
Master’s Degree Numerical
Methods in Engineering

Coupled Problems

Computer Assignment:
Heat Transfer

Authors:
Aren Khaloian

Professor:
Javier Principe
Joan Baiges

June 17th, 2020
Academic Year 2019-2020

1 Problem 1

Solve a single heat transfer problem. The domain is [0,1]. Fix u = 0 in both boundaries.

• Study the effect of changing the value to the thermal diffusion coefficient kappa.

• Study the effect of changing the source term value.

• Study the effect of changing the number of elements, evaluate the convergence rate of
the error in the maximum heat value in the domain.

In order to solve the problem the given codes are initiated. In order to plot the difference of
the needed parameter an extra loop is added on the general code and the needed parameter
initiated as a matrix of values. The obtained values are saved in an additional matrix and
plotted after the loop is done.

Figure 1: Change of kappa from 0.1 to 10

This case is with a source of 1000 as seen if the kappa is low the effect of the source is much
higher and much higher values are obtained for U in comparison with higher values for kappa.

1

Figure 2: Change of source from 100 to 10000

As was possible to guess for higher values of the source term higher values of U are reached in
the middle point. On both ends Dirichlet boundary conditions of value zero is prescribed that
is why the effect of the source term is seen in the midpoint of the domain.

Figure 3: Change of the number of elements from 10 to 100

2

For the case of the number of elements it was needed to change the code again because the
size of the obtained matrices was not equal in the stages. The solutions of each step and the
coordinates of the nodes for each mesh was saved in a different matrix and plotted afterwards.
As seen in figure.3 above there is not much difference between the values obtained because the
problem was very simple, except for the case of 10 elements that because of the low number of
elements the linear change is seen which is not correct. So in case the number of elements is
high enough so the model converges then there is no large difference between the solutions.

2 Problem 2
Solve two independent heat transfer problems with kappa = 1, source = 1. The first problem
subdomain is [0, 0.25]. The second problem subdomain is [0.25,1]. Fix u in x=0 and x=1,
leave it free in the interface between subdomains. Comment on the results.

For this problem the code from problem 1 was modified with a difference that more
parameters should have been initialized in matrix form in this case. After initializing the
domain and the boundary conditions the problem is solved.

Figure 4: 2 subdomains solved with the initial code

As seen above because of no connection between the two subdomains and no prescribed
constraints the plots are discontinuous in the point of connection. In order to get a real
solution from the two subdomains it is needed for them to be connected and values checked on
the interface.

3

3 Problem 3
Solve the previous problem in a Monolithic way.

• Study HPSolveMonolithic.m and relate it to what was explained in theory. Comment
on the results.

• Modify the kappa parameter of one of the subdomains. Comment on the results.

For this case the two subdomains are initialized in different data trees with the prescribed
values. Afterwards the HPSolveMonolithic.m code was used to calculate and using the
HPP lot.m code the solutions are plotted.

Figure 5: 2 subdomains solved in the monolithic way

Comparing the figure obtained by the monolithic algorithm with the normal, it is seen that
while in the normal algorithm on the interface there was a huge gap between the U values of
the two subdomains the values obtained for the monolithic algorithm are equal and the plot is
continuous as the first part.

4

Figure 6: 2 subdomains with different kappa values solved in the monolithic way

In the case of different kappa values for the two subdomains it is seen that using the
monolithic algorithm the U value at the interface is equal for the two subdomains but in
comparison with the previous point that the kappas were equal the point of connection is no
longer smooth and there is an edge on the interface so the derivative of U is not continuous on
the interface anymore.

5

4 Problem 4

Solve the previous problem (kappa = 1 in both subdomains) in an iterative manner
(Dirichlet-Neumann). Apply Neumann boundary conditions at the interface in the first
(left)subdomain, and Dirichlet boundary conditions at the interface in the second subdomain.

• Evaluate the convergence of the iterative scheme (in terms of u at the interface).

• Increase the value for kappa at subdomain 1 (x100). Comment on the convergence rate.

• Diminish the value for kappa at subdomain 1(/100). Comment on the convergence rate.

For the case of the iterative Dirichlet-Neumann algorithm the two subdomains were initialized
as before and after prescribing the input parameters a loop was created for the iterations. In
the loop after solving subdomain 1 with the Dirichlet boundary condition the value of the left
side of the second subdomain is changed to the value on the interface obtained by the first
subdomain. In the second step subdomain 2 is solved and the fluxes calculated in the interface
is taken to subdomain 1 and saved. By the end of each iteration the difference between the U
value at the interface for subdomain 2 is checked with the value from the previous iteration
and in case a tolerance is reached the loop breaks.

Figure 7: Iterative Dirichlet-Neumann method

As seen the solution is exactly the same as the solution obtained using the monolithic
algorithm. For a tolerance of 10−8 18 iterations were done until convergence. Afterwards the
value of kappa for subdomain 1 from 1 to 100 the results below was obtained.

6

Figure 8: Iterative Dirichlet-Neumann method with kappa1 = 100

As expected the solutions obtained are continuous on the U values but it can be seen that
there is an edge on the interface so the derivative of U is not continuous. For a tolerance of
10−8 6 iterations were done until convergence. So in comparison with the previous section it is
seen that for higher values of kappa the model converges faster.
For part ’c’ it is seen that for a kappa value of 0.01 for subdomain 1 the model does not
converge and the solution blows up. Different values smaller than 1 were tested for the model
and for a minimum of kappa = 0.3 solutions were obtained. In order to control the iterations
done the code was modified and a maximum number of iterations was defined. For a
maximum number of iterations of 40 and kappa1 = 0.01 the solution below was obtained.

7

Figure 9: Iterative Dirichlet-Neumann method with kappa1 = 0.01

8

5 Problem 5
Implement a relaxation scheme

• Relaxation scheme in terms of a fixed relaxation parameter w.

• Aitken relaxation scheme.

For Problem 5 both the relaxation with fixed w value and the Aitken method a code was
developed which in the beginning it is chosen between the methods. In the relaxation scheme
with fixed value for w, in case w is equal to 1 the same plot as the previous part is obtained.
The stability of this method is very much related to the value assigned to w. In case a small
value like 0.01 is taken for w the method is not stable and does not converge to the solution.

Figure 10: Relaxation scheme with w = 1

9

Figure 11: Relaxation scheme with w = 0.01

In case the w is a stable value if we use large values for kappa it is seen that the method
converges and plots similar to the ones obtained in the previous parts is obtained. The main
advantage of the relaxation scheme and the previous problem is that in case we take low
values for kappa 1 like 0.01 where previously there was no convergence in this case using the
correct value of the w we can reach convergence. As seen below kappa 1 was taken as 0.01 and
using a w of 0.01 we can see that convergence is reached and a logical solution is obtained.

Figure 12: Relaxation scheme with w = 0.01 with kappa1 = 0.01

10

Also the Aitken method was implemented and the solutions found for the case of equal kappas
in the subdomains is similar as the fixed w value in case it is stable. The advantage of the
Aitken method in comparison with the fixed w value is that there is no need to change the w
and find the stable value for the needed problem. The figures for the Aitken method are
represented bellow.

Figure 13: Aitken relaxation scheme with kappa1 = kappa2

Figure 14: Aitken relaxation scheme with kappa1 = 0.01

11

Figure 15: Aitken relaxation scheme with kappa1 = 0.01

In terms of convergence it is seen that the both algorithms with the relaxation scheme converge
to the solution in 2 iterations whereas in the previous case it took on average about 10
iterations to reach convergence. In a model like the one given the difference between the two is
not seen well but in a problem of big size the difference in the speed of convergence will show.

12

6 Codes
Function coupled1.m for problem 1:

1 c l e a r a l l
2
3 kappai = [1 0 , 1 0 0 , 1 0 0 0] ;
4
5 s o l = [] ;
6
7
8 f o r i = 1 : s i z e (kappai , 2)
9

10
11 %Domain
12 Data . i n i x = 0 ;
13 Data . endx = 1 ;
14 Data . nelem = 100 ;
15 %Phys i ca l
16 Data . kappa = kappai (i) ;
17 Data . source = 1 ;
18 %Boundary c o n d i t i o n s
19 %D i r i c h l e t
20 Data . F ixLe f t = 1 ; %0 , do not f i x i t , 1 : f i x i t
21 Data . LeftValue = 0 ;
22 Data . FixRight =1;
23 Data . RightValue = 0 ;
24 %Neumann
25 Data . F ixFluxesLe f t = 0 ;
26 Data . Le f tF luxes = 0 ;
27 Data . FixFluxesRight = 0 ;
28 Data . RightFluxes = 25 ;
29
30
31 HeatProblem = HP_In i t i a l i z e (Data) ;
32 HeatProblem = HP_Build (HeatProblem) ;
33 HeatProblem = HP_Solve (HeatProblem) ;
34 s o l (i , :) = HeatProblem . So lu t i on .U;
35
36 end
37
38 x = HeatProblem . S o lu t i o n . coord ;
39 p l o t (x , s o l (1 , :))
40 t i t l e (’ Change o f the Source ’)
41
42 hold on
43
44 p l o t (x , s o l (2 , :))
45
46 p l o t (x , s o l (3 , :))
47
48 l egend (’ Domain1 ’ , ’ Domain2 ’)

Function coupled2.m for problem 2:
1 c l e a r a l l
2
3 n i x i = [0 , 0 . 2 5] ;
4 endi = [0 . 2 5 , 1] ;
5 d a t a r i g h t i = [0 , 1] ;
6 d a t a l e f t i = [1 , 0] ;
7 s o l = [] ;
8 x = [] ;
9

10 f o r i = 1 : s i z e (n ix i , 2)
11
12
13 %Domain
14 Data . i n i x = n i x i (i) ;
15 Data . endx = endi (i) ;

13

16 Data . nelem = 100 ;
17 %Phys i ca l
18 Data . kappa = 1 ;
19 Data . source = 1 ;
20 %Boundary c o n d i t i o n s
21 %D i r i c h l e t
22 Data . F ixLe f t = d a t a l e f t i (i) ; %0 , do not f i x i t , 1 : f i x i t
23 Data . LeftValue = 0 ;
24 Data . FixRight =d a t a r i g h t i (i) ;
25 Data . RightValue = 1 ;
26 %Neumann
27 Data . F ixFluxesLe f t = 0 ;
28 Data . Le f tF luxes = 0 ;
29 Data . FixFluxesRight = 0 ;
30 Data . RightFluxes = 25 ;
31
32
33 HeatProblem = HP_In i t i a l i z e (Data) ;
34 HeatProblem = HP_Build (HeatProblem) ;
35 HeatProblem = HP_Solve (HeatProblem) ;
36 i f i == 1
37 x1 = HeatProblem . So lu t i on . coord ;
38 s o l 1 = HeatProblem . So lu t i on .U;
39 e l s e i f i == 2
40 x2 = HeatProblem . So lu t i on . coord ;
41 s o l 2 = HeatProblem . So lu t i on .U;
42 end
43 % HP_Plot (HeatProblem , 1) ;
44 end
45
46
47 p l o t (x1 , s o l 1)
48 t i t l e (’ Change o f the Source ’)
49
50 hold on
51
52 p l o t (x2 , s o l 2)
53
54
55 l egend (’ Domain1 ’ , ’ Domain2 ’)

Function coupled3.m for problem 3:
1 %Domain1
2 Data . i n i x = 0 ;
3 Data . endx = 0 . 2 5 ;
4 Data . nelem = 100 ;
5 %Phys i ca l
6 Data . kappa = 0 . 5 ;
7 Data . source = 1 ;
8 %Boundary c o n d i t i o n s
9 %D i r i c h l e t

10 Data . F ixLe f t = 1 ; %0 , do not f i x i t , 1 : f i x i t
11 Data . LeftValue = 0 ;
12 Data . FixRight =0;
13 Data . RightValue = 0 ;
14 %Neumann
15 Data . F ixFluxesLe f t = 0 ;
16 Data . Le f tF luxes = 0 ;
17 Data . FixFluxesRight = 0 ;
18 Data . RightFluxes = 25 ;
19
20
21 %Domain2
22 Data2 . i n i x = 0 . 2 5 ;
23 Data2 . endx = 1 ;
24 Data2 . nelem = 100 ;
25 %Phys i ca l
26 Data2 . kappa = 1 ;
27 Data2 . source = 1 ;

14

28 %Boundary c o n d i t i o n s
29 %D i r i c h l e t
30 Data2 . F ixLe f t = 0 ; %0 , do not f i x i t , 1 : f i x i t
31 Data2 . LeftValue = 0 ;
32 Data2 . FixRight =1;
33 Data2 . RightValue = 0 ;
34 %Neumann
35 Data2 . F ixFluxesLe f t = 0 ;
36 Data2 . Le f tF luxes = 0 ;
37 Data2 . FixFluxesRight = 0 ;
38 Data2 . RightFluxes = 25 ;
39
40
41 [HeatProblem , HeatProblem2] = HP_SolveMonolithic (HeatProblem , HeatProblem2) ;
42 HP_Plot (HeatProblem , 1) ;
43 HP_Plot (HeatProblem2 , 1) ;
44 l egend (’ Domain1 . kappa = 0 .5 ’ , ’ Domain2 . kappa = 1 ’)

Function coupled4.m for problem 4:
1 c l e a r a l l
2
3 %Domain1
4 Data . i n i x = 0 ;
5 Data . endx = 0 . 2 5 ;
6 Data . nelem = 100 ;
7 %Phys i ca l
8 Data . kappa = 0 . 0 1 ;
9 Data . source = 1 ;

10 %Boundary c o n d i t i o n s
11 %D i r i c h l e t
12 Data . F ixLe f t = 1 ; %0 , do not f i x i t , 1 : f i x i t
13 Data . LeftValue = 0 ;
14 Data . FixRight =0;
15 Data . RightValue = 0 ;
16 %Neumann
17 Data . F ixFluxesLe f t = 0 ;
18 Data . Le f tF luxes = 0 ;
19 Data . FixFluxesRight = 1 ;
20 Data . RightFluxes = 0 ;
21
22 %Domain2
23 Data2 . i n i x = 0 . 2 5 ;
24 Data2 . endx = 1 ;
25 Data2 . nelem = 100 ;
26 %Phys i ca l
27 Data2 . kappa = 1 ;
28 Data2 . source = 1 ;
29 %Boundary c o n d i t i o n s
30 %D i r i c h l e t
31 Data2 . F ixLe f t = 1 ;
32 Data2 . LeftValue = 0 ;
33 Data2 . FixRight =1;
34 Data2 . RightValue = 0 ;
35 %Neumann
36 Data2 . F ixFluxesLe f t = 0 ;
37 Data2 . Le f tF luxes = 0 ;
38 Data2 . FixFluxesRight = 0 ;
39 Data2 . RightFluxes = 25 ;
40
41
42
43 t o l = 10^−2;
44 d i f f e r = 1 ;
45 i t r = 1 ;
46 maxitr = 40 ;
47 whi le i t r <maxitr
48
49 l e f t v a l 2 = Data2 . LeftValue ;
50

15

51 HeatProblem = HP_In i t i a l i z e (Data) ;
52 HeatProblem = HP_Build (HeatProblem) ;
53 HeatProblem = HP_Solve (HeatProblem) ;
54 Data2 . LeftValue = HeatProblem . So lu t i o n . uRight ;
55
56
57 HeatProblem2 = HP_In i t i a l i z e (Data2) ;
58 HeatProblem2 = HP_Build (HeatProblem2) ;
59 HeatProblem2 = HP_Solve (HeatProblem2) ;
60 Data . RightFluxes = − HeatProblem2 . S o lu t i on . F luxesLe f t ;
61
62
63 d i f f e r = abs (Data2 . LeftValue− l e f t v a l 2) ;
64
65
66 i f i t r >40
67 break
68 e l s e
69 i t r = i t r +1;
70 end
71 end
72
73 HP_Plot (HeatProblem , 1) ;
74 HP_Plot (HeatProblem2 , 1) ;
75 l egend (’ Domain1 . kappa = 0 .5 ’ , ’ Domain2 . kappa = 1 ’)

Function coupled5.m for problem 5:
1 c l e a r a l l
2
3
4 r e l a x a t i o n = 1 ; % 0 f o r f i x e d w , 1 f o r a i tken
5 w_fixedRelaxation = 0 . 0 1 ;
6
7
8 %Domain1
9 Data . i n i x = 0 ;

10 Data . endx = 0 . 2 5 ;
11 Data . nelem = 100 ;
12 %Phys i ca l
13 Data . kappa = 1 ;
14 Data . source = 1 ;
15 %Boundary c o n d i t i o n s
16 %D i r i c h l e t
17 Data . F ixLe f t = 1 ; %0 , do not f i x i t , 1 : f i x i t
18 Data . LeftValue = 0 ;
19 Data . FixRight =0;
20 Data . RightValue = 0 ;
21 %Neumann
22 Data . F ixFluxesLe f t = 0 ;
23 Data . Le f tF luxes = 0 ;
24 Data . FixFluxesRight = 1 ;
25 Data . RightFluxes = 0 ;
26
27 %Domain2
28 Data2 . i n i x = 0 . 2 5 ;
29 Data2 . endx = 1 ;
30 Data2 . nelem = 100 ;
31 %Phys i ca l
32 Data2 . kappa = 1 ;
33 Data2 . source = 1 ;
34 %Boundary c o n d i t i o n s
35 %D i r i c h l e t
36 Data2 . F ixLe f t = 1 ;
37 Data2 . LeftValue = 0 ;
38 Data2 . FixRight =1;
39 Data2 . RightValue = 0 ;
40 %Neumann
41 Data2 . F ixFluxesLe f t = 0 ;
42 Data2 . Le f tF luxes = 0 ;

16

43 Data2 . FixFluxesRight = 0 ;
44 Data2 . RightFluxes = 25 ;
45
46
47
48 t o l = 10^−8;
49 d i f f e r = 1 ;
50 i t r = 1 ;
51 maxitr = 40 ;
52 whi le i t r < maxitr
53
54 i f r e l a x a t i o n == 1
55 i f i t r == 1
56 l e f t v a l 2 = Data2 . LeftValue ;
57
58 HeatProblem2 = HP_In i t i a l i z e (Data2) ;
59 HeatProblem2 = HP_Build (HeatProblem2) ;
60 HeatProblem2 = HP_Solve (HeatProblem2) ;
61
62 Data . RightFluxes = − HeatProblem2 . S o lu t i on . F luxesLe f t ;
63
64 HeatProblem = HP_In i t i a l i z e (Data) ;
65 HeatProblem = HP_Build (HeatProblem) ;
66 HeatProblem = HP_Solve (HeatProblem) ;
67
68 Data2 . LeftValue = HeatProblem . S o lu t i o n . uRight ;
69
70 HeatProblem2 = HP_In i t i a l i z e (Data2) ;
71 HeatProblem2 = HP_Build (HeatProblem2) ;
72 HeatProblem2 = HP_Solve (HeatProblem2) ;
73
74 Data . RightFluxes = − HeatProblem2 . S o lu t i on . F luxesLe f t ;
75 end
76
77 U1prev = HeatProblem . So l u t i on . uRight ;
78
79 p r e v l e f t v a l 2 = l e f t v a l 2 ;
80
81 l e f t v a l 2 = HeatProblem2 . S o lu t i o n . uLeft ;
82 e l s e
83
84 l e f t v a l 2 = Data2 . LeftValue ;
85
86 end
87
88 HeatProblem = HP_In i t i a l i z e (Data) ;
89 HeatProblem = HP_Build (HeatProblem) ;
90 HeatProblem = HP_Solve (HeatProblem) ;
91
92 i f r e l a x a t i o n == 0
93 w = w_fixedRelaxation ;
94 Data2 . LeftValue = w∗HeatProblem . So l u t i on . uRight + (1−w) ∗ l e f t v a l 2 ;
95
96 e l s e i f r e l a x a t i o n ==1
97 w = (p r e v l e f t v a l 2 − l e f t v a l 2) /(p r e v l e f t v a l 2 − l e f t v a l 2 + . . .
98 HeatProblem . So l u t i on . uRight − U1prev) ;
99 Data2 . LeftValue = l e f t v a l 2 . . .

100 + w∗(HeatProblem . So lu t i on . uRight − l e f t v a l 2) ;
101 end
102
103 HeatProblem2 = HP_In i t i a l i z e (Data2) ;
104 HeatProblem2 = HP_Build (HeatProblem2) ;
105 HeatProblem2 = HP_Solve (HeatProblem2) ;
106
107
108 Data . RightFluxes = − HeatProblem2 . S o lu t i on . F luxesLe f t ;
109 d i f f e r = abs (Data2 . LeftValue − l e f t v a l 2) ;
110
111 i f d i f f e r <= t o l
112

17

113 break
114 end
115 i t r = i t r + 1 ;
116 end
117
118
119
120 HP_Plot (HeatProblem , 1) ;
121 HP_Plot (HeatProblem2 , 1) ;
122 l egend (’ Domain1 . kappa = 0 .5 ’ , ’ Domain2 . kappa = 1 ’)

18

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Codes

