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Computer homework

1.

Solve a single heat transfer problem. The domain is [0,1]. Fiz v = 0 in both boundaries.
(a) Study the effect of changing the value to the thermal diffusion coefficient kappa.
(b) Study the effect of changing the source term value.

(¢) Study the effect of changing the number of elements, evaluate the convergence rate of the error in the
maximum heat value in the domain.

. Solve two independent heat transfer problems with kappa = 1, source = 1. The first problem subdomain is

[0, 0.25]. The second problem subdomain is [0.25,1]. Fix u in =0 and z=1, leave it free in the interface
between subdomains. Comment on the results.

Solve the previous problem in a Monolithic way.
(a) Study HP_SolveMonolithic.m and relate it to what was explained in theory. Comment on the results.
(b) Modify the kappa parameter of one of the subdomains. Comment on the results.

Solve the previous problem (kappa = 1 in both subdomains) in an iterative manner (Dirichlet Neumann).
Apply Neumann boundary conditions at the interface in the first (left) subdomain, and Dirichlet boundary
conditions at the interface in the second subdomain.

(a) Fwvaluate the convergence of the iterative scheme (in terms of u at the interface).

(b) Increase the value for kappa at subdomain 1 (x100). Comment on the convergence rate.
(¢) Diminish the value for kappa at subdomain 1(/100). Comment on the convergence rate.
(d) Motivate the previous results in terms of the stability of the coupling scheme.
Implement a relaxation scheme

(a) Relaxation scheme in terms of a fixed relaxation parameter w.

(b) Aitken relazation scheme.



Computer homework - Coupled Problems Mariano Toméas Fernandez

1 First exercise

A single heat transfer problem needs to be solved for a domain Q = [0, 1] with Dirichlet boundary conditions
u(0) = u(l) = 0.

1.1 First task

The effect of changing the thermal diffusion coefficient is studied by solving the problem for different x values from
1 to 20, and their results are shown in Figure As seen in the image, for kK = 1 the solution has a maximum
U = 0.125 whereas for the k = 20 the solution has a maximum of U = 0.0063. Therefore, for bigger diffusion
coefficient and constant sources the solution is smaller.

1.2 Second task

The effect of changing the source of heat in the problem is studied by solving the problem for different s values
from 1 to 20, and their results are shown in Figure[Ib] As seen in the image, for s = 1 the solution has a maximum
U = 0.125 whereas for the x = 20 the solution has a maximum of U = 2.5. Logically, for bigger source of heat
and the heat equation solution has bigger values.
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Figure 1: Solution of a heat transfer problem for varying x and s from 1 to 20.

1.3 Third task

The idea is now to obtain the relationship between the maximum value of the solution in the domain of interest
with the size of the mesh. To do so, first a dense mesh will be run and its maximum will be taken as the ’ezxact’
value to compare with the coarser meshes studied. As can be seen in Figure the convergence is linear for
increasing amount of elements in the domain. The values of the solution start getting really close in shape from
Netem > 9, even though the error is still ¢- 1072,
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Solution of a heat problem
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Convergence analysis
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Figure 2: Analysis of mesh refinement for heat problem solution.

2 Second exercise

The domain is split into two subdomains right and left from z = 0.25. As seen in Figure |3] when no transmission
conditions are imposed, the problem is not continuous as there are two different values of the solution in the same

mesh point (z = 0.25).
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> 0.15

0.1

Two subdomains

Figure 3: Solution of a heat transfer problem for varying « from 1 to 20.

3 Third exercise

3.1 First task

The HP_SolveMonolithic.m code generates a matrix of Num_ NodesI+Num_Nodes2-1 to perform the couple
of the two problems and stores the matrix the two subdomains. First the matrix of subdomain one is stored in
1:Num__Nodes1, then the matrix of subdomain 2 is stored from Num_ Nodesi:(Num_Nodes1+Num_Nodes2-1),
same scheme is performed with independent vectors F. The boundary of the two subdomains is located at the
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end node of Num_ Nodesl1, that is why one node is substracted form the size of the matrix, and in that node the
components of matrix from subdomain 1 and subdomain 2 are summed.

Now, the results presented in Figure [4] reflects the correct application of the monolithic scheme as expected, same
flux and solution for the boundary between subdomains.
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Figure 4: Monolithic solution of heat transfer equation for two subdomains.

3.2 Second task

When modifying one of the x parameters in a subdomain, the monolithic scheme cannot handle the continuity of
fluxes but does it for the solution, as virtually the solution is calculated only once and then translated to each
of the subdomains. Saying this, when one subdomain has bigger x than the other, its results are lower (as seen
in Figure and the enforcement of equal solution without imposition of fluxes shows results like those seen in
Figure @ In this case ko = 20 and k1 = 1.
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Figure 5: Monolithic solution of heat transfer equation for two subdomains with different x parameters.
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4 Fourth exercise

The idea is now to implement an iterative scheme for with Neumann-Dirichlet conditions in the two subdomains.
To do this, first on £; Neumann conditions are applied using solutions of us from the previous step and, then
Dirichlet conditions are imposed in 25 using results from wu;. As seen, this scheme uses both solutions and relates

them iteratively to merge into a smooth solution where both transmission conditions are comply. In Figure [6a] the
results are shown and this description is checked.

4.1 First task

To check the convergence of the code a series of different values of u in the interface are registered while increasing

the iteration step. The results show a linear convergence after the first iteration (See Figure but the results
do not seem to be completely right.
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Figure 6: Dirichlet-Neumannn algorithm.

4.2 Second and third tasks

The idea is now to analyse the convergence for a difference x value between each of the subdomains. As mentioned

before the convergence of this implementation is not completely right, and with this task it is confirmed how the
convergence is not granted.
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Figure 7: Dirichlet-Neumannn algorithm.
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Comment

I had a problem during the implementation of the Dirichlet-Neumann scheme (related to the way I was plotting
the resuts). This is why I could not finish the assignment on time, please accept my apologies.

A Implementation codes

A.1 General code exercise 1 to 3

1 clear all;
2 clc;

3 % %Domain

1+ % Data.inix = 0;
5 % Data.endx = 1
6 % Data.nelem = 1
7 % %Physical

¢ % Data.kappa = 1;

9 % Data.source = 1;

10 % Boundary conditions

11 % Dirichlet

12 % Data.FixLeft = 1; %0, do not fix it, 1: fix it
13 % Data.LeftValue = 0;

14 % Data.FixRight =1;
15 % Data.RightValue = 0;

16 % Neumann

17 % Data.FixFluxesLeft = 0;
18 % Data.LeftFluxes = 0;

19 % Data.FixFluxesRight = 0;
20 % Data.RightFluxes = O0;

22 %First task

23 %#To solve the first part of the assignment Domain = [0,1] u(0)=u(1)=0
24 % Data.nelem = 50;

25 % HeatProblem = HP_Initialize(Data);
26 % HeatProblem = HP_Build (HeatProblem);
27 % Solutionl = HP_Solve(HeatProblem);
28 % Data.nelem = 11;

29 % HeatProblem = HP_Initialize (Data);
30 % HeatProblem = HP_Build(HeatProblem);
31 % Solution2 = HP_Solve(HeatProblem);
32 % Data.nelem = 9;

33 % HeatProblem = HP_Initialize(Data);
34 % HeatProblem = HP_Build (HeatProblem) ;
35 % Solution3 = HP_Solve (HeatProblem) ;
36 % Data.nelem = 5;

37 % HeatProblem = HP_Initialize(Data);
38 % HeatProblem = HP_Build (HeatProblem);
39 % Solution4 = HP_Solve (HeatProblem) ;
10 % Data.nelem = 3;

11 % HeatProblem = HP_Initialize(Data);
12 % HeatProblem = HP_Build(HeatProblem) ;
143 % Solution5 = HP_Solve (HeatProblem) ;

45 % figure (1)

46 % plot(Solutionl.Solution.coord,Solutionl.Solution.U,’k’)

47 % hold on

48 % ylim ([0,0.15]1)

149 % plot(Solution2.Solution.coord,Solution2.Solution.U,’b’)

0o % hold on

1 % plot(Solution3.Solution.coord,Solution3.Solution.U,’g’)

2 % hold on

3 % plot(Solutiond.Solution.coord,Solution4.Solution.U,’r’)

. % hold on

5 % plot(Solutionb.Solution.coord,Solution5.Solution.U,’c--"’)

6 % hold on

7 % grid on

s % legend(’N_{elem} = 50’,’N_{elem} = 11’,’N_{elem} = 9’,’N_{elem} = 5’,’N_{elem} = 3’,’FontSize
’,12)
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% hold on

% title(’Solution of a heat problem’,’FontSize’,12)
% hold on

% xlabel(’Domain (x)’,’FontSize’,12)

% ylabel(’Solution (U)’,’FontSize’,12)

% %haxes(’FontSize’,12)

% saveas(figure (1) ,’task3.pdf’)

% ‘%hcomputing the error

% v_ref = max(Solutionl.Solution.U);

% error = [abs(max(Solution2.Solution.U)-v_ref)/v_ref;
; abs(max(Solution4.Solution.U)-v_ref)/v_ref;

% h = [1/11; 1/9; 1/5; 1/3];

% figure (2)

% loglog(h,error,’k--o’)

% hold on

% grid on

% title(’Convergence analysis’,’FontSize’,12)
% xlabel(’log h’,’FontSize’,12)

% ylabel(’log error’,’FontSize’,12)

% saveas (figure (2),’task3_2.pdf’)

% %Second task

% %hTo solve the second part of the assignment Domainl =
% %Domain2 = [0.25,1.0] u(1)=0 ; in the interface leave
% hFirst re-write the boundaries of Domainl

% %%Domain

% Data.
% Data.
% Data.
% Data.

[0,0.25] u(0)=0
it "free"

inix = 0;
endx = 0.2
FixRight =
FixLeft =
% Data.LeftValue
% Data.FixRight =
% %Neumann

% Data.FixFluxesRight =
% Data.RightFluxes = 0;

% fixed\
0;
03

5;
0;
1;

%not Fixed

0;

% HeatProblem = HP_Initialize (Data);

% HeatProblem = HP_Build (HeatProblem) ;
% Solution2 = HP_Solve (HeatProblem);

% HP_Plot (Solution2,2);

% Data2 = Data;
% Data2.

% Data2.
% Data2.

inix = 0.
endx = 1;
FixLeft = 0
% Data2.FixRight =

% Data2.RightValue

% %Neumann

% Data2.FixFluxesLeft =
% Data2.LeftFluxes = 0;

265

; %Not fixed
1; %Fixed

= 0;

0;

% HeatProblem2 = HP_Initialize(Data2);

% HeatProblem2 = HP_Build (HeatProblem2);
% Solution2 = HP_Solve (HeatProblem2) ;

% HP_Plot (Solution2,2);

%#Third task

%To solve monolithically the previous problem the only need is to execute
%the solve monolitically function

% %Physical

%Domain

Data.inix = 0;
Data.endx = 0.25;
Data.nelem = 25;

%Physical

abs (max (Solution3.Solution.U)-v_ref)/v_ref
abs (max (Solution5.Solution.U)-v_ref)/v_ref];
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Data.kappa = 1;

Data.source = 1;
%Boundary conditions
%#Dirichlet

Data.FixLeft = 1; %0, do not fix it, 1: fix it
Data.LeftValue = 0;

Data.FixRight = 0;

Data.RightValue =
%Neumann
Data.FixFluxesLeft = 0;
Data.LeftFluxes = 0;
Data.FixFluxesRight = 0;
Data.RightFluxes = 0;

0;

Data3 = Data;

Data3.inix = 0.25;
Data3.endx = 1;
Data3.FixLeft = 0;
Data3.FixRight = 1;

Data3.kappa = 20;

%#Solving a monolithic problem

%Data subdomain 1

HeatProblem = HP_Initialize(Data);
HeatProblem = HP_Build(HeatProblem) ;
%Data subdomain 2

HeatProblem3 = HP_Initialize(Data3);
HeatProblem3 = HP_Build (HeatProblem3);

%Solve Monolithic problem

[HeatProblem ,HeatProblem3] = HP_SolveMonolithic (HeatProblem,HeatProblem3);

HP_Plot (HeatProblem,3)

hold on

HP_Plot (HeatProblem3,3)

legend (’Subdomain 1°’,’Subdomain 2’,’FontSize’ ,12);

A.2 Dirichelt-Neumann conditions

% Application of Dirichlet-Neumann conditions
clear all;

@le g

% close all

clear variables

%Subdomain 1

Data.inix = 0;
Data.endx = 0.25;
Data.nelem = 25;

%Physical

Data.kappa = 0.5;
Data.source = 1;
%Boundary conditions
%Dirichlet

Data.FixLeft = 1; %0, do not fix it, 1: fix it

Data.LeftValue 0;
Data.FixRight =0; % No fix
Data.RightValue = 0.5; % useless

%Neumann

Data.FixFluxesLeft = 0;

Data.LeftFluxes = 0;

Data.FixFluxesRight = 1; %Fix right fluxes
Data.RightFluxes = 0;

%Subdomain 2
Data2.inix = 0.25;
Data2.endx = 1;

Data2.nelem = 75;
%Physical
Data2.kappa = 1;
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Data2.source = 1;
%Boundary conditions
%Dirichlet
Data2.FixLeft =
Data2.LeftValue
Data2.FixRight =
Data2.RightValue
%Neumann
Data2.FixFluxesLeft =
Data2.LeftFluxes = 0;
Data2.FixFluxesRight =
Data2.RightFluxes = 0;

%0, fix it
1;

1;

1; do not fix it, 1:

0;
0;

0;

% Initial calculation

HeatProbleml = HP_Initialize(Data);

HeatProblem2 = HP_Initialize(Data2);
HeatProbleml.Solution.uRight = 1; %initial cond setting
HeatProblem2.Solution.FluxesLeft = 0;

u = 1;

Data2.LeftValue = HeatProbleml.Solution.uRight;

k = 1; % initial iteration counter k
eps = le-6; % allowed error

Guess = 1;

niter = 100; % max iteration number
error = 10;

error5 = zeros(niter,1);

Sol_nl = 10; 7 initial guess value

while abs(HeatProbleml.Solution.uRight-Sol_n1l)>1e-9
%Subdomain 2
%Impose Dir BC

Data2.LeftValue = HeatProbleml.Solution.uRight;

Sol_nl1 = HeatProbleml.Solution.uRight;

%Solve

HeatProblem2 = HP_Initialize(Data2);

HeatProblem2 = HP_Build (HeatProblem2);

HeatProblem2 = HP_Solve (HeatProblem2); %solve in subdomain 2

%Subdomain 1
%Impose Neu BC

Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft;

%Solve

HeatProbleml = HP_Initialize(Data);

HeatProbleml = HP_Build (HeatProbleml) ;

HeatProbleml = HP_Solve(HeatProbleml); Jsolve in subdomain 1
Guess = [Guess, HeatProbleml.Solution.uRight];

end

HP_Plot (HeatProblemi ,1)
grid omn

% ylim ([0,0.1]1)

hold on

7 HP_Plot (HeatProblem?2 ,1)

legend (’Subdomain 1’,’Subdomain 2°’,’FontSize’,12);
k = [1:1:size(Guess,2)];

figure (2)

plot (k,Guess) ;

grid omn

xlabel (’Iteration k’)

ylabel (’error_k’)

saveas (figure (2),’convergence_k2.pdf’)

%version 2
% [boundvall ,Solutionl,Solution2]=Iterative_DN(boundvalO ,Data,Data2);

% error = abs(boundvall-boundvalO)
% if (error<eps)
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break
else

k=k+1;

boundvalO0 = boundvalO+error;
end

function [boundvall,Solutionl,Solution2]=Iterative_DN(boundval ,Data,Data2)

end

Data2.LeftValue = boundval; %Impose u_2(1) equal u_1(end)

HeatProblem2=HP_Initialize (Data2);
HeatProblem2=HP_Build (HeatProblem2) ;
Solution2=HP_Solve (HeatProblem2) ;

Data.FluxesLeft = -Solution2.Solution.FluxesRight; %Impose Neumann BC
HeatProblem1=HP_Initialize (Data);

HeatProblem1=HP_Build (HeatProbleml) ;

Solution1=HP_Solve (HeatProblemi);

boundvall = Solutionl.Solution.uRight; %Recover the n+1 result
%of interest

%Versioni

Data2.LeftValue = boundval %imposing Dirichlet on subd 2

% Solve subdomain 2

HeatProblem2 = HP_Initialize(Data2);
HeatProblem2 = HP_Build(HeatProblem2) ;
Solution2 = HP_Solve (HeatProblem2);

% Enforce onto problem 1
Data.RightFluxes = - Solution2.Solution.FluxesLeft %imposing Neumann on subd 1

% Solve subdomain 1

HeatProbleml = HP_Initialize(Data);
HeatProbleml = HP_Build (HeatProbleml);
Solutionl = HP_Solve(HeatProbleml) ;

boundvall = Solutionl.Solution.uRight; %update Dirichlet result n+1

if (abs(boundvall-boundval)>eps)
if abs(Solutionl.Solution.FluxesRight+Solution2.Solution.FluxesLeft)>eps

k = k+1;
boundval = boundvall
fluxval = Solutionl.Solution.FluxesRight
else
k = k+1;
boundval = boundvall
fluxval = Solutionl.Solution.FluxesRight
end
elseif abs(Solutionl.Solution.FluxesRight+Solution2.Solution.FluxesLeft)>eps
k = k+1;
boundval = boundvall
fluxval = Solutionl.Solution.FluxesRight
else
break
end
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