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1 Transmision conditions

1.1

The deflection of an Euler-Bernouilli beam is governed by the differential
equation

EI
d4v

dx4
= f

where EI is a mechanical property of the beam section and the beam material
and f is the distributed load. Assuming for example that the beam is clamped
at x = 0 and x = L, the principle of virtual work states that the solution v(x)
satisfies

EI

∫ L

0

d2δv

dx2

d2v

dx2
=

∫ L

0

δv f

for all δv such that δv(0) = δv(L), dδv
dx

(0) = dδv
dx

(L) = 0.

a)

Postulate the space of functions where both v and δv must belong.
From the PVW, it is evident that :

v ∈

{
v(x) : Ω→ R | v(0) = v(1) = 0, ∂xv(0) = ∂xv(1) = 0,

∫ (
d2u

dx

)2

<∞

}

δv ∈

{
δv(x) : Ω→ R | δv(0) = δv(1) = 0

∫ (
d2δu

dx

)2

<∞

}

b)

If [0, L] = [0, P ]∪(P,L], obtain transmision conditions at P implied by regularity
requirements.

In order to achieve regularity, there cannot be no jumps for v and dv
dx

across interface
P :

JvKP = 0→ v1(P ) = v2(P )

J∂xvKP = 0→ ∂xv1(P ) = ∂xv2(P )
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c)

Obtain the transmission conditions at P that follow by imposing in the PVW
that the integral is additive.

The integral in the PVW is additive and can be expressed as:

EI

∫ P

0

d2δv

dx2

d2v

dx2
+ EI

∫ L

P

d2δv

dx2

d2v

dx2
=

∫ P

0

δv f +

∫ L

P

δv f (1)

If we obtain the variational form at subdomain 1:

EI

∫ P

0

d2δv

dx2

d2v

dx2
−
[
EI

dδv

dx

d2v

dx2

]
P

+

[
EIδv

d3v

dx3

]
P

=

∫ P

0

δv f

and subdomain 2:

EI

∫ L

P

d2δv

dx2

d2v

dx2
−
[
EI

dδv

dx

d2v

dx2

]
P

+

[
EIδv

d3v

dx3

]
P

=

∫ L

P

δv f

Adding the two integrals and comparing with equation 1, we have:[
EI

dδv1

dx

d2v1

dx2

]
P

−
[
EI

dδv2

dx

d2v2

dx2

]
P

= 0[
EIδv

d3v1

dx3

]
P

−
[
EIδv

d3v2

dx3

]
P

= 0

1.2

The Maxwell problem consists in finding a vector field u : Ω→R3 such that

ν∇×∇× u = f inΩ

∇ · u = 0 inΩ

n× u = 0 on∂Ω

where ν > 0, f is a divergence free force field and n the unit external
normal. Equation ∇ · u = 0 is in fact redundant.

a)

Write a variational statement of the problem. Postulate the space of functions
where u must blong. Justify the answer.

The variational statement of the problem is obtained premultiplying by a test function
w and integrating:

−
∫

Ω

ν(∇xw · (∇× (∇xu)) =

∫
Ω

w · f

Operating:

−ν
∫

Ω

(∇×w) : (∇× u) =

∫
Ω

w · f − ν
∫
∂ΩN

(w · (n× (∇× u)

Since n× u = 0, the Neumann term vanishes:

−ν
∫

Ω

(∇×w) · (∇× u) =

∫
Ω

w · f

Thus, the space in which u must belong is:

u ∈
{
u : Ω→ R3 · n× u = 0on∂Ω,

∫
(∇× u)2 <∞

}
2



b)

If Γ is a surface that intersects Ω, obtain the transmission conditions across
this surface implied by regularity requirements.

From regularity requirements, the following must hold across Γ:

Jn× uKΓ = 0→ v1(P ) = v2(P )

c)

Obtain the transmission conditions across Γ that follow by imposing in the
variational form of the problem that the integral is additive.

The additivity of the integral provides:

−ν
∫

Ω1

(∇×w) · (∇× u)− ν
∫

Ω2

(∇×w) · (∇× u) =

∫
Ω1

w · f +

∫
Ω2

w · f

However, if we analize both subdomains separately:

−ν
∫

Ω1

(∇×w)·(∇×u)−ν
∫

Ω2

(∇×w)·(∇×u) =

∫
Ω1

w · f+

∫
Ω2

w · f−ν
∫

Γ1

(w·(n×(∇×u)−ν
∫

Γ2

(w·(n×(∇×u)

Thus:
ν

∫
Γ

(w · (n× (∇× u1) + n× (∇× u2)) = 0

Thus:
n× (∇× u1) + n× (∇× u2) = 0

1.3

The Navier equations for an elastic material can be written in three different
ways:

−2µ∇ · (ε(u))− λ∇(∇ · u) = ρb

−µ4u− (λ+ µ)∇(∇ · u) = ρb

µ∇× (∇× u)− (λ+ 2µ)∇(∇ · u) = ρb

Let us assume that u = 0 on ∂Ω

a)

Write down the variational form of the previous equations in the appropiate
functional spaces.

Integrating a premultiplying by a test function w:

1.
−2µ

∫
Ω

∇ · (ε(u)) ·w − λ
∫

Ω

∇(∇ · u) =

∫
Ω

ρb

2.
−µ
∫

Ω

4u−
∫

Ω

(λ+ µ)∇(∇ · u) =

∫
Ω

ρb
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3.
µ

∫
Ω

∇× (∇× u)−
∫

Ω

(λ+ 2µ)∇(∇ · u) =

∫
Ω

ρb

Operating:

1.

2µ

∫
Ω

∇w : (∇ε(u))+λ

∫
Ω

∇(w) : (∇u) =

∫
Ω

ρb+2µ

∫
∂ΩN

εn·w+λ

∫
∂ΩN

∇un·w

2.
(λ+ 2µ)

∫
Ω

∇(w) : (∇u) =

∫
Ω

ρb+ (λ+ 2µ)

∫
∂ΩN

∇un ·w

3.

−µ
∫

Ω

(∇×w) · (∇× u) + (λ+ 2µ)

∫
Ω

∇(w) : (∇u) =

=

∫
Ω

ρb− µ
∫
∂ΩN

n× (∇× u) ·w + (λ+ 2µ)

∫
∂ΩN

∇un ·w

Since we have Dirichlet boundary conditions at the whole boundary, we can get rid
of the Neumann terms:

1.
2µ

∫
Ω

∇w : (∇ε(u)) + λ

∫
Ω

∇(w) : (∇u) =

∫
Ω

ρb

2.
(λ+ 2µ)

∫
Ω

∇(w) : (∇u) =

∫
Ω

ρb

3.
−µ
∫

Ω

(∇×w) · (∇× u) + (λ+ 2µ)

∫
Ω

∇(w) : (∇u) =

∫
Ω

ρb

b)

If Γ is a surface that intersects Ω, obtain the transmission conditions across
Γ that follow by imposing in the variational form of the problem that the
integral is additive.

The variational forms obtained are additivie. Thus:

1.

2µ

∫
Ω1

∇w : (∇ε(u)) + 2µ

∫
Ω2

∇w : (∇ε(u)) + λ

∫
Ω1

∇(w) : (∇u)+

+λ

∫
Ω2

∇(w) : (∇u) =

∫
Ω1

ρb+

∫
Ω2

ρb

2.

(λ+ 2µ)

∫
Ω1

∇(w) : (∇u) + (λ+ 2µ)

∫
Ω2

∇(w) : (∇u) =

∫
Ω1

ρb+

∫
Ω2

ρb
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3.

−µ
∫

Ω1

(∇×w) · (∇× u)− µ
∫

Ω2

(∇×w) · (∇× u) + (λ+ 2µ)

∫
Ω1

∇(w) : (∇u)+

+(λ+ 2µ)

∫
Ω2

∇(w) : (∇u) =

∫
Ω1

ρb+

∫
Ω2

ρb

However, if we compare with the variational forms that would arise from obtaining
the variational form at every subdomain, we get that the Neumann terms must be equal
at Γ:

1.
2µε(u1)n+ λ∇u1n = 2µε(u2)n+ λ∇u2n

2.
∇u1n = ∇u2n

3.
−µn× (∇× u1) + (λ+ 2µ)∇u1n = −µn× (∇× u2) + (λ+ 2µ)∇u2n

2 Domain decomposition methods

2.1

Consider Problem 1 of Section 1. Let [0, L] = [0, L1] ∪ [L2, L] with L2 < L1.

a)

Write down an iteration-by-subdomain based on a Schwarz additive domain
decomposition methods.

Given u0, ∂xu0, repeat for k = 0, 1... until convergence:

1.
EI

d4v

dx4
= f in[0, L1]

vk1 = vk−1
2 in[L2, L1]

∂xv
k
1 = ∂xv

k−1
2 in[L2, L1]

uk1 = 0 inx = 0

2.
EI

d4v

dx4
= f in[L2, L]

vk2 = vk−1
1 in[L2, L1]

∂xv
k
2 = ∂xv

k−1
1 in[L2, L1]

uk2 = 0 inx = L
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b)

Obtain the matrix version of the previous scheme once space has been dis-
cretized using finite elements.

The global problem can be written as:

Au = f

Problems in [0, L1] and [L2, L] depend on matrices A11 and A22. We define the re-
striction operator R : Vh → V i

h , where Vh and V i
h are the spaces of the global and local

functions:

A11 = R1AR
T
1 A22 = R12ART

2 A1Γ = R1AR
T
Γ1 A2Γ = R2AR

T
Γ2

At every iteration we are solving two systems of equations in parallel:

A11R1u
k
1 = R1f1 − A1ΓRΓ1u

k−1
1

A22R2u
k
2 = R2f2 − A2ΓRΓ2u

k−1
2

2.1

Consider Problem 2 of Section 1. Let Γ be a surface that intersects Ω.

a)

Write down an iteration-by-subdomain based on the Dirichlet-Neumann cou-
pling.

Given u0 such that ∇ · u0 = 0, repeat for k = 0, 1... until convergence:

1.
ν∇×∇× uk1 = f in Ω

n× uk1 = 0 on ∂Ω1

n× uk1 = n× uk−1
2 on ∂Ω1\Γ

2.
ν∇×∇× uk2 = f in Ω

n× uk2 = 0 on ∂Ω2

n×∇× uk2 = n×∇× uk1 on ∂Ω1\Γ

b)

Obtain the matrix version of the previous scheme once space has been dis-
cretized using finite elements.

The global system of equations to be solved can be expressed in terms of inner nodes
on Ω1, Ω2 and nodes in Γ: A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ

U1

U2

UΓ

 =

F1

F2

FΓ


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Where U includes the unknowns of the problem n×u and AΓΓ = AΓΓ1 +AΓΓ2. If we
performe a Dirichlet correction in Ω1, followed by a Neumann correction in Ω2, at every
iteration we must solve:

1.
A11U

k
1 = F1 − A1ΓU

(
Γk − 1)

2. [
A22 A2Γ

AΓ2 AΓΓ2

] [
Uk

2

Uk
Γ2

]
=

[
F2

FΓ − AΓΓ1U
k
Γ − AΓ1U

k
1

]
2.3

Consider the problem of finding u : Ω→ R such that

−k4u = f in Ω

u = 0 on ∂Ω

a)

Write down an iteration-by-subdomain based on the Dirichlet-Robin coupling.
Given u0, repeat for i = 0, 1... until convergence:

1.
−k4ui1 = f1 in Ω1

ui1 = ui−1
2 ∂Ω\Γ

ui1 = 0 on ∂Ω

2.
−k4ui2 = f2 in Ω2

γui2 + k
∂ui2
∂n

= γui1 + k
∂ui1
∂n

on ∂Ω\Γ

ui2 = 0 on ∂Ω

b)

Obtain the matrix version of the previous scheme once space has been dis-
cretized using finite elements.

Following the same approach as in section 2 b), we obtain that, at every iteration, we
must solve the following systems of equations:

1.
A11U

i
1 = F1 − A1ΓU

(
Γi− 1)

2. [
A22 A2Γ

(1 + γ)AΓ2 AΓΓ2

] [
U i

2

U i
Γ2

]
=

[
F2

FΓ − AΓΓ1U
i−1
Γ − γAΓ1U

i
1

]
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4 Monolithic and partitioned schemes in time
Consider the one-dimensional, transient, heat transfer equation:

∂u

∂t
− κ∂

2u

∂x2
= f in [0, 1]

u(x = 0, t) = 0

u(x = 1, t) = 0

u(x, t = 0) = 0

4.1

Discretize it using the finite element method (linear elements, element size h)
for the discretization in space, and a BDF1 scheme for the discretization in
time. Write down the weak form of the problem and the resulting matrix form
of the problem, including the corresponding boundary integrals if necessary.
Consider κ, f=1, δt=1.

If we use the finite element method for spatial discretization:

(v, ∂tu)Ω + κ (∂xv, ∂xu)Ω = (v, f)Ω + κ 〈v, ∂xu〉ΓN

Since no Neumann boundary conditions are imposed, we can remove Neumann’s term.
The algebraic version of the problem is:

M
dU

dt
+ kU = F

If we use a BDF1 scheme for the discretization in time, we evaluate U at time step n+ 1
using:

dU

dt
=
Un+1 − Un

∆t

Thus:
MUn+1 + ∆t KUn+1 = ∆tF +MUn

If we use three linear elements with size h:

K =


1
h
− 1
h

0 0
− 1
h

2
h
− 1
h

0
0 − 1

h
2
h
− 1
h

0 0 − 1
h

1
h



F =


h
2

h
h
h
2



8



4.2

Consider a domain decomposition approach for the previous problem. The
left subdomain is composed of 2 elements (h=0.2), while the right subdomain
is composed of 3 elements(h=0.2). Show that, if a monolithic approach is
adopted, no boundary integrals are required at the interface. From now on,
we denote the values at the nodes of the meshes as u0, u1, u2, u3, u4, u5. The
interface is at u2. If we adopt a monolithic approach, we are solving for the following
problems: At left subdomain:

(v1, ∂tu1)Ω + κ (∂xv1, ∂xu1)Ω = (v1, f1)Ω + κ 〈v1, ∂xu1〉Γ

At right subdomain:

(v2, ∂tu2)Ω + κ (∂xv2, ∂xu2)Ω = (v2, f2)Ω + κ 〈v2, ∂xu2〉ΓN

Since both grids match and we are using the same interpolation space for both v1 and
v2, the system will become:

(v2, ∂tu2)Ω + κ (∂xv2, ∂xu2)Ω + (v1, ∂tu1)Ω + κ (∂xv1, ∂xu1)Ω = (v2, f2)Ω + (v1, f1)Ω

Thus, we do not have to integrate boundary terms.

4.3

Obtain the algebraic form of the Dirichlet-to-Neumann operator for the left
subdomain, departing from given values of uni at time step n, and an interface
value un+1

2 .
At the left subdomain we are solving a Dirichlet problem. We define A = M + ∆tK,

b = F +MUn, U1 = [

[
u0

u1

]
and UΓ = u2:[
A11 A1Γ

AΓ1 AΓΓ

] [
Un+1

1

Un+1
Γ

]
=

[
b1 − A1ΓU

n−1
Γ

bΓ

]
We can get U1 from first equation:

Un+1
1 = A−1

11 b1

Substituting in second equation:

AΓΓ = bΓ − AΓ1A
−1
11 b1

Thus, S = AΓΓ = 5
h

= 12.5

4.4

Obtain the algebraic form of the Neumann-to-Dirichlet operator for the right
subdomain, departing from given values of uni at time step n, and an interface
value for the fluxes κ∂xun+1 at coordinate node 2. At the right subdomain we are
imposing the flux. Algebraically it can be expressed as:[

A22 A2Γ

AΓ2 AΓΓ2

] [
Un+1

2

Un+1
Γ

]
=

[
b2

bΓ − AΓΓ1U
n+1
Γ − γAΓ1U

n+1
1

]
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From first equation we have:

U2 = A−1
22 b2 − A−1

22 A2ΓUΓ

Thus, the second equation will be:

(AΓΓ − AΓ2A
−1
22 A2Γ)Un+1

Γ = bΓ − AΓΓuΓ − AΓ1u
n+1
1 − AΓ2A22b2

Thus:
S = AΓΓ − AΓ2A

−1
22 A2Γ

4.5

Write down an iterative algorithm for a staggered approach applying Dirichlet
boundary conditions at the interface to the left subdomain and Neumann
boundary conditions at the interface for the right subdomain. Given the values
at previous time step un solve:

1. [
A11 A1Γ

AΓ1 AΓΓ

] [
Un+1

1

Un+1
Γ

]
=

[
b1 − A1ΓU

n−1
Γ

bΓ

]
2. [

A22 A2Γ

AΓ2 AΓΓ2

] [
Un+1

2

Un+1
Γ

]
=

[
b2

bΓ − AΓΓ1U
n+1
Γ − γAΓ1U

n+1
1

]
4.6

Do the same for an iteration-by-subdomain scheme: Given the values at previous
time step un, iterate for i=1,2..., and solve:

1. [
A11 A1Γ

AΓ1 AΓΓ

] [
U i+1n+1

1

U i+1n+1
Γ

]
=

[
bi1 − A1ΓU

in

Γ

biΓ

]
2. [

A22 A2Γ

AΓ2 AΓΓ2

] [
Un+1

2

Un+1
Γ

]
=

[
bi2

biΓ − AΓΓ1U
i+1n+1
Γ − γAΓ1U

i+1n+1
1

]

6 Fractional step methods
Consider the fractional step approach for the incompressible Navier-Stokes
equations (Yosida scheme):

M
1

δt
(Ũn+1 − Un) +KŨn+1 = f −GP̃ n+1

DM−1GP n+1 =
1

δt
DŨn+1 −DM−1GP̃ n+1

M
1

δt
(Un+1 − Ũn) + αK(Un+1 − Ũn+1) +G(P n+1 − P̃ n+1 = 0
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6.1

Which is the optimal parameter for the α parameter? The optimal parameter for
α seems to be 1. This way, we recover the slightly compressible Navier-Stokes equations
when adding first and third equations and we reduce the error obtained for a given
coupling of spatial and temporal discretizations.

6.2

What is the source of error of the scheme? The sources of error for this scheme
may be:

1. Incompressibility is not enforced, it is a slightly compressible problem. Thus, the
solutions obtained may be compressible and produce error when compared with
solutions for incompressible Navier-Stokes equations.

2. The spatial and temporal discretizations (values of δt and mesh size, and order of
the interpolations used for p and u.

3. The treatment of the non-linear term K.
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