu_left Neu_right]

10

11 Data1 = HP_Define(Domains(1,1:2),Num_elem(1),kappa(1),source(1),...
12 Fix_boundary(1,1:4),Value_boundary(1,1:4));
13 Data2 = HP_Define(Domains(2,1:2),Num_elem(2),kappa(2),source(2),...
14 Fix_boundary(2,1:4),Value_boundary(2,1:4));
15

16 HeatProblem = HP_Initialize(Data1); %Initializing
17 HeatProblem2 = HP_Initialize(Data2); %Initializing
18 HeatProblem = HP_Build(HeatProblem); %Building
19 HeatProblem2 = HP_Build(HeatProblem2); %Building
20 HeatProblem = HP_Solve(HeatProblem); %Solving
21 HeatProblem2 = HP_Solve(HeatProblem2); %Solving
22

23 HP_Plot(HeatProblem,1);
24 HP_Plot(HeatProblem2,1);

13

A.3 Script to solve task 3

1 clc; close all; clear all;
2 %% Solve task 3
3 Num_domains = 2;
4 Domains = [0 0.25; 0.25 1];
5 Num_elem = [100 100];
6 kappa = [100 1];
7 source = [1 1];
8 Fix_boundary = [1 0 0 0; 0 1 0 0]; %[Fix_left Neu_left Neu_right]
9 Value_boundary = [0 0 0 0; 0 0 0 0]; %[Dir_left Dir_right Neu_left Neu_right]

10

11 Data1 = HP_Define(Domains(1,1:2),Num_elem(1),kappa(1),source(1),...
12 Fix_boundary(1,1:4),Value_boundary(1,1:4));
13 Data2 = HP_Define(Domains(2,1:2),Num_elem(2),kappa(2),source(2),...
14 Fix_boundary(2,1:4),Value_boundary(2,1:4));
15

16 HeatProblem = HP_Initialize(Data1); %Initializing
17 HeatProblem2 = HP_Initialize(Data2); %Initializing
18 HeatProblem = HP_Build(HeatProblem); %Building
19 HeatProblem2 = HP_Build(HeatProblem2); %Building
20 HeatProblem = HP_Solve(HeatProblem); %Solving
21 HeatProblem2 = HP_Solve(HeatProblem2); %Solving
22

23 %Solve and plot
24 [HeatProblem,HeatProblem2] = HP_SolveMonolithic(HeatProblem,HeatProblem2);
25 HP_Plot(HeatProblem,1);
26 HP_Plot(HeatProblem2,1);
27 HeatProblem.Solution.uRight

14

A.4 Script to solve tasks 4 and 5

1 clc; clear all;
2 %% Solve task 4
3

4 Num_domains = 2;
5 Domains = [0 0.25; 0.25 1];
6 Num_elem = [100 100];
7 kappa = [1/100 1];
8 source = [1 1];
9 Fix_boundary = [1 0 0 1; 1 1 0 0];

10 %[Fix_left Fix_right Fix_fluxes_left Fix_fluxes_right]
11 Value_boundary = [0 0 0 0; 0 0 0 0]; %[Dir_left Dir_right Neu_left Neu_right]
12

13 Data1 = HP_Define(Domains(1,1:2),Num_elem(1),kappa(1),source(1),...
14 Fix_boundary(1,1:4),Value_boundary(1,1:4));
15 Data2 = HP_Define(Domains(2,1:2),Num_elem(2),kappa(2),source(2),...
16 Fix_boundary(2,1:4),Value_boundary(2,1:4));
17

18 iter = 2;
19 tol = 1e-4;
20 u_Gamma2 = 0; %Value at the interface for subdomain 2
21 u_Gamma1 = 0; %Value at the interface for subdomain 1
22 vect_error1 = [];
23 w = 1;
24 relaxation = 2; %2 for Aitken, 1 otherwise
25

26 while iter < 70
27 HeatProblem = HP_Initialize(Data1); %Initializing
28 HeatProblem2 = HP_Initialize(Data2); %Initializing
29 HeatProblem = HP_Build(HeatProblem); %Building
30 HeatProblem2 = HP_Build(HeatProblem2); %Building
31

32 %Solve problem in Sub-domain1
33 HeatProblem = HP_Solve(HeatProblem); %Solving
34 u_Gamma1(iter) = HeatProblem.Solution.uRight;
35

36 %Compute relaxation parameter for Aitken scheme
37 if iter > 3
38 if relaxation == 2
39 wu = u_Gamma2(iter-2) - u_Gamma2(iter-1);
40 wd = u_Gamma2(iter-2) - u_Gamma2(iter-1) + ...
41 u_Gamma1(iter) - - u_Gamma1(iter-1);

15

42 w = abs(wu/wd);
43 end
44 end
45

46 %Apply Dir. bc at the interface in S-d2
47 Data2.LeftValue = w*HeatProblem.Solution.uRight + (1-w)*u_Gamma2(iter-1);
48

49 u_Gamma2(iter) = Data2.LeftValue;
50

51 %Solve problem in Sub-domain2
52 HeatProblem2 = HP_Solve(HeatProblem2); %Solving
53 %Apply Neu. bc at the interface in S-d1
54 Data1.RightFluxes = -HeatProblem2.Solution.FluxesLeft;
55

56 % Check convergence
57 delta1 = abs(abs(HeatProblem.Solution.uRight - u_Gamma1(iter-1))/...
58 u_Gamma1(iter-1))*100;
59 vect_error1 = [vect_error1, delta1];
60 u_Gamma1(iter) = HeatProblem.Solution.uRight;
61 fprintf('Increment=%8.6e \n',delta1);
62 if delta1 < tol
63 fprintf('\nConvergence achieved in iteration number %g\n',iter);
64 break
65 else
66 iter = iter + 1;
67 end
68

69 end
70

71 HP_Plot(HeatProblem,1);
72 HP_Plot(HeatProblem2,1);
73 figure
74 plot(1:iter,vect_error1*100);
75 figure;
76 semilogy(1:iter-1,vect_error1*100);

16

	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Appendix: Codes

