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Task 1
Solve a single heat transfer problem. The domain is [0,1]. Fix u=0 in both
boundaries.

a)

Study the effect of changing the value to the thermal diffusion coefficient
kappa.

The results obtained for different values of κ are depicted in figure 1. It can be
concluded that when κ is decreased, the heat flux across the domain is faster, increasing
the value obtained for u due to the source term s. However, for large values of κ there is
more resistance and the value of u obtained is lower.
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Figure 1: Results obtained for different values of κ, s = 1 and 100 elements
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b)

Study the effect of changing the source term value.
The results obtained for different values of s are depicted in figure 2. The conclusions

are opposed that those obtained for κ: when s is increased, the value obtained for u is
increased since the source term is larger, and lower values of s produce smaller values of
u.
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Figure 2: Results obtained for different values of source term s, κ = 1 and 100 elements

c)

Study the effect of changing the number of elements, evaluate the convergence
rate of the error in the maximum heat value in the domain.

As can be seen in figure 3, the problem is so simple that is is converged even for the
coarsest mesh used.
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Figure 3: Maximum value of u for different number of elements and source term s=1 and
κ = 1.
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Figure 4: Results obtained solving the two subdomains separately.

Task 2
Solve two independent problems with kappa=1, source=1. The first problem
subdomain is [0,0.25]. The second problem subdomain is [0.25,1]. Fix u in
x=0 and x=1, leave it free in the interface between subdomains. Comment
on the results.

If we solve two independent problems and do not enforce any transmission condition
at the interface, we obtain two solutions which are discontinuous in terms of u (figure 4)
and fluxes. This solution would not be an acceptable solution for a problem solved using
a Domain Decomposition approach.

Task 3
Solve the previous problem in a Monolithic way.

a)

Study the "HP_SolveMonolithic.m" and relate it to what was explained in
theory. Comment on the results.

In the file "HP_SolveMonolithic.m" we are solving the problem as a single system of
equations: [

K1 0
0 K2

] [
U1

U2

]
=

[
F1

F2

]
Where K1 and K2 are the matrices that are obtained at every subdomain. The degree of
freedoms at the interface has contributions from both subdomains since it has influence
over them.

The results obtained when solving the problem using 25 elements for subdomain 1
and 75 elements for subdomain 2 are depicted in figure 5, and are very similar to those
obtained when solving for the whole domain.
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Figure 5: Results obtained using a monolithic approach.
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Figure 6: Results obtained κ = 1 at the left subdomain and different values of κ at
subdomain 2.

b)

Modify the kappa parameter of one of the subdomains. Comment on the
results.

The results obtained for different values of κ at subdomain 2 are depicted in figure 6.
As we can see, the continuity of u is satisfied at the interface, but having different values
of κ changes the heat transfer across the domain and the slope of u for a given flux.

4



Task 4
Solve the previous problem (kappa=1 in both subdomains) in an iterative
manner (Dirichlet Neumann). Apply Neumann boundary conditions at the
interface in the first subdomain (left) and Dirichlet at the interface in the
second subdomain.

a)

Evaluate the convergence of the iterative scheme (in terms of u at the inter-
face).

An iterative scheme has been implemented using a Dirichlet-Neumann approach. The
solution obtained for 100 elements (figure 7) is similar to the solution obtained solving
the problem using a single subdomain. The evolution of the relative error computed as

E =
‖uleft − uright‖
‖uleft‖

is depicted for both fluxes and u in figure 7. As can be seen, the results obtained for the
continuity of u are very good and are satisfied almost from the first iteration. However,
the error obtained for the flux at the interface are larger and take more time to converge.
Thus, the Neumann step is the one that has more influence over convergence. It can be
seen that the finner is the mesh, the faster is the convergence for the fluxes: For a finner
meshes we have a better approximation of the derivatives.
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Figure 7: Solution for the Dirichlet-Neumann scheme and 100 elements.
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(a) 100 elements
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(b) 1000 elements
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(c) 5000 elements
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(d) 10000 elements

Figure 8: Convergence for the Dirichlet-Neumann scheme and different number of ele-
ments

b)

Increase the value for kappa at subdomain 1 (x100). Comment on the con-
vergence rate.

If we increase the value for κ at subdomain 1, we have that the continuities of fluxes
is ensure when the derivative of u at subdomain 2 is much larger than the derivative
at subdomain 1 (figure 9 a). This makes harder to achieve convergence for the fluxes.
However, the results obtained are stable.

c)

Diminish the value for kappa at subdomain 1 (/100). Comment on the con-
vergence rate.

If we set κ1 = 0.01 = κ2
100

at subdomain 1, we have that the continuities of fluxes is
achieved when the derivative of u at subdomain 1 is much larger than the derivative at
subdomain 1 (figure 9 a). However
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(a) Solution
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(b) Convergence

Figure 9: Results for the Dirichlet-Neumann scheme, 1000 elements and κ = 100 at
subdomain 1
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(a) Solution
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(b) Convergence

Figure 10: Results for the Dirichlet-Neumann scheme, 1000 elements and κ = 0.01 at
subdomain 1
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Figure 11: Solution for the relaxation scheme and 1000 elements.

d)

Motivate the previous results in terms of the stability of the coupling scheme.
The coupling scheme is stable when κ1 and κ1 have similar values because we have

homogeneus problems. However, when κ1 << κ2, the continuity of fluxes means that we
are passing a huge derivative of u to subdomain 1, which can reduce the coercivity of the
system and substract stability.

Task 5
Implement a relaxation shceme.

a)

Relaxation scheme in terms of a fixed relaxation parameter w.
A relaxation scheme has been implemented using a relaxation parameter w which

affects the Dirichlet condition imposed at subdomain 2:

ukright = w · ukright − (1− w) · uk−1
right

This why, any unstability obtained can be relaxed and reduced. The results obtained
when using this scheme are depicted in figures 11 and 12. We see a slower convergence
rate, but the error obtained for both the fluxes and u is lower.

b)

Aitken relaxation scheme.
The Aitken relaxation scheme has been implemented. This scheme is similar to last

scheme, but the relaxation term α is not constant and depends on the error obtained in
the previous iteration. When using this scheme (figures 13 and 14), we obtain a much
better convergence that for constant relaxation parameter. Moreover, the scheme is more
stable.
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(a) 100 elements
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(b) 1000 elements

Figure 12: Convergence for the relaxation scheme w and different number of elements
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Figure 13: Solution for the Aitken relaxation scheme and 1000 elements.
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(a) 100 elements
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Figure 14: Convergence for the Aitken relaxation scheme and different number of elements
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