# MASTER'S DEGREE NUMERICAL METHODS IN ENGINEERING



## COUPLED PROBLEMS

# Computer Homework

Author: Mariano Tomás Fernandez Professor:
Javier Principe
Joan Baiges

June  $17^{th}$ , 2020 Academic Year 2019-2020

# Contents

| 1            | First exercise                   | • |
|--------------|----------------------------------|---|
|              | 1.1 First task                   |   |
|              | 1.2 Second task                  | 4 |
|              | 1.3 Third task                   |   |
| 2            | Second exercise                  | ; |
| 3            | Third exercise                   |   |
|              | Third exercise  3.1 First task   |   |
|              | 3.2 Second task                  | 4 |
| 4            | Fourth exercise                  | ļ |
|              | Fourth exercise 4.1 First task   | į |
|              | 4.2 Second and third tasks       | ļ |
| $\mathbf{A}$ | Implementation codes             | , |
|              | A.1 General code exercise 1 to 3 |   |
|              | A 2 Dirichelt-Neumann conditions |   |

## Computer homework

- 1. Solve a single heat transfer problem. The domain is [0,1]. Fix u=0 in both boundaries.
  - (a) Study the effect of changing the value to the thermal diffusion coefficient kappa.
  - (b) Study the effect of changing the source term value.
  - (c) Study the effect of changing the number of elements, evaluate the convergence rate of the error in the maximum heat value in the domain.
- 2. Solve two independent heat transfer problems with kappa = 1, source = 1. The first problem subdomain is [0, 0.25]. The second problem subdomain is [0.25,1]. Fix u in x=0 and x=1, leave it free in the interface between subdomains. Comment on the results.
- 3. Solve the previous problem in a Monolithic way.
  - (a) Study HP\_SolveMonolithic.m and relate it to what was explained in theory. Comment on the results.
  - (b) Modify the kappa parameter of one of the subdomains. Comment on the results.
- 4. Solve the previous problem (kappa = 1 in both subdomains) in an iterative manner (Dirichlet Neumann). Apply Neumann boundary conditions at the interface in the first (left) subdomain, and Dirichlet boundary conditions at the interface in the second subdomain.
  - (a) Evaluate the convergence of the iterative scheme (in terms of u at the interface).
  - (b) Increase the value for kappa at subdomain 1 (x100). Comment on the convergence rate.
  - (c) Diminish the value for kappa at subdomain 1(/100). Comment on the convergence rate.
  - (d) Motivate the previous results in terms of the stability of the coupling scheme.
- 5. Implement a relaxation scheme
  - (a) Relaxation scheme in terms of a fixed relaxation parameter w.
  - (b) Aitken relaxation scheme.

## 1 First exercise

A single heat transfer problem needs to be solved for a domain  $\Omega = [0, 1]$  with Dirichlet boundary conditions u(0) = u(1) = 0.

## 1.1 First task

The effect of changing the thermal diffusion coefficient is studied by solving the problem for different  $\kappa$  values from 1 to 20, and their results are shown in Figure 1a. As seen in the image, for  $\kappa=1$  the solution has a maximum U=0.125 whereas for the  $\kappa=20$  the solution has a maximum of U=0.0063. Therefore, for bigger diffusion coefficient and constant sources the solution is smaller.

## 1.2 Second task

The effect of changing the source of heat in the problem is studied by solving the problem for different s values from 1 to 20, and their results are shown in Figure 1b. As seen in the image, for s=1 the solution has a maximum U=0.125 whereas for the  $\kappa=20$  the solution has a maximum of U=2.5. Logically, for bigger source of heat and the heat equation solution has bigger values.



Figure 1: Solution of a heat transfer problem for varying  $\kappa$  and s from 1 to 20.

#### 1.3 Third task

The idea is now to obtain the relationship between the maximum value of the solution in the domain of interest with the size of the mesh. To do so, first a dense mesh will be run and its maximum will be taken as the 'exact' value to compare with the coarser meshes studied. As can be seen in Figure 2b the convergence is linear for increasing amount of elements in the domain. The values of the solution start getting really close in shape from  $N_{elem} \geq 9$ , even though the error is still  $c \cdot 10^{-2}$ .



Figure 2: Analysis of mesh refinement for heat problem solution.

## 2 Second exercise

The domain is split into two subdomains right and left from x = 0.25. As seen in Figure 3, when no transmission conditions are imposed, the problem is not continuous as there are two different values of the solution in the same mesh point (x = 0.25).



Figure 3: Solution of a heat transfer problem for varying  $\kappa$  from 1 to 20.

## 3 Third exercise

## 3.1 First task

The HP\_SolveMonolithic.m code generates a matrix of  $Num_Nodes1+Num_Nodes2-1$  to perform the couple of the two problems and stores the matrix the two subdomains. First the matrix of subdomain one is stored in  $1:Num_Nodes1$ , then the matrix of subdomain 2 is stored from  $Num_Nodes1:(Num_Nodes1+Num_Nodes2-1)$ , same scheme is performed with independent vectors F. The boundary of the two subdomains is located at the

end node of *Num\_Nodes1*, that is why one node is substracted form the size of the matrix, and in that node the components of matrix from subdomain 1 and subdomain 2 are summed.

Now, the results presented in Figure 4 reflects the correct application of the monolithic scheme as expected, same flux and solution for the boundary between subdomains.



Figure 4: Monolithic solution of heat transfer equation for two subdomains.

## 3.2 Second task

When modifying one of the  $\kappa$  parameters in a subdomain, the monolithic scheme cannot handle the continuity of fluxes but does it for the solution, as virtually the solution is calculated only once and then translated to each of the subdomains. Saying this, when one subdomain has bigger  $\kappa$  than the other, its results are lower (as seen in Figure 1a) and the enforcement of equal solution without imposition of fluxes shows results like those seen in Figure 5. In this case  $\kappa_2 = 20$  and  $\kappa_1 = 1$ .



Figure 5: Monolithic solution of heat transfer equation for two subdomains with different  $\kappa$  parameters.

## 4 Fourth exercise

The idea is now to implement an iterative scheme for with Neumann-Dirichlet conditions in the two subdomains. To do this, first on  $\Omega_1$  Neumann conditions are applied using solutions of  $u_2$  from the previous step and, then Dirichlet conditions are imposed in  $\Omega_2$  using results from  $u_1$ . As seen, this scheme uses both solutions and relates them iteratively to merge into a smooth solution where both transmission conditions are comply. In Figure 6a the results are shown and this description is checked.

## 4.1 First task

To check the convergence of the code a series of different values of u in the interface are registered while increasing the iteration step. The results show a linear convergence after the first iteration (See Figure 6b) but the results do not seem to be completely right.



Figure 6: Dirichlet-Neumannn algorithm.

## 4.2 Second and third tasks

The idea is now to analyse the convergence for a difference  $\kappa$  value between each of the subdomains. As mentioned before the convergence of this implementation is not completely right, and with this task it is confirmed how the convergence is not granted.



Figure 7: Dirichlet-Neumannn algorithm.

## Comment

I had a problem during the implementation of the *Dirichlet-Neumann* scheme (related to the way I was plotting the resuts). This is why I could not finish the assignment on time, please accept my apologies.

## A Implementation codes

## A.1 General code exercise 1 to 3

```
1 clear all;
2 clc;
3 % %Domain
4 \% Data.inix = 0;
5 % Data.endx = 1.0;
6 % Data.nelem = 100;
7 % %Physical
8 % Data.kappa = 1;
9 % Data.source = 1;
10 % Boundary conditions
11 % Dirichlet
12 % Data.FixLeft = 1; %0, do not fix it, 1: fix it
13 % Data.LeftValue = 0;
14 % Data.FixRight =1;
15 % Data.RightValue = 0;
16 % Neumann
17 % Data.FixFluxesLeft = 0;
18 % Data.LeftFluxes = 0;
19 % Data.FixFluxesRight = 0;
20 % Data.RightFluxes = 0;
22 %First task
^{23} %To solve the first part of the assignment Domain = [0,1] u(0)=u(1)=0
24 % Data.nelem = 50;
% HeatProblem = HP_Initialize(Data);
26 % HeatProblem = HP_Build(HeatProblem);
% Solution1 = HP_Solve(HeatProblem);
28 % Data.nelem = 11;
29 % HeatProblem = HP_Initialize(Data);
30 % HeatProblem = HP_Build(HeatProblem);
31 % Solution2 = HP_Solve(HeatProblem);
32 % Data.nelem = 9;
33 % HeatProblem = HP_Initialize(Data);
34 % HeatProblem = HP_Build(HeatProblem);
35 % Solution3 = HP_Solve(HeatProblem);
36 % Data.nelem = 5:
37 % HeatProblem = HP_Initialize(Data);
38 % HeatProblem = HP_Build(HeatProblem);
39 % Solution4 = HP_Solve(HeatProblem);
40 % Data.nelem = 3;
41 % HeatProblem = HP_Initialize(Data);
42 % HeatProblem = HP_Build(HeatProblem);
43 % Solution5 = HP_Solve(HeatProblem);
44 %
45 % figure(1)
46 % plot(Solution1.Solution.coord, Solution1.Solution.U,'k')
47 % hold on
  % ylim([0,0.15])
49 % plot(Solution2.Solution.coord, Solution2.Solution.U,'b')
50 % hold on
51 % plot(Solution3.Solution.coord,Solution3.Solution.U,'g')
52 % hold on
53 % plot(Solution4.Solution.coord,Solution4.Solution.U,'r')
54 % hold on
55 % plot(Solution5.Solution.coord,Solution5.Solution.U,'c--')
56 % hold on
57 % grid on
58 % legend('N_{elem} = 50','N_{elem} = 11','N_{elem} = 9','N_{elem} = 5','N_{elem} = 3','FontSize
```

```
59 % hold on
60 % title('Solution of a heat problem', 'FontSize', 12)
61 % hold on
% xlabel('Domain (x)','FontSize',12)
63 % ylabel('Solution (U)', 'FontSize', 12)
% %axes('FontSize',12)
65 % saveas(figure(1),'task3.pdf')
66
67 % %computing the error
68 % v_ref = max(Solution1.Solution.U);
69 % error = [abs(max(Solution2.Solution.U)-v_ref)/v_ref; abs(max(Solution3.Solution.U)-v_ref)/v_ref
      ; abs(max(Solution4.Solution.U)-v_ref)/v_ref; abs(max(Solution5.Solution.U)-v_ref)/v_ref];
_{70} % h = [1/11; 1/9; 1/5; 1/3];
71 %
72 % figure(2)
73 % loglog(h,error,'k--o')
74 % hold on
75 % grid on
76 % title('Convergence analysis', 'FontSize', 12)
77 % xlabel('log h', 'FontSize', 12)
78 % ylabel('log error', 'FontSize',12)
79 % saveas(figure(2),'task3_2.pdf')
80
81 %
82 % %Second task
83 % %To solve the second part of the assignment Domain1 = [0,0.25] u(0)=0
_{84} % %Domain2 = [0.25,1.0] u(1)=0 ; in the interface leave it "free
85 % %First re-write the boundaries of Domain1
86 % %%Domain
87 % Data.inix = 0;
88 % Data.endx = 0.25;
89 % Data.FixRight =0;
90 % Data.FixLeft = 1; % fixed\
91 % Data.LeftValue = 0;
92 % Data.FixRight = 0; %not Fixed
93 % %Neumann
94 % Data.FixFluxesRight = 0;
95 % Data.RightFluxes = 0;
96 %
  %
97
98 %
99 % HeatProblem = HP_Initialize(Data);
100 % HeatProblem = HP_Build(HeatProblem);
101 % Solution2 = HP_Solve(HeatProblem);
102 % HP_Plot(Solution2,2);
103 %
104 % Data2 = Data;
105 %
106 % Data2.inix = 0.25;
107 % Data2.endx = 1;
108 % Data2.FixLeft = 0; %Not fixed
109 % Data2.FixRight = 1; %Fixed
110 % Data2.RightValue = 0;
111 % %Neumann
112 % Data2.FixFluxesLeft = 0;
113 % Data2.LeftFluxes = 0;
114 %
115 % HeatProblem2 = HP_Initialize(Data2);
116 % HeatProblem2 = HP_Build(HeatProblem2);
% Solution2 = HP_Solve(HeatProblem2);
118 % HP_Plot(Solution2,2);
119
120 %Third task
_{121} %To solve monolithically the previous problem the only need is to execute
122 %the solve monolitically function
123 % %Physical
124 %Domain
125 Data.inix = 0;
126 Data.endx = 0.25;
127 Data.nelem = 25;
128 %Physical
```

```
129 Data.kappa = 1;
Data.source = 1;
131 %Boundary conditions
132 %Dirichlet
Data.FixLeft = 1; %0, do not fix it, 1: fix it
134 Data.LeftValue = 0;
Data.FixRight = 0;
136 Data.RightValue = 0;
137 %Neumann
138 Data.FixFluxesLeft = 0;
139 Data.LeftFluxes = 0;
140 Data.FixFluxesRight = 0;
141 Data.RightFluxes = 0;
142
143 Data3 = Data;
144
145 Data3.inix = 0.25;
146 Data3.endx = 1;
147 Data3.FixLeft = 0;
148 Data3.FixRight = 1;
150 Data3.kappa = 20;
152 %Solving a monolithic problem
153 %Data subdomain 1
HeatProblem = HP_Initialize(Data);
155 HeatProblem = HP_Build(HeatProblem);
156 %Data subdomain 2
157 HeatProblem3 = HP_Initialize(Data3);
158 HeatProblem3 = HP_Build(HeatProblem3);
159
160 %Solve Monolithic problem
161 [HeatProblem, HeatProblem3] = HP_SolveMonolithic(HeatProblem, HeatProblem3);
162 HP_Plot(HeatProblem,3)
163 hold on
HP_Plot(HeatProblem3,3)
legend('Subdomain 1', 'Subdomain 2', 'FontSize', 12);
```

#### A.2 Dirichelt-Neumann conditions

```
1 % Application of Dirichlet-Neumann conditions
2 clear all;
3 clc;
4 % close all
5 clear variables
7 %Subdomain 1
8 Data.inix = 0;
9 Data.endx = 0.25;
10 Data.nelem = 25;
11 %Physical
12 Data.kappa = 0.5;
13 Data.source = 1;
14 %Boundary conditions
15 %Dirichlet
Data.FixLeft = 1; %0, do not fix it, 1: fix it
17 Data.LeftValue = 0;
18 Data.FixRight =0;
                           % No fix
19 Data.RightValue = 0.5;
                            % useless
20 %Neumann
21 Data.FixFluxesLeft = 0;
Data.LeftFluxes = 0;
Data.FixFluxesRight = 1; %Fix right fluxes
24 Data.RightFluxes = 0;
25
26 %Subdomain 2
27 Data2.inix = 0.25;
28 Data2.endx = 1;
29 Data2.nelem = 75;
30 %Physical
31 Data2.kappa = 1;
```

```
32 Data2.source = 1;
33 %Boundary conditions
34 %Dirichlet
35 Data2.FixLeft = 1; %0, do not fix it, 1: fix it
36 Data2.LeftValue = 1;
37 Data2.FixRight = 1;
38 Data2.RightValue = 0;
39 %Neumann
40 Data2.FixFluxesLeft = 0;
41 Data2.LeftFluxes = 0;
42 Data2.FixFluxesRight = 0;
Data2.RightFluxes = 0;
44
45 % Initial calculation
46 HeatProblem1 = HP_Initialize(Data);
47 HeatProblem2 = HP_Initialize(Data2);
48 HeatProblem1.Solution.uRight = 1; %initial cond setting
49 HeatProblem2.Solution.FluxesLeft = 0;
51
52 Data2.LeftValue = HeatProblem1.Solution.uRight;
53
_{54} k = 1; % initial iteration counter k
eps = 1e-6; % allowed error
56 Guess = 1;
57 niter = 100; % max iteration number
58 error = 10;
59 error5 = zeros(niter,1);
60 Sol_n1 = 10; % initial guess value
61
62
   while abs(HeatProblem1.Solution.uRight-Sol_n1)>1e-9
       %Subdomain 2
63
       %Impose Dir BC
64
       Data2.LeftValue = HeatProblem1.Solution.uRight;
65
       Sol_n1 = HeatProblem1.Solution.uRight;
66
       %Solve
67
       HeatProblem2 = HP_Initialize(Data2);
68
       HeatProblem2 = HP_Build(HeatProblem2);
69
       HeatProblem2 = HP_Solve(HeatProblem2); %solve in subdomain 2
70
71
       %Subdomain 1
72
       %Impose Neu BC
73
       Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft;
74
       %Solve
75
       HeatProblem1 = HP_Initialize(Data);
76
77
       HeatProblem1 = HP_Build(HeatProblem1);
       HeatProblem1 = HP_Solve(HeatProblem1); %solve in subdomain 1
78
79
       Guess = [Guess, HeatProblem1.Solution.uRight];
80
81 end
82
83 HP_Plot(HeatProblem1,1)
84 grid on
85 % ylim([0,0.1])
86 hold on
87 HP_Plot(HeatProblem2,1)
88 legend('Subdomain 1', 'Subdomain 2', 'FontSize', 12);
89
90 k = [1:1:size(Guess,2)];
91 figure(2)
92 plot(k, Guess);
93 grid on
94 xlabel('Iteration k')
95 ylabel('error_k')
96 saveas(figure(2), 'convergence_k2.pdf')
97
98 %version 2
99
100 %
         [boundval1, Solution1, Solution2] = Iterative_DN (boundval0, Data, Data2);
101 %
         error = abs(boundval1-boundval0)
         if(error<eps)
102 %
```

```
break
103 %
104 %
         else
105 %
              k=k+1;
              boundval0 = boundval0+error;
106 %
107 %
108 %
109 % function [boundval1, Solution1, Solution2] = Iterative_DN(boundval, Data, Data2)
110 %
         Data2.LeftValue = boundval; %Impose u_2(1) equal u_1(end)
111 %
112 %
         HeatProblem2=HP_Initialize(Data2);
         HeatProblem2=HP_Build(HeatProblem2);
113
114 %
         Solution2=HP Solve(HeatProblem2);
115 %
116 %
         Data.FluxesLeft = -Solution2.Solution.FluxesRight; %Impose Neumann BC
117 %
118 %
         HeatProblem1=HP_Initialize(Data);
         HeatProblem1=HP_Build(HeatProblem1);
119 %
         Solution1=HP_Solve(HeatProblem1);
120 %
121 %
         boundval1 = Solution1.Solution.uRight; %Recover the n+1 result
122 %
  %
123
                                                        %of interest
124 % end
125
126 %Version1
127
128 %
         Data2.LeftValue = boundval %imposing Dirichlet on subd 2
129
130 %
         % Solve subdomain 2
131 %
         HeatProblem2 = HP_Initialize(Data2);
132 %
         HeatProblem2 = HP_Build(HeatProblem2);
133 %
         Solution2 = HP_Solve(HeatProblem2);
134 %
135 %
         % Enforce onto problem 1
136 %
         Data.RightFluxes = - Solution2.Solution.FluxesLeft %imposing Neumann on subd 1
137 %
138 %
         % Solve subdomain 1
139 %
         HeatProblem1 = HP_Initialize(Data);
         HeatProblem1 = HP_Build(HeatProblem1);
140 %
         Solution1 = HP_Solve(HeatProblem1);
141 %
  %
142
143 %
         boundval1 = Solution1.Solution.uRight; %update Dirichlet result n+1
144 %
         if (abs(boundval1-boundval)>eps)
145
146 %
             if abs(Solution1.Solution.FluxesRight+Solution2.Solution.FluxesLeft)>eps
                  k = k+1;
147 %
148 %
                  boundval = boundval1
149 %
                  fluxval = Solution1.Solution.FluxesRight
150 %
              else
151 %
                  k = k+1;
                  boundval = boundval1
152 %
153 %
                  fluxval = Solution1.Solution.FluxesRight
154 %
             end
155 %
         elseif abs(Solution1.Solution.FluxesRight+Solution2.Solution.FluxesLeft)>eps
             k = k+1;
156 %
             boundval = boundval1
157 %
             fluxval = Solution1.Solution.FluxesRight
158
  %
159 %
         else
160 %
             break
161 %
         end
```