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1 Transmission conditions

1.1 Problem 1

The deflection v(x) of an Euler-Bernoulli beam is governed by the differential equation

EI
d4v

dx4
= f

where EI is a mechanical property of the beam section and the beam material and f
is the distributed load. Assuming for example that the beam is clamped at x = 0 and
x = L, the Principle of Virtual Work (PVW) states that the solution v(x) satisfies

EI

∫ L

0

d2δv

dx2

d2v

dx2
=

∫ L

0

δvf

for all δv such that δv(0) = δv(L) = 0, dδv
dx

(0) = dδv
dx

(L) = 0

• (a) Postulate the space of functions where both v and δv must belong. Justify
the answer.

• (b) If [0, L] = [0, P ] ∪ (P,L], obtain the transmission conditions at P implied
by regularity requirements.

• (c) Obtain the transmission conditions at P that follow by imposing in the
PVW that the integral is additive.

Solution (a):
In mathematics, a square-integrable function, also called a quadratically integrable
function or L2 function, is a real- or complex-valued measurable function for which
the integral of the square of the absolute value is finite. Therefore the right hand side
function ∫ L

0

δvf <∞ −→ δv ∈ L2

For the left hand side, we can also noticed that the function needs to be bounded,
therefore:

EI

∫ L

0

d2δv

dx2

d2v

dx2
<∞ ∈ L2

In dimension d ∈ {2, 3}, Embedding of W s,p(D) says that functions in H2(D) that
the functions must not only be bounded, but must also be continuous, therefore:

δv, v ∈ H2

Solution (b):
Considering a regularised function vε for the deflection and dvε for the first derivative
connecting two points separated a distance ε across the boundary ΓP of the partition
of Ω.
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Consider x0 = P and u = v for the aim of the problem

v = lim
ε→0

vε

dv

dx

∣∣∣∣
p

= lim
ε→0

dvε

dx

∣∣∣∣
p

Let us assume that ∫ P+a

P−a

dv

dx
= lim

ε→0

∫ P+a

P−a

dvε

dx

Because∫ P+a

P−a

dvε

dx
=

∫ P−ε/2

P−a

dvε

dx
+

∫ P+ε/2

P−ε/2

dvε

dx
+

∫ P+a

P+ε/2

dvε

dx

=

∫ P−ε/2

P−a

dv

dx
+ ε

[
v (P + ε/2)− v (P − ε/2)

ε

]
+

∫ P+a

P+ε/2

dv

dx

−→
ε→0

∫ P

P−a

dv

dx
+ [v (P + ε/2)− v (P − ε/2)] +

∫ P+a

P

dv

dx

the integral of he first derivative of a discontinuous functions makes sense and can be
written in terms of

[v] = v
(
P+
)
− v

(
P−
)

the jump of v at P However, we have∫ P+a

P−a

(
dvε

dx

)2

=

∫ P−ε/2

P−a

(
dv

dx

)2

+

∫ P+a

P+ε/2

(
dv

dx

)2

+ ε

[
v (P + ε/2)− v (P − ε/2)

ε

]2

−→
ε→0
∞

therefore v /∈ H1(Ω)

Which means, the first transmission condition is:

JvK = v
(
P+
)
− v

(
P−
)

= 0

Now for the first derivative dv
dx

, lets assume:

du

dx
= lim

ε→0

dv

dx

ε
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d2v

dx2

∣∣∣∣P = lim
ε→0

dvε

dx

∣∣∣∣
P

Repeating the same procedure than before, but substituting v for dv:∫ P+a

P−a

(
d2vε

dx2

)
=

∫ P−ε/2

P−a

(
d2v

dx2

)
+

∫ P+a

P+ε/2

(
d2v

dx2

)
+ ε

[
dv
dx

(P + ε/2)− dv
dx

(P − ε/2)

ε

]

The jump of dv
dx

around P is defined as:

J
dv

dx
K =

dv

dx

(
P+
)
− dv

dx

(
P−
)

But ∫ P+a

P−a

(
d2vε

dx2

)2

=

∫ P−ε/2

P−a

(
d2v

dx2

)2

+

∫ P+a

P+ε/2

(
d2v

dx2

)2

+ ε

[
dv
dx

(P + ε/2)− dv
dx

(P − ε/2)

ε

]2

−→
ε→0
∞

The function v must be continuous therefore, the second transmission condition yields:

J
dv

dx
K =

dv

dx

(
P+
)
− dv

dx

(
P−
)

= 0

Solution (c): ∫
Ω

δvEI
d4v

dx4
=

∫
Ω

δvf

Integrating by parts yields:

−
∫

Ω

dδv

dx
EI

d3v

dx3
+

∫
Ω

d

dx

(
δvEI

d3v

dx3

)
=

∫
Ω

δvf

Applying divergence theorem:

−
∫

Ω

dδv

dx
EI

d3v

dx3
+

∫
∂Ω

δvEI
d3v

dx3
n =

∫
Ω

δvf

Considering a domain which is composed of two sub-domains Ω = Ω1 ∪ Ω2 with an
interface Γ = Ω1 ∩ Ω2:
Sub-domain Ω1:

−
∫

Ω1

dδv

dx
EI

d3v

dx3
+

∫
∂Ω1

δvEI
d3v

dx3
n1 =

∫
Ω1

δvf

Splitting the boundary of the sub-domain:

−
∫

Ω1

dδv

dx
EI

d3v

dx3
+

∫
∂Ω1∩∂Ω

δvEI
d3v

dx3
n1 +

∫
∂Ω1∩Γ

δvEI
d3v

dx3
n1 =

∫
Ω1

δvf
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Sub-domain Ω2:

−
∫

Ω2

dδv

dx
EI

d3v

dx3
+

∫
∂Ω2

δvEI
d3v

dx3
n2 =

∫
Ω2

δvf

Splitting the boundary of the sub-domain:

−
∫

Ω2

dδv

dx
EI

d3v

dx3
+

∫
∂Ω2∩∂Ω

δvEI
d3v

dx3
n2 +

∫
∂Ω2∩Γ

δvEI
d3v

dx3
n2 =

∫
Ω2

δvf

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
zero: ∫

∂Ω1∩Γ

δvEI
d3v

dx3
n1 +

∫
∂Ω2∩Γ

δvEI
d3v

dx3
n2 = 0

which is simply written as:∫
Γ

δv

(
(EI)1

d3v

dx3
n1 + (EI)2

d3v

dx3
n2

)
= 0

The third transmission condition yields:
s
EI

d3v

dx3

{

P

= (EI)1

(
d3v(P−)

dx3

)
− (EI)2

(
d3v(P+)

dx3

)
= 0

s
EI

d3v

dx3
n

{

Γ

= 0

This represents the equality of shear force on the interface.

Now integrating −
∫

Ω
dδv
dx
EI d

3v
dx3 +

∫
∂Ω
δvEI d

3v
dx3n =

∫
Ω
δvf by parts:∫

Ω

d2δv

dx2
EI

d2v

dx2
−
∫

Ω

d

dx

(
dδv

dx
EI

d2v

dx2

)
+

∫
∂Ω

δvEI
d3v

dx3
n =

∫
Ω

δvf

Applying divergence theorem:∫
Ω

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω

dδv

dx
EI

d2v

dx2
n+

∫
∂Ω

δvEI
d3v

dx3
n =

∫
Ω

δvf

Considering a domain which is composed of two sub-domains Ω = Ω1 ∪ Ω2 with an
interface Γ = Ω1 ∩ Ω2:
Sub-domain Ω1:∫

Ω1

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω1

dδv

dx
EI

d2v

dx2
n1 +

∫
∂Ω1

δvEI
d3v

dx3
n1 =

∫
Ω1

δvf

Splitting the boundary of the sub-domain:∫
Ω1

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω1∩∂Ω

dδv

dx
EI

d2v

dx2
n1 −

∫
∂Ω1∩Γ

dδv

dx
EI

d2v

dx2
n1

+

∫
∂Ω1∩∂Ω

δvEI
d3v

dx3
n1 +

∫
∂Ω1∩Γ

δvEI
d3v

dx3
n1 =

∫
Ω1

δvf
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Sub-domain Ω2:∫
Ω2

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω2

dδv

dx
EI

d2v

dx2
n2 +

∫
∂Ω2

δvEI
d3v

dx3
n2 =

∫
Ω2

δvf

Splitting the boundary of the sub-domain:∫
Ω2

d2δv

dx2
EI

d2v

dx2
−
∫
∂Ω2∩∂Ω

dδv

dx
EI

d2v

dx2
n2 −

∫
∂Ω2∩Γ

dδv

dx
EI

d2v

dx2
n2

+

∫
∂Ω2∩∂Ω

δvEI
d3v

dx3
n2 +

∫
∂Ω2∩Γ

δvEI
d3v

dx3
n2 =

∫
Ω2

δvf

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
zero:

−
∫
oΩ1∩Γ

dδv

dx
EI

d2v

dx2
n1−

∫
∂Ω2∩Γ

dδv

dx
EI

d2v

dx2
n2+

∫
∂Ω1∩Γ

δvEI
d3v

dx3
n1+

∫
∂Ω2∩Γ

δvEI
d3v

dx3
n2 = 0

which is simply written as:

−
∫

Γ

dδv

dx

(
(EI)1

d2v

dx2
n1 + (EI)2

d2v

dx2
n2

)
+

∫
Γ

δv

(
(EI)1

d3v

dx3
n1 + (EI)2

d3v

dx3
n2

)
= 0

Notice that the second term is the third transmission condition (which is zero), there-
fore: ∫

Γ

δv

(
(EI)1

d3v

dx3
n1 + (EI)2

d3v

dx3
n2

)
= 0 =⇒

s
EI

d3v

dx3
n

{

Γ

= 0

The fourth transmission condition yields:

s
EI

d2v

dx2

{

P

= (EI)1

(
d2v(P−)

dx2

)
− (EI)2

(
d2v(P+)

dx2

)
= 0

s
EI

d2v

dx2

{

P

= 0

This represents the equality of bending moments on the interface.

1.2 Problem 2

The Maxwell problem consists in finding a vector field u : Ω −→ R3 such that

ν∇×∇× u = f in Ω

∇ · u = 0 in Ω

n× u = 0 on ∂Ω

where ν > 0, f is a divergence free force field and n the unit external normal. Equation
∇ · u = 0 is in fact redundant.
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• (a) Write a variational statement of the problem. Postulate the space of func-
tions where u must belong. Justify the answer.

• (b) If Γ is a surface that intersects Ω, obtain the transmission conditions across
Γ implied by regularity requirements.

• (c) Obtain the transmission conditions across Γ that follow by imposing in the
variational form of the problem that the integral is additive.

Solution (a):
Multiplying the Maxwell problem and integrating over the domain:∫

Ω

δu · (ν∇×∇× u) =

∫
Ω

δu · f

Using the following identities:

∇· (A×B) = (∇×A) ·B−A · (∇×B) → A · (∇×B) = (∇×A) ·B−∇· (A×B)

Where:
A = δu ⇐⇒ B = ∇× u

Therefore: ∫
Ω

νA · (∇×B) =

∫
Ω

ν(∇× A) ·B −
∫

Ω

ν∇ · (A×B)

Applying the divergence theorem:∫
Ω

νA · (∇×B) =

∫
Ω

ν(∇× A) ·B −
∫

Γ

νn · (A×B)

Applying the following identity:

A · (B×C) = B · (C×A) = C · (A×B)

We get the following:∫
Ω

νA · (∇×B) =

∫
Ω

ν(∇× A) ·B −
∫

Γ

νB · (n× A)

Now substituting:
A = δu ⇐⇒ B = ∇× u

Yields:∫
Ω

δu · (ν∇×∇× u) =

∫
Ω

(∇× u) · (∇× δu)−
∫

Γ

ν(∇× u) · (n× δu)

Where n× δu = 0 on ∂Ω, therefore the weak form is:∫
Ω

(∇× u) · (ν∇× δu) =

∫
Ω

δu · f

7
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Where the space of functions for u and δu are defined by Hcurl (Ω) which is the
space of vector functions of dimension (d) that are defined in Ω such that a function
and curl are square integrable (L2), therefore:

u ∈ Hcurl (Ω) such that (n× u)|∂Ω = 0

δu ∈ Hcurl (Ω) such that (n× δu)|∂Ω = 0

Hcurl (Ω) :=
{
u : Ω→ Rd|u ∈ [L2(Ω)]d ,∇× u ∈ [L2(Ω)]d

}
Solution (b):
The following condition must be fulfilled:∫

Ω

|∇ × u|2 <∞

Considering an split of the definition of the problem to overcome the discontinuities
n× u may present:

• x ∈ Ω1:

∇× u

• x ∈ x0 − ε ≤ x ≤ x0 + ε:

1

2ε
[n× u (xo + ε)− n× u (xo − ε)]

• x ∈ Ω2:

∇× u

Therefore the square integral is calculated as:∫
Ω

(∇× u)2 =

∫
Ω1

(∇× u)2 +

∫ xo−ε

xo+ε

(
1

2ε
[n× u (xo + ε)− n× u (xo − ε)]

)2

+

∫
Ω2

(∇× u)2

=

∫
Ω1

(∇× u)2 +
1

2ε
[n× u (xo + ε)− n× u (xo − ε)]2 +

∫
Ω2

(∇× u)2

Noticed that as ε → 0 = ∞, therefore if n× u is discontinuous, ∇× u is not square
integrable. This means, u /∈ Hcurl .

Therefore, the first transmission condition yields:

Jn× uKΓ = 0

Solution (c):
Considering a domain which is composed of two sub-domains Ω = Ω1 ∪ Ω2 with an

8
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interface Γ = Ω1 ∩ Ω2:
Sub-domain Ω1:∫

Ω1

(∇× δu) · (ν∇× u)−
∫
∂Ω1∩∂Ω

ν(∇× u) · (n1 × δu)

−
∫
∂Ω1∩Γ

ν(∇× u) · (n1 × δu) =

∫
Ω1

δu · f

Sub-domain Ω2:∫
Ω2

(∇× δu) · (ν∇× u)−
∫
∂Ω2∩∂Ω

ν(∇× u) · (n2 × δu)

−
∫
∂Ω2∩Γ

ν(∇× u) · (n2 × δu) =

∫
Ω2

δu · f

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
zero: ∫

∂Ω1∩Γ

ν(∇× u) · (n1 × δu) +

∫
∂Ω2∩Γ

ν(∇× u) · (n2 × δu) = 0

Leading to have the second transmission condition defined as:

Jν(∇× u× n)KΓ = 0

1.3 Problem 3

The Navier equations for an elastic material can be written in three different ways:

−2µ∇ · (ε(u))− λ∇(∇ · u) = ρb

−µ∆u− (λ+ µ)∇(∇ · u) = ρb

µ∇× (∇× u)− (λ+ 2µ)∇(∇ · u) = ρb

where u is the displacement field, ε(u) the symmetric part of ∇u, λ and µ the Lamé
coefficients, ρ the density of the material and b the body forces. Let us assume that
u = 0 on ∂Ω

• (a) Write down the variational form of the previous equations in the appropriate
functional spaces.

• (b) If Γ is a surface that intersects Ω, obtain the transmission conditions across Γ
that follow by imposing in the variational form of the problem that the integral
is additive.

Solution (a):

• −2µ∇ · (ε(u))− λ∇(∇ · u) = ρb

9
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To obtain the weak form, we first have to multiply by a test function δu and integrate
over the domain:∫

Ω

δu · (−2µ∇ · ε(u))−
∫

Ω

δu · λ∇(∇ · u) =

∫
Ω

δu · ρb

Integrating by parts and applying the divergence theorem:
First term: ∫

Ω

δu · (−2µ∇ · ε(u)) = 2µ

∫
Ω

∇δu : ε− 2µ

∫
∂Ω

(εδu) · n

Second term:

−
∫

Ω

δu · λ∇(∇ · u) = λ

∫
Ω

(∇ · δu)(∇ · δu)− λ
∫
∂Ω

δu(∇ · u) · n

Therefore the weak form yields:

2µ

∫
Ω

∇δu : ε− 2µ

∫
∂Ω

(εδu) ·n+λ

∫
Ω

(∇ · δu)(∇ · δu)−λ
∫
∂Ω

δu(∇ · u) ·n =

∫
Ω

δu · ρb

Since u = 0 on ∂Ω(δu = 0), the weak form can be simplified to:

2µ

∫
Ω

∇δu : ε+ λ

∫
Ω

(∇ · δu)(∇ · δu) =

∫
Ω

δu · ρb

• −µ∆u− (λ+ µ)∇(∇ · u) = ρb

To obtain the weak form, we first have to multiply by a test function δu and integrate
over the domain:∫

Ω

−µδu · ∇ · ∇u−
∫

Ω

(λ+ µ)δu · ∇(∇ · u) =

∫
Ω

δu · ρb

Integrating by parts and applying the divergence theorem:
First term: ∫

Ω

−µδu · ∇ · ∇u = µ

∫
Ω

∇δu : ∇u− µ
∫
∂Ω

(∇uδu) · n

Second term:

−
∫

Ω

(λ+ µ)δu · ∇(∇ · u) = (λ+ µ)

∫
Ω

(∇ · δu)(∇ · u)− (λ+ µ)

∫
∂Ω

δu(∇ · u) · n

Therefore the weak form yields:

µ

∫
Ω

∇δu : ∇u−µ
∫
∂Ω

(∇uδu) ·n+ (λ+µ)

∫
Ω

(∇· δu)(∇·u)− (λ+µ)

∫
∂Ω

δu(∇·u) ·n

Since u = 0 on ∂Ω(δu = 0), the weak form can be simplified to:

µ

∫
Ω

∇δu : ∇u− (λ+ µ)

∫
Ω

(∇ · δu)(∇ · u) =

∫
Ω

δu · ρb

10
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• µ∇× (∇× u)− (λ+ 2µ)∇(∇ · u) = ρb

Vector calculus identity:

∇×∇× u = ∇(∇ · u)−∇2u

Substituting we have:

µ∇(∇ · u)− µ∇2u− (λ+ 2µ)∇(∇ · u) = ρb

This proves that it can be used the same expression as before.

Now without considering this identity we have that:∫
Ω

δu · (µ∇×∇× u)−
∫

Ω

δu · (λ+ 2µ)∇(∇ · u) =

∫
Ω

δu · ρb

For the integration by parts:

δu · (∇×∇× u) = (∇× δu) · (∇× u)−∇ · (δu×∇× u)

∇ · (δu(∇ · u)) = δu · ∇(∇ · u) + (∇ · δu)(∇ · u)

Hence, the weak form of the problem yields:∫
Ω

(∇× δu) · (µ∇× u)−
∫

Ω

∇ · (µδu×∇× u) +

∫
Ω

(λ+ 2µ)(∇ · δu)(∇ · u)

−
∫

Ω

(λ+ 2µ)∇ · (δu(∇ · u)) =

∫
Ω

δu · ρb

Applying divergence theorem to the second and fourth terms on the LHS yields:∫
Ω

(∇×δu)·(µ∇×u)−
∫
∂Ω

(µ∇×u)·(n×δu)+

∫
Ω

(λ+2µ)(∇·δu)(∇·u)−
∫
∂Ω

(λ+2µ)(δu(∇·u))·n =

∫
Ω

δu·ρb

Since u = 0 on ∂Ω(δu = 0), the weak form can be simplified to:∫
Ω

(∇× δu) · (µ∇× u) +

∫
Ω

(λ+ 2µ)(∇ · δu)(∇ · u) =

∫
Ω

δu · ρb

Solution(b):

• First equation

Considering a domain which is composed of two sub-domains Ω = Ω1 ∪ Ω2 with an
interface Γ = Ω1 ∩ Ω2:

Sub-domain Ω1:∫
Ω1

2µ∇δu : ε−
∫
∂Ω1∩∂Ω

2µ(εδu) · n1 −
∫
∂Ω1∩Γ

2µ(εδu) · n1 +

∫
Ω1

λ(∇ · δu)(∇ · u)

−
∫
∂Ω1∩∂Ω

λ(δu(∇ · u)) · n1 −
∫
∂Ω1∩Γ

λ(δu(∇ · u)) · n1 =

∫
Ω1

δu · ρb
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Sub-domain Ω2:∫
Ω2

2µ∇δu : ε−
∫
∂Ω2∩∂Ω

2µ(εδu) · n2 −
∫
∂Ω2∩Γ

2µ(εδu) · n2 +

∫
Ω2

λ(∇ · δu)(∇ · u)

−
∫
∂Ω2∩∂Ω

λ(δu(∇ · u)) · n2 −
∫
∂Ω2∩Γ

λ(δu(∇ · u)) · n2 =

∫
Ω2

δu · ρb

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
zero: ∫

∂Ω1∩Γ

2µ(εδu) · n1 +

∫
∂Ω2∩Γ

2µ(εδu) · n2 = 0∫
∂Ω1∩Γ

λ(δu(∇ · u)) · n1 +

∫
∂Ω2∩Γ

λ(δu(∇ · u)) · n2 = 0

Therefore, the transmission conditions yields:

Jµε · nKΓ = 0

Jλ(∇ · u)nKΓ = 0

• Second equation

Considering a domain which is composed of two sub-domains Ω = Ω1 ∪ Ω2 with an
interface Γ = Ω1 ∩ Ω2:

Sub-domain Ω1:∫
Ω1

µ∇δu : ∇u−
∫
∂Ω1∩∂Ω

µ(∇uδu) · n1 −
∫
∂Ω1∩Γ

µ(∇uδu) · n1 +

∫
Ω1

(λ+ µ)(∇ · δu)(∇ · u)

−
∫
∂Ω1∩∂Ω

(λ+ µ)(δu(∇ · u)) · n1 −
∫
∂Ω1∩Γ

(λ+ µ)(δu(∇ · u)) · n1 =

∫
Ω1

δu · ρb

Sub-domain Ω2:∫
Ω2

µ∇δu : ∇u−
∫
∂Ω2∩∂Ω

µ(∇uδu) · n2 −
∫
∂Ω2∩Γ

µ(∇uδu) · n2 +

∫
Ω2

(λ+ µ)(∇ · δu)(∇ · u)

−
∫
∂Ω2∩∂Ω

(λ+ µ)(δu(∇ · u)) · n2 −
∫
∂Ω2∩Γ

(λ+ µ)(δu(∇ · u)) · n2 =

∫
Ω2

δu · ρb

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
zero: ∫

∂Ω1∩Γ

µ(∇uδu) · n1 +

∫
∂Ω2∩Γ

µ(∇uδu) · n2 = 0∫
∂Ω1∩Γ

(λ+ µ)(δu(∇ · u)) · n1 +

∫
∂Ω2∩Γ

(λ+ µ)(δu(∇ · u)) · n2 = 0

12
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Therefore, the transmission conditions yields:

Jµ(∇u) · nKΓ = 0

J(λ+ µ)(∇ · u)nKΓ = 0

• Third equation

Considering a domain which is composed of two sub-domains Ω = Ω1 ∪ Ω2 with an
interface Γ = Ω1 ∩ Ω2:

Sub-domain Ω1:∫
Ω1

(∇× δu) · (µ∇× u)−
∫
∂Ω1∩∂Ω

(µ∇× u) · (n1 × δu)−
∫
∂Ω1∩Γ

(µ∇× u) · (n1 × δu)

+

∫
Ω1

(λ+ 2µ)(∇ · δu)(∇ · u)−
∫
∂Ω1∩∂Ω

(λ+ 2µ)(δu(∇ · u)) · n1

−
∫
∂Ω1∩Γ

(λ+ 2µ)(δu(∇ · u)) · n1 =

∫
Ω1

δu · ρb

Sub-domain Ω2:∫
Ω2

(∇× δu) · (µ∇× u)−
∫
∂Ω2∩∂Ω

(µ∇× u) · (n2 × δu)−
∫
∂Ω2∩Γ

(µ∇× u) · (n2 × δu)

+

∫
Ω2

(λ+ 2µ)(∇ · δu)(∇ · u)−
∫
∂Ω2∩∂Ω

(λ+ 2µ)(δu(∇ · u)) · n2

−
∫
∂Ω2∩Γ

(λ+ 2µ)(δu(∇ · u)) · n2 =

∫
Ω2

δu · ρb

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
zero: ∫

∂Ω1∩Γ

(µ∇× u) · (n1 × δu) +

∫
∂Ω2∩Γ

(µ∇× u) · (n2 × δu) = 0

Which yields as: ∫
Γ

δu · (µ∇× u× n1 + µ∇× u× n2) = 0

And: ∫
∂Ω1∩Γ

(λ+ 2µ)(δu(∇ · u)) · n1 +

∫
∂Ω2∩Γ

(λ+ 2µ)(δu(∇ · u)) · n2 = 0

Therefore, the transmission conditions yields:

Jµ∇× u× nKΓ = 0

J(λ+ 2µ)(∇ · u)nKΓ = 0
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2 Domain decomposition methods

2.1 Problem 1

Consider Problem 1 of Section 1. Let [0, L] = [0, L1] ∪ [L2, L] , with L2 < L1

• (a) Write down an iteration-by-subdomain scheme based on a Schwarz additive
domain decomposition method.

• (b) Obtain the matrix version of the previous scheme once space has been
discretized using finite elements.

Solution (a):
Considering the Euler-Bernoulli beam, the Schwarz additive domain decomposition
method with a Jacobi scheme yields as follows:

Sub-domain Ω1 :

EI
d4v

(k)
1

dx4
= f −→ in Ω1

v
(k)
1 = 0 −→ on Γ1

dv
(k)
1

dx
= 0 −→ on Γ1

v
(k)
1 = v

(k−1)
2 −→ on Γ12

dv
(k)
1

dx
=
dv

(k−1)
2

dx
−→ on Γ12

Sub-domain Ω2 :

EI
d4v

(k)
2

dx4
= f −→ in Ω2

v
(k)
2 = 0 −→ on Γ2

dv
(k)
2

dx
= 0 −→ on Γ2

v
(k)
2 = v

(k−1)
1 −→ on Γ21

dv
(k)
2

dx
=
dv

(k−1)
1

dx
−→ on Γ21

Solution (b):
The system of equations yields:

Au = b

With a Galerkin formulation:

A = EI

∫ L

0

d2N

dx2

d2N

dx2

b =

∫ L

0

Nf

Therefore the matrix version of the Schwarz method for this problem yields:[
A11 A1Γ12

AΓ121 AΓ12Γ12

] [
u

(k)
1

u1Γ12

]
=

[
b1

bΓ12

]
−→ Sub− domain Ω1[

A22 A2Γ21

AΓ212 AΓ21Γ21

] [
u

(k)
2

u2Γ21

]
=

[
b2

bΓ21

]
−→ Sub− domain Ω2

Where:
u1Γ12 = u

(k−1)
2 on L1

u2Γ21 = u
(k−1)
1 on L2
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2.2 Problem 2

Consider Problem 2 of Section 1. Let Γ be a surface that intersects Ω

• (a) Write down an iteration-by-subdomain scheme based on the Dirichlet-Neumann
coupling.

• (b) Obtain the expression of the Steklov-Poincaré operator of the problem.

• (c) Obtain the matrix version of the previous scheme once space has been dis-
cretized using finite elements.

Solution (a):

Sub-domain Ω1 :

ν∇×∇× u(k)
1 = f1 −→ in Ω1

∇ · u(k)
1 = 0 −→ in Ω1

n1 × u(k)
1 = 0 −→ on Γ1

n1 × (∇× u(k)
1 ) = n1 × (∇× u(k−1)

2 ) −→ on Γ12

Sub-domain Ω2 :

ν∇×∇× u(k)
2 = f2 −→ in Ω2

∇ · u(k)
2 = 0 −→ in Ω2

n2 × u(k)
2 = 0 −→ on Γ2

n2 × u(k)
2 = n2 × u(k−1)

1 −→ on Γ21

Solution(b):
Let ui = u0

i + ũi for i = 1, 2 with:
Sub-domain Ωi :

ν∇×∇× u0
i = fi −→ in Ωi

∇ · u0
i = 0 −→ in Ωi

ni × u0
i = 0 −→ on Γi

ni × u0
i = 0 −→ on Γ12

ν∇×∇× u0
i = fi −→ in Ωi

∇ · ũi = 0 −→ in Ωi

ni × ũi = 0 −→ on Γi

ni × ũi = ϕ −→ on Γ12

Where the unknown ϕ, must satisfy the second transmission condition:

n× (∇× u1) = n× (∇× u2) −→ n× (∇× (u0
1 + ũ1)) = n× (∇× (u0

2 + ũ2))

Rearranging terms we obtain:

n× (∇× ũ1)− n× (∇× ũ2)︸ ︷︷ ︸
S

= n× (∇× u0
2)− n× (∇× u0

1)︸ ︷︷ ︸
G

Sϕ = G
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Solution (c):
The matrix version yields:A

(1)
II A

(1)
IΓ 0

A
(1)
ΓI A

(1)
ΓΓ + A

(2)
ΓΓ A

(2)
IΓ

0 A
(2)
ΓI A

(2)
II


u(1)

I

uΓ12

u
(2)
I

 =

 f1

fΓ12

f2


Neumann problem for the sub-domain Ω1, can be written as follows:[

A
(1)
II A

(1)
IΓ

A
(1)
ΓI A

(1)
ΓΓ

][
u

(1) [k]
I

u
[k]
Γ12

]
=

[
f1

fΓ12 − A
(2)
IΓu

(2) [k−1]
I − A(2)

ΓΓu
[k−1]
Γ12

]

The Dirichlet problem for the subdomain Ω2, can be written as follows:

A
(2)
II u

(2) [k]
I = f2 − A(2)

IΓu
[k−1]
Γ

2.3 Problem 3

Consider the problem of finding u : Ω −→ R such that

−k∆u = f in Ω

u = 0 on ∂Ω

where k > 0. Let Γ be a surface crossing Ω

• (a) Write down an iteration-by-subdomain scheme based on the Dirichlet-Robin
coupling.

• (b) Obtain the matrix version of the previous scheme once space has been
discretized using finite elements.

• (c) Obtain the Schur complement as discrete version of the Steklov-Poincaré
operator.

• (d) Identify the preconditioner for the Schur complement equation arising from
the iterative scheme of section (a).

Solution (a):

Sub-domain Ω1 : (Dirichlet)

−k∇2u
[k]
1 = f1 −→ in Ω1

u1 = 0 −→ on Γ1

u
[k]
1 = u

[k−1]
2 −→ on Γ12
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Sub-domain Ω2 : (Robin)

−k∇2u
[k]
2 = f2 −→ in Ω2

u2 = 0 −→ in Ω2

k
∂u

[k]
2

∂n
+ γ2u

[k]
2 = k

∂u
[k−1]
1

∂n
+ γ1u

[k−1]
1 −→ on Γ12

Solution (b):
Sub-domain Ω1: (Dirichlet)∫

Ω1

k∇δu1∇u1 =

∫
Ω1

δu1f1 −→ in Ω1

Sub-domain Ω2: (Robin)∫
Ω2

k∇δu2∇u2 −
∫

Γ12

kδu2∇u2 · n =

∫
Ω1

δu2f2

∫
Ω2

k∇δu2∇u2 −
∫

Γ12

kδu2
∂u2

∂n
=

∫
Ω1

δu2f2∫
Ω2

k∇δu2∇u2 +

∫
Γ12

kγ2δu2u2 =

∫
Ω1

δu2f2 +

∫
Γ12

kδu1
∂u1

∂n
+

∫
Γ12

kγ1δu1u1 −→ in Ω2

The matrix version yields:

A
(1)
II u

(1) [k]
I = F1 − A(1)

IΓu
[k−1]
Γ

[
A

(2)
II A

(2)
IΓ

A
(2)
ΓI A

(2)
ΓΓ + γ2M

(2)
ΓΓ

][
u

(2) [k]
I

u
[k]
Γ12

]
=

[
F2

FΓ12
− (A

(1)
ΓI − γ1M

(1)
ΓI )u

(1) [k−1]
I − (A

(1)
ΓΓ − γ1M

(1)
ΓΓ )u

[k−1]
Γ12

]

Where M is the mass matrix.
Solution (c):

−k∆u0
i −→ in Ωi

u0
i = 0 −→ on ∂Ωi

u0
i = 0 −→ on ∂Γ

−k∆ũi −→ in Ωi

ũi = 0 −→ on ∂Ωi

ũi = φ −→ on ∂Γ

Where:
ui = u0

i + ũi

Therefore:

k1
∂ũi
∂n
− k2

∂ũi
∂n

= −k1
∂u0

i

∂n
+ k2

∂u0
i

∂n︸ ︷︷ ︸
G

And:
u0

1 = A−1
11 F1 ũ1 = −A−1

11 (A1ΓUΓ)

u0
2 = A−1

22 F2 ũ1 = −A−1
22 (A2ΓUΓ)
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Therefore recalling that ui = u0
i + ũi: Sub-domain Ω1:

u
(1) [k]
I = A

(1)−1
II (F1 − A(1)

IΓu
[l]
Γ )

Sub-domain Ω2:
u

(2) [k]
I = A

(2)−1
II (F2 − A(2)

IΓu
[l]
Γ )

Performing a matrix-vector multiplication of the second row, and using the second
sub-domain Ω2, we obtain:

(−A(2)
ΓIA

(2)−1
II A

(2)
IΓ )U

[k]
Γ = FΓ − A(1)

ΓI u
(1) [k−1]
I − A(1)

ΓΓu
[k−1]
Γ − A(2)

ΓIA
(2)−1
II F2

Substituting the first sub-domain Ω1, we obtain:

(−A(2)
ΓIA

(2)−1
II A

(2)
IΓ )U

[k]
Γ = FΓ − A(1)

ΓIA
(1)
II (F1 − AIΓu[l]

Γ )− A(1)
ΓΓu

[k−1]
Γ − A(2)

ΓIA
(2)−1
II F2

Simplifying yields:

(A
(2)
ΓΓ − A

(2)
ΓIA

(2)−1
II A

(2)
IΓ + A

(1)
ΓΓ − A

(1)
ΓIA

(1)−1
II A

(1)
IΓ )︸ ︷︷ ︸

S

u
[k]
Γ︸︷︷︸
UΓ

= FΓ − A(2)
ΓIA

(2)−1
II F2 − A(1)

ΓIA
(1)−1
II F1︸ ︷︷ ︸

G

SUΓ = G

Where S is the Schur complement:

(A
(2)
ΓΓ − A

(2)
ΓIA

(2)−1
II A

(2)
IΓ + A

(1)
ΓΓ − A

(1)
ΓIA

(1)−1
II A

(1)
IΓ )

Solution (d):
To find the preconditioner for the Schur complement we define the following:

S = S1 + S2

Where:
S1 = A

(1)
ΓΓ − A

(1)
ΓIA

(1)−1
II A

(1)
IΓ

S2 = A
(2)
ΓΓ − A

(2)
ΓIA

(2)−1
II A

(2)
IΓ

And we define G as:

G = FΓ − A(2)
ΓIA

(2)−1
II F2 − A(1)

ΓIA
(1)−1
II F1

Now we have that:
(S1 + S2)uΓ = G

Therefore:
S2uΓ = G− S1uΓ −→ S2u

[k]
Γ = G− (S − S2)u

[k−1]
Γ

S2u
[k]
Γ = G− Su[k−1]

Γ + S2u
[k−1]
Γ −→ u

[k]
Γ = S−1

2 G− S−1
2 Su

[k−1]
Γ + S−1

2 S2︸ ︷︷ ︸
I

u
[k−1]
Γ

u
[k]
Γ = u

[k−1]
Γ + S−1

2︸︷︷︸
Preconditioner

(G− Su[k−1]
Γ )
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3 Coupling of heterogeneous problems

3.1 Problem 1

Consider the beam described in Problem 1 of Section 1 . Apart from being clamped at
x = 0 and x = L, the beam is supported on an elastic wall that occupies the square
[0, L] × [−L, 0], where y = 0 corresponds to the beam axis. The wall is clamped
everywhere except on the upper wall, where the beam is. The wall displacements in
the x - and y -directions are u and v, respectively, and the elastic properties E (Young
modulus) and ν (Poisson’s coefficient). No loads are applied on the wall, except for
those coming from the beam.

• (a) Write down the equations in the wall assuming a plane stress behavior.

• (b) Write down the equations for the beam modified because of the presence of
the wall.

• (c) Obtain the adequate transmission conditions for v and the normal compo-
nent of the traction on the wall at y = 0

• (d) Suggest transmission conditions for u and the tangent component of the
traction on the wall at y = 0. Discuss the implications if this component is not
assumed to be zero.

Solution (a):
Hooke’s Law: σxxσyy

τxy

 =
E

1− v2

1 ν 0
ν 1 0
0 0 1−ν

2

 εxxεyy
2γxy


Where the strains vector is defined as:εxxεyy

γxy

 =

 ∂u
∂x
∂v
∂y

1
2
(∂u
∂x

+ ∂v
∂y

)


Therefore: σxxσyy

τxy

 =
E

1− v2

 ∂u
∂x

+ ν ∂v
∂y

ν ∂u
∂x

+ ∂v
∂y

1−ν
2

(∂u
∂x

+ ∂v
∂y

)


Momentum equation (equilibrium):

∇σ + b = 0

E

1− v2

[ ∂
∂x

(∂u
∂x

+ ν ∂v
∂y

) + ∂
∂y

(1−ν
2

(∂u
∂x

+ ∂v
∂y

))
∂
∂y

(ν ∂u
∂x

+ ∂v
∂y

) + ∂
∂x

(1−ν
2

(∂u
∂x

+ ∂v
∂y

))

]
+

[
bx
by

]
=

[
0
0

]

Boundary conditions:
Fixed displacements on laterals and bottom sides, and the traction forces of the beam
are the boundary condition on the top of the wall.
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Solution(b):
Considering the governing equation:

EI
d4v

dx4
= f

The wall will give a distributed load to the beam, therefore the governing equation
yields:

EI
d4v

dx4
= f − t σyy|y=0

Where ”t” corresponds to the thickness of the wall.
And:

σyy|y=0 =
E

1− ν2
(ν
∂u

∂x
+
∂v

∂y
)

∣∣∣∣
y=0

Solution (c):
Knowing that the interface Γ is between the wall and the beam, we know the vertical
displacements must be the same for the wall and beam all over the Γ. Therefore its
jump across the interface must be equal to zero.
Therefore the first transmission condition yields:

JvKΓ = 0

Since the reaction of the wall must be equal to the imposed force coming from the
beam, the normal traction force must be the same on Γ, hence, the second transmis-
sion condition yields:

Jn · (∇ · σ)KΓ = 0

Solution (d):
The completely fulfill the Euler-Bernoulli theory, the displacements for the beam and
the wall must be set equal to zero everywhere, meanwhile for the traction forces must
be set to zero on Γ for both the wall and the beam.
If these conditions are not set to zero, the angular momentum on the linear elastic
solid will be unbalanced.

3.2 Problem 2

Let SD and SS be the Dirichlet-to-Neumann operators for the Darcy and the Stokes
problems, respectively (see the class notes, chapter 3 ). The Steklov-Poincaré equation
can be written as

SS(λ) = SD(λ)

where λ is the normal velocity on Γ, the interface between the Darcy and the Stokes
regions.

• (a) Obtain the discrete version of the previous equation when space is discretized
using finite elements. Relate the resulting matrices to those arising from the
discretization of the Darcy and the Stokes problems separately.
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• (b) Write down the matrix form of a Dirichlet-Neumann iteration-by-subdomain
using the matrices of the Darcy and the Stokes problems.

• (c) Identify the Richardson iteration for the algebraic problem in (a) resulting
from (b).

Solution (a):

Sub-domain ΩS :

−ν∆uS +∇pS = f −→ in ΩS

∇ · uS = 0 −→ in ΩS

uS = ūS −→ on ΓS

Sub-domain ΩD :

k−1uD +∇φ = 0 −→ in ΩD

∇ · uD = 0 −→ in ΩD

n · uD = ūn,D −→ on ΓD

Interface conditions:
n · uS = n · uD

pS − (n · ν∇uS) · n = φ

uS · t = −
√
k

αBJ
(n · ν∇uS) · t

Where t is a unit tangential vector on Γ.

• Stokes weak form:

−
∫

ΩS

δuS · ν∆uS +

∫
ΩS

δuS · ∇pS =

∫
ΩS

δuS · f∫
ΩS

wS (∇ · uS) = 0

Integrating by parts and setting δuS = 0 on ΓS yields:∫
ΩS

∇δuS : ν∇uS −
∫

ΩS

pS (∇ · δuS)−
∫

Γ

δuS · [nS · (−pSI + ν∇uS)] =

∫
ΩS

δuS · f

∫
ΩS

wS (∇ · uS) = 0

Where δuS is a vector test function and wS is a scalar test function.

• Darcy weak form:∫
ΩD

δuD · k−1uD +

∫
ΩD

δuD ·∇φ = 0∫
ΩD

wD (∇ · uD) = 0

Integrating by parts and setting δuD = 0 on ΓD yields∫
ΩD

δuD · k−1uD −
∫

ΩD

φ (∇ · δuD) +

∫
Γ

δuD · φnD = 0
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∫
ΩD

wD (∇ · uD) = 0

Where δuD is a vector test function and wD is a scalar test function.
After a Galerkin discretization of the problem, the matrix form yields:
Stoke’s problem: [

KS GS

GT
S 0

] [
US
PS

]
=

[
fS
hS

]
Darcy’s problem: [

MD GD

GT
D 0

] [
UD
ΦD

]
=

[
fD
hD

]
Where U = [UT

I , λ
T ]T . Therefore, the system of equations can be rewritten as:

Sub-domain ΩS :ASII ASIΓ BS
II

ASΓI ASΓΓ BS
ΓI

BS
II BS

IΓ 0

US
I

λ
P S

 =

fSIIfSIΓ
hSI


Sub-domain ΩD :ADII ADIΓ BD

II

ADΓI ADΓΓ BD
ΓI

BD
II BD

IΓ 0

UD
I

λ
ΦD

 =

fDIIfDIΓ
hDI


Combining both systems, we obtain:

Domain ΩS ∪ ΩD :
ASII BS

II ASIΓ 0 0
BS
II 0 BS

ΓI 0 0
ASΓI BS

ΓI ASΓΓ + ADΓΓ ADΓI BD
ΓI

0 0 ADIΓ ADII BD
II

0 0 BD
IΓ BD

II 0



US
I

P S

λ
UD
I

ΦD
I

 =


fSII
hSI

fSIΓ + fDIΓ
fDII
hDI


By combining all the degrees of freedom of velocity and pressure in each subdomain

as US =
[
U intT

S ,P T
S

]T
and UD =

[
U intT

D ,ΦT
D

]T
, the matrix form is further simplified

to:  ASS ASΓ 0
AΓS AΓΓ AΓD

0 ADΓ ADD


US
λ
UD

 =


F S

F Γ

FD


The first equation gives:

US = A−1
SS (F S −ASΓλ)

The third equation gives:
UD = A−1

DD (FD −ADΓλ)

And the second equations gives:

AΓSUS +AΓΓλ+AΓDUD = FΓ

Eventually, after substituting the first equation and the third equation into the second
equation the following equation is obtained:(

AΓΓ −AΓSA−1
SSASΓ −AΓDA−1

DDADΓ

)
λ = FΓ −AΓSA−1

SSF 1 −AΓDA−1
DDF2

Which is written as:
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(SS − SD)λ = G

Where:
SS = A

(S)
ΓΓ −AΓSA−1

SSASΓ

SD = AΓDA−1
DDADΓ − A(D)

ΓΓ

G = FΓ −AΓSA−1
SSF1 −AΓDA−1

DDF2

For the problem at hand, G is given to be 0 in the question.

Solution (b):
The Dirichlet-Neumann scheme yields:

Sub-domain ΩS :

−ν∆u
[k]
S +∇p[k]

S −→ in ΩS

∇ · u[k]
S = 0 −→ in ΩS

u
[k]
S = ūS −→ on ΓS

n · u[k]
S = n · u[k−1]

D −→ on Γ

u
[k]
S · t = −

√
k

αBJ
(n · ν∇u[k]

S ) · t −→ on Γ

Sub-domain ΩD :

k−1u
[k]
D +∇φ[k] = 0 −→ in ΩD

∇ · u[k]
D −→ in ΩD

n · u[k]
D = ūn,D −→ on ΓD

φ[k] = p
[]l]
S − (n · ν∇u[l]

S ) · n −→ on Γ

The matrix form of the scheme yields:

Domain ΩS :ASII BS
II AIΓ

BS
II 0 BS

ΓI

ASΓI BS
IΓ ASΓΓ

US [k]
I

P S [k]

λ[k]

 =

 fSII
hSI

fSIΓ − ADΓΓλ
[k−1] − ADΓIU

D [k−1]
I


Domain ΩD :[

ADII BD
II

BD
II 0

][
U
S [k]
I

Φ
D [k]
I

]
=

[
fDII − AIΓλ[l]

hDI

]
Solution (c):
Richardson scheme:
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Domain ΩS :US [k]
I

PS [k]

λ[k]

 =

US [k−1]
I

PS [k−1]

λ[k−1]

+

 fSII
hSI

fSIΓ −AD
ΓΓλ

[k−1] −AD
ΓIU

D [k−1]
I

−
AS

II BS
II AIΓ

BS
II 0 BS

ΓI

AS
ΓI BS

IΓ AS
ΓΓ

US [k−1]
I

PS [k−1]

λ[k−1]



Domain ΩD :[
U
S [k]
I

Φ
D [k]
I

]
=

[
U
S [k−1]
I

Φ
D [k−1]
I

]
+

([
fDII − AIΓλ[l]

hDI

]
−
[
ADII BD

II

BD
II 0

][
U
S [k−1]
I

Φ
D [k−1]
I

])

4 Monolithic and partitioned schemes in time

Consider the one-dimensional, transient, heat transfer equation:

∂u

∂t
− κ∂

2u

∂x2
= f in [0, 1]

u(x = 0, t) = 0

u(x = 1, t) = 0

u(x, t = 0) = 0

4.1 Problem 1

Discretize it using the finite element method (linear elements, element size h ) for the
discretization in space, and a BDF1 scheme for the discretization in time. Write down
the weak form of the problem and the resulting matrix form of the problem, including
the corresponding boundary integrals if necessary. Consider κ = 1, f = 1, δt = 1
Solution: The weak form of the problem is obtained by multiplying by a test function
v and integrating over the domain Ω:∫

Ω

v
∂u

∂t
dΩ−

∫
Ω

vκ
∂2u

∂x2
dΩ =

∫
Ω

vfdΩ

Integrating by parts yields:∫
Ω

v
∂u

∂t
dΩ +

∫
Ω

∂v

∂x
κ
∂u

∂x
dΩ−

∫
∂Ω

vκ
∂u

∂x
ndΓ =

∫
Ω

vfdΩ

The boundary condition term correspond to a Neumann condition. Since we only
have Dirichlet condition, this term vanishes and the weak form yields:∫

Ω

v
∂u

∂t
dΩ +

∫
Ω

∂v

∂x
κ
∂u

∂x
dΩ =

∫
Ω

vfdΩ

Using Galerkin finite elements the system yields:

M =

∫ 1

0

NTNdΩ
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K =

∫ 1

0

κ
∂NT

∂x

∂NT

∂x
dΩ

F =

∫ 1

0

NTfdΩ

The matrix form of the system yields as follows:

M
du

dt
+Ku = F

The BDF1 time discretization scheme is defined as follows:

M
un+1 − un

δt
+Kun+1 = F n+1

Considering the proposed values (δt = 1↔ f = 1) the system yields:

(M +K)un+1 = F +Mun

un+1 = (M +K)−1(F +Mun)

4.2 Problem 2

Consider a domain decomposition approach for the previous problem. The left subdo-
main is composed of 2 elements (h = 0.2), while the right subdomain is composed of
3 elements (h = 0.2 ). Show that, if a monolithic approach is adopted, no boundary
integrals are required at the interface. From now on, we denote the values at the
nodes of the mesh as u0, u1, u2, u3, u4, u5 The interface is at u2

Solution:
Splitting the domain into two sub-domains (Ω1 = [0, 0.4] and Ω1 = [0.4, 1]), where
the interface (Γ) lies on u2 node. The weak for this problem yields:
Sub-domain Ω1:∫

Ω1

v
∂u

∂t
dΩ1 +

∫
Ω1

∂v

∂x
κ
∂u

∂x
dΩ1 −

∫
Γ

vκ
∂u

∂x
n1dΓ =

∫
Ω1

vfdΩ1

Sub-domain Ω2:∫
Ω2

v
∂u

∂t
dΩ2 +

∫
Ω2

∂v

∂x
κ
∂u

∂x
dΩ2 −

∫
Γ

vκ
∂u

∂x
n2dΓ =

∫
Ω2

vfdΩ2

Recalling the transmission conditions:

JuKΓ = 0 −→ 1st transmission condition

Jκ
∂u

∂x
nKΓ = 0 −→ 2nd transmission condition
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The two equations must be summed to solve the problem in a monolithic way, which
yields: ∫

Ω1

v
∂u

∂t
dΩ1 +

∫
Ω2

v
∂u

∂t
dΩ2︸ ︷︷ ︸∫

Ω v
∂u
∂t
dΩ

+

∫
Ω1

∂v

∂x
κ
∂u

∂x
dΩ1 +

∫
Ω2

∂v

∂x
κ
∂u

∂x
dΩ2︸ ︷︷ ︸∫

Ω
∂v
∂x
κ ∂u

∂x
dΩ

...

+

(
−
∫

Γ

vκ
∂u

∂x
n1dΓ−

∫
Γ

vκ
∂u

∂x
n2dΓ

)
︸ ︷︷ ︸

0

=

∫
Ω1

vfdΩ1 +

∫
Ω2

vfdΩ2︸ ︷︷ ︸∫
Ω vfdΩ

Therefore: ∫
Ω

v
∂u

∂t
dΩ +

∫
Ω

∂v

∂x
κ
∂u

∂x
dΩ =

∫
Ω

vfdΩ

4.3 Problem 3

Obtain the algebraic form of the Dirichlet-to-Neumann operator (Steklov-Poincaré’s
operator) for the left subdomain, departing from given values of uni at time step n,
and an interface value un+1

2

Solution:
Recalling the system of equations for the first part of the current problem:

un+1 = (M +K)−1(F +Mun) −→ (M +K)un+1 = (F +Mun)[
A

(1)
II A

(1)
IΓ

A
(1)
ΓI AΓΓ

][
u

(1) [n+1]
I

u
[n+1]
Γ

]
=

[
f

(1)
I

f
(1)
Γ

]
+

[
M

(1)
II M

(1)
IΓ

M
(1)
ΓI M

(1)
ΓΓ

][
u

[n]
I

u
[n]
Γ

]
Note that the only unknown we have in this system is u

(1) [n+1]
I

A
(1)
II u

(1) [n+1]
I + A

(1)
IΓu

[n+1]
Γ = f

(1)
I +M

(1)
II u

(1) [n]
I +M

(1)
IΓ u

[n]
Γ

u
(1) [n+1]
I = A

(1) −1
II

(
f

(1)
I +M

(1)
II u

(1) [n]
I +M

(1)
IΓ u

[n]
Γ − A

(1)
IΓu

[n+1]
Γ

)
Alternate solution:

Recalling the system of equations for the first part of the current problem:

U [n+1] = (M +K)−1(F +MU [n]) −→ (M +K)︸ ︷︷ ︸
A

U [n+1] = (F +Mu[n])︸ ︷︷ ︸
B

Therefore:
U [n+1] = A−1B
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The complete matrix form for this specific problem yields:


A00 A01 0 0 0 0
A10 A11 A12 0 0 0
0 A21 A22 A23 0 0
0 0 A32 A33 A34 0
0 0 0 A43 A44 A45

0 0 0 0 A54 A55





U
[n+1]
0

U
[n+1]
1

U
[n+1]
2

U
[n+1]
3

U
[n+1]
4

U
[n+1]
5


=



B
[n]
0

B
[n]
1

B
[n]
2

B
[n]
3

B
[n]
4

B
[n]
5


If we know from Dirichlet boundary conditions that u0 = u5 = 0, the system reduces
to: 

A11 A12 0 0
A21 A22 A23 0
0 A32 A33 A34

0 0 A43 A44



U

[n+1]
1

U
[n+1]
2

U
[n+1]
3

U
[n+1]
4

 =


B

[n]
1

B
[n]
2

B
[n]
3

B
[n]
4


Where:

• Sub-domain Ω1: [
A11 A12

A21 AΩ1
22

] [
U

[n+1]
1

U
[n+1]
2

]
=

[
B

[n]
1

B
[n]
2

]
Note that the only unknown we have in this system is U

(1) [n+1]
I :

A11U
[n+1]
1 = B

[n]
1 − A12U

[n+1]
2

Where:
−A12U

[n+1]
2 −→ Dirichlet boundary condition

4.4 Problem 4

Obtain the algebraic form of the Neumann-to-Dirichlet operator for the right sub-
domain, departing from given values of uni and an interface value for the fluxes
φn+1 = κ∂xu

n+1 at the coordinate of node 2.
Solution:
From the reduced system:

A11 A12 0 0
A21 A22 A23 0
0 A32 A33 A34

0 0 A43 A44



U

[n+1]
1

U
[n+1]
2

U
[n+1]
3

U
[n+1]
4

 =


B

[n]
1

B
[n]
2

B
[n]
3

B
[n]
4


We have that:

• Sub-domain Ω2:
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AΩ2
22 A23 0

A32 A33 A34

0 A43 A44


U

[n+1]
2

U
[n+1]
3

U
[n+1]
4

 =

B
[n]
2 − A21U

[n+1]
1 − AΩ1

22U
[n+1]
2

B
[n]
3

B
[n]
4


Where:

−A21U
[n+1]
1 − AΩ1

22U
[n+1]
2 −→ Neumann boundary condition

4.5 Problem 5

Write down the iterative algorithm for a staggered approach applying Dirichlet bound-
ary conditions at the interface to the left subdomain and Neumann boundary condi-
tions at the interface for the right subdomain.
Solution:
Staggered approach: Fist we need to define a prediction Ũn+1 to replace all the
unknowns on the RHS of the equation, allowing parallel computing making it faster:

Ũn+1 = Un︸ ︷︷ ︸
Fist order approximation

Ũn+1 = 2Un − Un−1︸ ︷︷ ︸
Second order approximation

The iterative scheme will be performed for each time step and iterating over k until
convergence has reached:

• Sub-domain Ω2:

AΩ2
22 A23 0

A32 A33 A34

0 A43 A44


U

[n+1](k)
2

U
[n+1](k)
3

U
[n+1](k)
4

 =

B
[n]
2 − A21Ũ

[n+1](k−1)
1 − AΩ1

22 Ũ
[n+1](k−1)
2

B
[n]
3

B
[n]
4



• Sub-domain Ω1:

A11U
[n+1](k)
1 = B

[n]
1 − A12Ũ

[n+1](k)
2

Convergence or stability of this scheme is not guaranteed.

4.6 Problem 6

Do the same for a substitution and an iteration by subdomains scheme.
Solution:
Substitution:
The idea is now only predict the unknown in one subdomain and using the resolved
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variable for the solution of the the other subdomain. Notice that this scheme will
not be parallelizable, but will have higher accuracy that staggered approach, and it
is defined as follows:

• Sub-domain Ω2:

AΩ2
22 A23 0

A32 A33 A34

0 A43 A44


U

[n+1](k)
2

U
[n+1](k)
3

U
[n+1](k)
4

 =

B
[n]
2 − A21Ũ

[n+1](k−1)
1 − AΩ1

22 Ũ
[n+1](k−1)
2

B
[n]
3

B
[n]
4



• Sub-domain Ω1:

A11U
[n+1](k)
1 = B

[n]
1 − A12U

[n+1](k)
2

Convergence or stability of this scheme is not guaranteed.
Iteration bu subdomains:
Now the problem can be iterated without any predictions. If we reach convergence,
we recover the solution of the monolithic problem, and yields as follows:

• Sub-domain Ω2:

AΩ2
22 A23 0

A32 A33 A34

0 A43 A44


U

[n+1](k)
2

U
[n+1](k)
3

U
[n+1](k)
4

 =

B
[n]
2 − A21U

[n+1](k−1)
1 − AΩ1

22U
[n+1](k−1)
2

B
[n]
3

B
[n]
4



• Sub-domain Ω1:

A11U
[n+1](k)
1 = B

[n]
1 − A12U

[n+1](k)
2

Convergence or stability of this scheme is not guaranteed.

4.7 Problem 7

Rewrite the algebraic system associated to the left subdomain (Dirichlet boundary
conditions at the interface ), using Nitsche’s method for applying the boundary con-
ditions. How does the condition number of the resulting system of equations vary
with the penalty parameter α?
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Solution:
Recalling the weak form for the left subdomain Ω1:(

v,
∂u

∂t

)
Ω1

+

(
∂v

∂x
, κ
∂u

∂x

)
Ω1

−
〈
v, κ

∂u

∂x
n1

〉
∂Ω1

= (v, f)Ω1

Adding the Nitsche’s method terms as a better condition version of the penalthy
method:(
v,
∂u

∂t

)
Ω1

+

(
∂v

∂x
, κ
∂u

∂x

)
Ω1

−
〈
v, κ

∂u

∂x
n1

〉
∂Ω1

+ α
κ

h
〈v, u〉∂Ω1 − κ

〈
∂v

∂x
n1, u

〉
∂Ω1

= (v, f)Ω1

+ α
κ

h
〈v, ū〉∂Ω1 − κ

〈
∂v

∂x
n1, ū

〉
∂Ω1

Where:

• α −→ penalty parameter to ensure stability

• h −→ element size

• ū −→ prescribed Dirichlet function

For this case the left subdomain Ω1 = [0, 0.4], therefore it yields:(
v,
∂u

∂t

)
Ω1

+

(
∂v

∂x
, κ
∂u

∂x

)
Ω1

− κ
[(

v
∂u

∂x
n1

)∣∣∣∣
x=0.4

−
(
v
∂u

∂x
n1

)∣∣∣∣
x=0

]
+ α

κ

h
[ (vu)|x=0.4 − (vu)|x=0]

− κ
[(

∂v

∂x
n1u

)∣∣∣∣
x=0.4

−
(
∂v

∂x
n1u

)∣∣∣∣
x=0

]
= (v, f)Ω1 + α

κ

h
[ (vū)|x=0.4 − (vū)|x=0]

− κ
[(

∂v

∂x
n1ū

)∣∣∣∣
x=0.4

−
(
∂v

∂x
n1ū

)∣∣∣∣
x=0

]
Considering n1 = 1 at x = 0.4 and n1 = −1 at x = 0:(

v,
∂u

∂t

)
Ω1

+

(
∂v

∂x
, κ
∂u

∂x

)
Ω1

− κ
[
v
∂u

∂x
|x=0.4 + v

∂u

∂x
|x=0

]
+ α

κ

h
[vu|x=0.4 − vu|x=0]

− κ
[
∂v

∂x
u|x=0.4 +

∂v

∂x
u|x=0

]
= (v, f)Ω1 + α

κ

h
[vū|x=0.4 − vū|x=0]

− κ
[
∂v

∂x
ū|x=0.4 +

∂v

∂x
ū|x=0

]
Recalling the Finite Element approximation derived in problem 1 of this section,
obtain the following discrete problem:∫ 0.4

0

NTNdΩ
dU

dt
+

∫ 0.4

0

κ
∂NT

∂x

∂N

∂x
dΩU − κ

[
NT ∂N2

∂x
U2 +NT ∂N0

∂x
U0

]
+ α

κ

h

[
NTU2 −NTU0

]
− κ

[
∂NT

∂x
U2 +

∂NT

∂x
U0

]
=

∫ 0.4

0

NTfdΩ + α
κ

h

[
NTU

(Ω2)
2 −NT (0)

]
− κ

[
∂NT

∂x
U

(Ω2)
2 +

∂NT

∂x
(0)

]
Where:
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• N = [N0, N1, N2]

• U = [U0, U1, U2]

• U (Ω2)
2 −→ Dirichlet value imposed at the interface, where Ω2 super index indi-

cates that this value is computed by solving the problem in sub-domain Ω2.

To simplify this expression we consider the following:

• M is the mass matrix

• K is the stiffness matrix

• C = NT

• D = ∂NT

∂x

• ∂N2

∂x
= ∂N0

∂x
= h

2
−→ due to the use of linear elements of equal size

The system yields as follows:

M
dU

dt
+KU−κh

2
C (U2 + U0)+α

κ

h
C (U2 − U0)−κD (U2 + U0) = F+α

κ

h
CU

(Ω2)
2 −κDU (Ω2)

2

Further simplification yields:

M
dU

dt
+KU−κ

(
h

2
C − α

h
+D

)
U2−κ

(
h

2
C +

α

h
+D

)
U0 = F+

(
α
κ

h
C − κD

)
U

(Ω2)
2

Using BDF1 time discretization, the system of equations is written as:

M
Un+1 − Un

δt
+KUn+1 − κ

(
h

2
C − α

h
+D

)
Un+1

2 − κ
(
h

2
C +

α

h
+D

)
Un+1

0

= F +
(
α
κ

h
C − κD

)
U

(n+1)(Ω2)
2

The condition number of the traditional methods increases. On the other hand, the
condition number of the Nitsche’s method stays bounded for fixed h. Of this reason
the traditional methods may cause troubles for iterative solvers such as multigrid
method.
It is now sufficient to take: α > 2ci to ensure stability.
ci depends on the shape of the elements, so for non-stretched elements ci = O(1). For
penalty method, the required value for α is difficult to estimate. In practice it is taken
very large (106), which can result in ill-conditioned systems of equations, meanwhile
for Nitsche’s method lower values of α can be used and thus, better conditioned
systems.
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5 Operator splitting techniques

Consider the one dimensional, transient, convection-diffusion equation:

∂u

∂t
− κ∂

2u

∂x2
+ ax

∂u

∂x
= f in [0, 1]

u(x = 0, t) = 0

u(x = 1, t) = 0

u(x, t = 0) = 0

with κ = 1, ax = 1, f = 1

5.1 Problem 1

Discretize it in space using finite elements (3 elements) and in time (finite differences,
BDF1). Solve the first step of the problem, writing the solution as a function of the
time step size δt
Solution:
We first have to obtain the weak form of the problem by multiplying by a test function
and integration over the domain:∫

Ω

δu
∂u

∂t
−
∫

Ω

δuκ
∂2u

∂x2
+

∫
Ω

δuax
∂u

∂x
=

∫
Ω

δuf

Integrating by parts and neglecting the boundary term due to lack of Neumann bound-
ary conditions it yields:∫

Ω

δu
∂u

∂t
+

∫
Ω

κ
∂δu

∂x

∂u

∂x
+

∫
Ω

axδu
∂u

∂x
=

∫
Ω

δuf

Using a Galerkin discretization for space, and considering κ = 1, ax = 1 and f = 1,
it yields:∫

Ω

NTNdΩ
∂U

∂t
+

∫
Ω

∂NT

∂x

∂N

∂x
dΩ U +

∫
Ω

NT ∂N

∂x
dΩ U =

∫
Ω

NTdΩ

Where:

M =

∫
Ω

NTNdΩ

K =

∫
Ω

∂NT

∂x

∂N

∂x
dΩ

C =

∫
Ω

NT ∂N

∂x
dΩ

F =

∫
Ω

NTdΩ

Therefore the system can be simplified to:

M
∂U

∂t
+KU + CU = F
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If we now apply a BFD1 scheme for time discretization:

M
Un+1 − Un

δt
+KUn+1 + CUn+1 = F n+1

Since vector F isn’t time dependent, the system of equations yields:

(
1

δt
M +K + C)Un+1 = F +

1

δt
MUn

If we want to solve 1 time step for a mesh of 3 elements and 4 nodes, we first need to
apply the boundary conditions in order to reduce the system to:∫

Ω

(
1

δt

[
N2N2 N2N3

N3N2 N3N3

]
+

[
∂N2

∂x
∂N2

∂x
∂N2

∂x
∂N3

∂x
∂N3

∂x
∂N2

∂x
∂N3

∂x
∂N3

∂x

]
+

[
N2

∂N2

∂x
N2

∂N3

∂x

N3
∂N2

∂x
N3

∂N3

∂x

])
dΩ Un+1 = ...

...

∫
Ω

{
N2

N3

}
dΩ +

1

δt

∫
Ω

[
N2N2 N2N3

N3N2 N3N3

]
dΩ Un

Where Un = 0:∫
Ω

(
1

δt

[
N2N2 N2N3

N3N2 N3N3

]
+

[
∂N2

∂x
∂N2

∂x
∂N2

∂x
∂N3

∂x
∂N3

∂x
∂N2

∂x
∂N3

∂x
∂N3

∂x

]
+

[
N2

∂N2

∂x
N2

∂N3

∂x

N3
∂N2

∂x
N3

∂N3

∂x

])
dΩ Un+1...

... =

∫
Ω

{
N2

N3

}
dΩ

If we consider the following shape functions:

N2 =


3x 0 ≤ x ≤ 1/3
2− 3x 1/3 ≤ x ≤ 2/3
0 2/3 ≤ x ≤ 1

∂N2

∂x
=


3 0 ≤ x ≤ 1/3
−3 1/3 ≤ x ≤ 2/3
0 2/3 ≤ x ≤ 1

N3 =


0 0 ≤ x ≤ 1/3
3x− 1 1/3 ≤ x ≤ 2/3
3− 3x 2/3 ≤ x ≤ 1

∂N3

∂x
=


0 0 ≤ x ≤ 1/3
3 1/3 ≤ x ≤ 2/3
−3 2/3 ≤ x ≤ 1

Solving the system of equations with the help a software (CASIO FX-CP400), we
obtain: [

U2

U3

]
=

[
6δt(51δt+1)

2943δt2+324δt+5
6δt(57δt+1)

2943δt2+324δt+5

]
Therefore:

U1 =


U1

U2

U3

U4

 =


0

6δt(51δt+1)
2943δt2+324δt+5

6δt(57δt+1)
2943δt2+324δt+5

0


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5.2 Problem 2

Solve the same time step by using a first order operator splitting technique.
Solution:
If we consider a first order operator splitting technique, we have to define the following:

L = Lc + Ld

Lcu = a
∂u

∂x

Ldu = −κ∂
2u

∂x2

Hence, the equation is rewritten as:

∂u

∂t
+ Ldu+ Lcu = f

The intermediate variables are uc and ud.
Fist step:

uc(tn) = un

∂uc
∂t

+ Lcuc = 0

Second step:
ud(tn) = uc(tn+1)

∂ud
∂t

+ Ldud = f

We finally will obtain the solution at the next time step as:

un+1 = ud(tn+1)

Therefore, the system of equations needs to be divided as follows:
Fist step:

Uc = Un

(
1

δt
M + C)Un+1

c =
1

δt
MUn

c

Second step:
Ud = Un+1

c

(
1

δt
M +K)Un+1

d = F +
1

δt
MUn

d

We finally will obtain the solution at the next time step as:

Un+1 = Un+1
d

Solution of the problem:
Fist step:

U1
c = (

1

δt
M + C)−1 1

δt
MU0

c

34



Sebastian Ares de Parga R.
Theoretical Homework

Applying boundary conditions for t = 0 −→ U0 = 0:

U1
c = 0

Second step:

U1
d = (

1

δt
M +K)−1F

Applying boundary conditions U t
d = U t

c = 0 and solving the problem with the help of
a software (CASIO FX-CP400): [

U1
2

U1
3

]
=

[
6δt

54δt+5
6δt

54δt+5

]
Therefore:

U1 =


U1

1

U1
2

U1
3

U1
4

 =


0

6δt
54δt+5

6δt
54δt+5

0



5.3 Problem 3

Evaluate the error of the splitting approach with respect to the monolithic approach.
Plot the splitting error vs. the time step size for δt = 1, δt = 0.5, δt = 0.25. Comment
on the results.
Solution:
To show the behaviour of the solutions for different δt (from 0 to 1), it is worth to
plot both solutions:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 t

0

0.02

0.04

0.06

0.08

0.1

0.12

U
2

Monolithic

Split

(a) U2 solution for monolithic and split
techniques.
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(b) U3 solution for monolithic and split
techniques.
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When splitting the system of
equations, we are introducing an
error of O(δt), therefore, it can
be notice that as δt is smaller,
we will reach the same solution
as for the monolithic system of
equations.
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6 Fractional step methods

Consider the fractional step approach for the incompressible Navier-Stokes equations
(Yosida scheme):

M 1
δt

(
Ûn+1 − Un

)
+KÛn+1 = f −GP̃ n+1

DM−1GP n+1 = 1
δt
DÛn+1 −DM−1GP̃ n+1

M 1
δt

(
Un+1 − Ûn+1

)
+ αK

(
Un+1 − Ûn+1

)
+G

(
P n+1 − P̃ n+1

)
= 0

6.1 Problem 1

Which is the optimal value for the α parameter?
Solution:
From [1] the incompressible Navier-Stokes equations using BDF1 yields:

M
1

δt
(Un+1 − Un) +KUn+1 = f −GP n+1

DUn+1 = 0

If we add the following equations:

M
1

δt

(
Ûn+1 − Un

)
+KÛn+1 = f −GP̃ n+1

+

M
1

δt

(
Un+1 − Ûn+1

)
+ αK

(
Un+1 − Ûn+1

)
+G

(
P n+1 − P̃ n+1

)
= 0

=

M
1

δt

(
Un+1 − Un

)
+K

(
Ûn+1 + αUn+1 − αÛn+1

)
= f −GP n+1

To recover the original scheme, we have to set α = 1:

M
1

δt

(
Un+1 − Un

)
+K

(
���
Ûn+1 + Un+1 −���

Ûn+1
)

= f −GP n+1
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M
1

δt

(
Un+1 − Un

)
+KUn+1 = f −GP n+1

Therefore the optimal value for the parameter is α = 1.

6.2 Problem 2

What is the source of error of the scheme?
Solution:
Yosida method is implemented with the purpose of splitting the original problem
into smaller problems, by separating the velocity field from the pressure field. The
splitting of the problem always introduces an error (see previous exercise) affecting
the continuity equation to stabilize the solution.
These errors can be noticed by defining the consistent incompressibility constraint:

DM−1GP n+1 = DM−1f −DM−1KUn+1 +
1

δt
DUn

Compared to:

DM−1GP n+1 =
1

δt
DÛn+1 −DM−1GP̃ n+1

We can notice that the source of errors comes form Û and P̃ .

7 ALE formulations

7.1 Problem 1

Given the spatial description of a property

γ(x, y, z, t) =
[
2x, yet, z

]
the equations of movement:

x = Xet

y = Y + et − 1

z = Z

and the equations of the movement of the mesh:

xm = X + αt

ym = Y − βt
zm = Z

• (a) Obtain the description of the property in terms of the ALE coordinates
(X ,Y ,Z)

• (b) Compute the velocity of the particles and the mesh velocity.
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• (c) Compute the ALE description of the material temporal derivative of γ.

Solution (a):
To obtain the description of the property in terms of the ALE coordinates (X ,Y ,Z),
we have to perform a substitution of the equations of the movement of the mesh into
the spatial description:

γALE(X ,Y ,Z, t) = [2(X + αt), (Y − βt)et,Z]T

Solution (b):
Velocity of the particles:

v =
∂x(X, t)

∂t
= [Xet, et, 0]T

Velocity of the mesh:

vm =
∂x(X , t)

∂t
= [α,−β, 0]T

Solution (c):
Material temporal derivative of γ:

dγALE
dt

=
∂γALE
∂t

+ (v − vm) · ∇γ

Where:

• Derivative of γALE:

∂γALE
∂t

= [2α, (Y − β(1 + t))et, 0]T

• Relative velocity:

v − vm = [Xet, et, 0]T − [α,−β, 0]T = [Xet − α, et + β, 0]T

• Gradient of γ:

∇γ =

2 0 0
0 et 0
0 0 1


Therefore substituting into the material temporal derivative of γ:

dγALE
dt

=

 2α
(Y − β(1 + t))et

0

+

2 0 0
0 et 0
0 0 1

Xet − αet + β
0


dγALE
dt

=

 2α
(Y − β(1 + t))et

0

+

2Xet − 2α
e2t + βet

0


38



Sebastian Ares de Parga R.
Theoretical Homework

dγALE
dt

=

 2Xet

(Y − βt+ et)et

0


If we know substitute:

x = Xet = X + αt −→ X = (X + αt)e−t

We obtain the following:

dγALE
dt

=

 2(X + αt)
(Y − βt+ et)et

0



7.2 Problem 2

Write down the ALE form of the incompressible Navier-Stokes equations. Where (in
time and space) is each of the terms of the equation evaluated? How are temporal
derivatives computed?
Solution:
Navier-Stokes for incompressible flow in ALE form:

• Momentum equation:

∂uALE(X , t)
∂t

+ c · ∇u(x, t)−∇ · σ(x, t) = ρ(x, t)b(x, t)

c = v − vm

• Mass conservation:

ρ
∂uALE(X , t)

∂t︸ ︷︷ ︸
Calculated at the mesh position

+ c · ∇ρ(x, t) + ρ(x, t)∇ · u(x, t)︸ ︷︷ ︸
Calculated at spatial coordinates

= 0

• Incompressibility:
∇ · u(x, t) = 0

Where for an incompressible flow, the Cauchy stress tensor σ(x, t) is defined as follows:

σ(x, t) = −p(x, t)I + 2µ∇su(x, t)

Therefore the momentum equation yields:

∂uALE(X , t)
∂t︸ ︷︷ ︸

Calculated at the mesh position

+ c · ∇u(x, t) +∇p(x, t)− µ∇2u(x, t) = ρ(x, t)b(x, t)︸ ︷︷ ︸
Calculated at spatial coordinates

For incompressible flow, the mass conservation yields:

∂uALE(X , t)
∂t

+ c · ∇ρ(x, t) = 0
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Therefore the incompressible Navier-Stokes equations in ALE form yields:

∂uALE(X , t)
∂t

+ c · ∇u(x, t) +∇p(x, t)− µ∇2u(x, t) = ρ(x, t)b(x, t)︸ ︷︷ ︸
Momentum equation

ρ
∂uALE(X , t)

∂t
+ c · ∇ρ(x, t) = 0︸ ︷︷ ︸

Mass conservation

∇ · u(x, t) = 0︸ ︷︷ ︸
Incompressibility

For the first term (calculated at the mesh position) any time discretization with
finite differences can be done, meanwhile for the other terms (calculated at spatial
coordinates), the temporal derivative is evaluated as the difference from n to n+1 at
a moving node.

7.3 Problem 3

Do a bibliographical research on existing methods for the definition of the mesh
movement in ALE formulations (Poisson problem, Elasticity problem, etc.). Describe
the main advantages of each of these methods.
Solution:
The mesh movement must fulfill the following requirements:

• In some boundaries of the domain, it must follow the movement of the particles
in the boundaries (Lagrangian boundary)

• In some boundaries of the domain, it must remain static (Eulerian boundary)

• In the interior of the domain, the mesh movement must be such that the shapes
of the elements do not get excessively distorted (avoid and increase of the nu-
merical approximation error).

The movement in the Lagrangian boundary can be prescribed a priori, or it can be
the result of a couple problem computation (Fluid-structure interaction, free surface
flows) [7].

There are several possibilities for computing the mesh displacements.
The boundary conditions are:

dm = dL −→ in ΓLagrangian

dm = 0 −→ in ΓEulerian

In the interior of the domain, various problems can be solved. For instance:
Poisson problem:

−∆d = 0 −→ in Ω

An Elasticity problem:
Kd = 0 −→ in Ω
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Different properties can be assigned to different areas of the domain. The objective
is always to avoid mesh distortion, because the error of the finite element analysis is
related to the shape of the elements.

Methods:

• Transfinite mapping method:

The transfinite mapping technique establishes a curvilinear coordinate system in arbi-
trary 2D domains. These mappings are described by adequate projectors. A projector
is a linear operator which maps a true surface F onto a unit square. For example,
the lofting projector ϕ performs a linear interpolation between two boundary curves,
ψ1(ξ) and ψ2(ξ)
:

If more than 2 opposite sides of F are curvilinear, such a projector may be blended
with another one of the same type in order ti interpolate a region F bounded by four
curves ψ1(ξ),ψ2(ξ),ϑ1(η),ϑ2(η). This new projector matches exactly F on its entire
boundary:

The latter may be called the transfinite bilinear Lagrange interpolant of F.
In the finite element framework, imposing discrete values to the reduced coordinates ξ
and η generates very easily a mesh on surface F: e.g. equidistant reduced coordinates
or values of ξ and η linked to a gradient of an unknown quantity (strain energy, local
stress...) [2].

• Laplacian smoothing:

Laplacian smoothing is by far the most popular smoothing method due to its simplic-
ity and time efficiency. Despite its long history, the original Laplacian smoothing has
been presented as a heuristic method almost everywhere in the engineering literature.
However, Laplacian smoothing can be derived from a finite difference approximation
of the Laplace operator. In particular, it efficiently minimizes a certain convex mesh
quality function with a guaranteed and unique result. Since we have found very few
mentions of it minimizing a simple quadratic energy functional, we will first review
the relationship of Laplacian smoothing to the gradient descent of a convex objective
function, before we relate it to the popular mean ratio quality criterium and discuss
suitable generalizations to polygonal and polyhedral meshes [3].

• Mesh smoothing:
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In shape optimization the surface of a component is modified. If only the surface
nodes are displaced and the inner nodes remain at their location, the surface layer
elements will be strongly distorted. As a result, the quality of the FE calculation
suffers and may no longer form a reliable basis for the optimization. To ensure
realistic and high-quality results, a displacement of the surface usually necessitates a
mesh displacement (mesh smoothing) in the inner of the structure in most cases.
In ALE we can always use a mesh smoothing algorithm as long as the topology of
the problem is conserved.

8 Fluid-Structure Interaction

8.1 Problem 1

Describe the added mass effect problem for fluid structure interaction problems.
When does it appear, what kind of problems suffer from it? What are the main
methods for dealing with it?
Solution:
The added mass effect issue appears in fluid-structure interaction problems when the
densities of both the fluid and the solids are similar or close to each other, and this is
of great importance to tackle. Therefore, to fix the non-convergence of the partition
schemes that presents this issues, relaxation methods for the schemes works pretty
well to tackle not only the high frequency eigenvectors but also the middle frequency
eigenvectors by weighting the boundary conditions applied at the interface of one of
the sub-domains to control the instabilities.
One relaxation method is the Aitken relaxation scheme which varies the relaxation
parameter and it is defined as follows:

ωv+1 =
Θ

Γ (ν−1)
i −Θ

Γ (ν)
i

Θ
Γ (ν−1)
i −Θ

Γ (ν)
i −Θ

Γ (ν)
i + Θ

Γ (ν+1)
i

8.2 Problem 2

Consider the iteration by subdomain scheme for the heat transfer problem described
in problem 1. Apply 2 iterations of the Aitken relaxation scheme to it.
Solution:
Heat transfer problem:

∂u

∂t
− κ∂

2u

∂x2
= f in[0, 1]

u(x = 0, t) = ūL (1)

u(x = 1, t) = ūR (2)

u(x, t = 0) = u0 (3)
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Dirichlet-Neumann coupling scheme:

Sub-domain Ω1 :

∂u
(n+1)(k)
1

∂t
− κ1

∂2u
(n+1)(k)
1

∂x2 = f in Ω1

u
(n+1)(k)
1 = ūL on Γ1

κ1
∂u

(n+1)(k)
1

∂n
= κ2

∂u
(n+1)(k−1)
2

∂n
on Γ

Sub-domain Ω2 :

∂u
(n+1)(k)
2

∂t
− κ2

∂2u
(n+1)(k)
2

∂x2 = f in Ω2

u
(n+1)(k)
2 = ūR on Γ2

u
(n+1)(k)
2 = u

(n+1)(l)
1 on Γ

The Aitken relaxation scheme uses the last two iterations to approximate the relax-
ation parameter, therefore the first iteration will be the third one, you can simply
apply a relaxation scheme for the two first iterations and then switch to Aitken re-
laxation scheme.

With the Gauss-Seidel scheme (not parallel), l=k, the first iteration on the Aitken
scheme yields:

Sub-domain Ω1 :

∂u
(n+1)(2)
1

∂t
− κ1

∂2u
(n+1)(2)
1

∂x2 = f in Ω1

u
(n+1)(2)
1 = ūL on Γ1

κ1
∂u

(n+1)(2)
1

∂n
= κ2

∂u
(n+1)(1)
2

∂n
on Γ

Sub-domain Ω2 :

∂u
(n+1)(2)
2

∂t
− κ2

∂2u
(n+1)(2)
2

∂x2 = f in Ω2

u
(n+1)(2)
2 = ūR on Γ2

u
(n+1)(2)
2 = u

(n+1)(1)
2 + w

(
u

(n+1)(2)
1 − u(n+1)(1)

2

)
on Γ

with w =
u

(n+1)(0)
2 −u(n+1)(1)

2

un2−u
(n+1)(1)
2 +u

(n+1)(2)
1 −u(n+1)(1)

1

The following iteration yields as follows:

Sub-domain Ω1 :

∂u
(n+1)(3)
1

∂t
− κ1

∂2u
(n+1)(3)
1

∂x2 = f in Ω1

u
(n+1)(3)
1 = ūL on Γ1

κ1
∂u

(n+1)(3)
1

∂n
= κ2

∂u
(n+1)(2)
2

∂n
on Γ

Sub-domain Ω2 :

∂u
(n+1)
2 (3)

∂t
− κ2

∂2u
(n+1)(3)
2

∂x2 = f on Ω2

u
(n+1)(3)
2 = ūR on Γ2

u
(n+1)(3)
2 = u

(n+1)(2)
2 + w

(
u

(n+1)(3)
1 − u(n+1)(2)

2

)
on Γ

with w =
u

(n+1)(1)
2 −u(n+1)(2)

2

u
(n+1)(1)
2 −u(n+1)(2)

2 +u
(n+1)(3)
1 −u(n+1)(2)

1
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8.3 Problem 3

Consider the monolithic ( 1 domain), transient (BDF1), finite element (linear ele-
ments, h = 1/4 ) approximation of the heat transfer equation in problem 1. Enforce
the Dirichlet boundary conditions in x = 0 and x = 1 by using Lagrange multipliers.
What is the form of the discrete system? What is the condition number of the re-
sulting matrix?
Solution:
Recalling the system of equations obtained in Problem 4.1:

(
1

δt
M +K)︸ ︷︷ ︸
A

Un+1 = F n+1 +
1

δt
MUn︸ ︷︷ ︸

B

So the system yields:
AUn+1 = B

Lets set up an uniform mesh of 4 elements with 5 nodes, with an le = 1
4
, and define

linear isoparametric functions:

N e
1 (ξ) =

1

2
(1− ξ) ∂N e

1

∂ξ
=
−1

2

N e
2 (ξ) =

1

2
(1 + ξ)

∂N e
2

∂ξ
=

1

2

Assuming κ = f = 1, the local stiffness matrices are computed as follows:

M e =

∫ 1

−1

[
N e

1N
e
1 N e

1N
e
2

N e
2N

e
1 N e

2N
e
2

]
le

2
dξ =

le

6

[
2 1
1 2

]
=

1

24

[
2 1
1 2

]

Ke =

∫ 1

−1

[
∂Ne

1

∂ξ

∂Ne
1

∂ξ

∂Ne
1

∂ξ

∂Ne
2

∂ξ
∂Ne

2

∂ξ

∂Ne
1

∂ξ

∂Ne
2

∂ξ

∂Ne
2

∂ξ

]
2

le
dξ = 4

[
1 −1
−1 1

]

F e =

∫ 1

−1

[
N e

1

N e
2

]
le

2
dξ =

1

8

[
1
1

]
Now since the problem was divided into 4 uniform elements, the assembly of the
global stiffness matrix considering a δt = 1 yields as follows:

1

24


98 −95 0 0 0
−95 196 −950 0

0 −95 196 −95 0
0 0 −95 196 −95
0 0 0 −95 98



Un+1

1

Un+1
2

Un+1
3

Un+1
4

Un+1
5

 =
1

8


1
2
2
2
1

+24


2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 2



Un

1

Un
2

Un
3

Un
4

Un
5

 =


B1

B2

B3

B4

B5


Imposing the Dirichlet boundary conditions with Lagrangian Multipliers, the system
yields as follows:
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1

24



98 −95 0 0 0 24 0
−95 196 −95 0 0 0 0

0 −95 196 −95 0 0 0
0 0 −95 196 −95 0 0
0 0 0 −95 98 0 24
24 0 0 0 0 0 0
0 0 0 0 24 0 0





Un+1
1

Un+1
2

Un+1
3

Un+1
4

Un+1
5

λ1

λ2


=



B1

B2

B3

B4

B5

ūL
ūR


The condition number of the resulting matrix is 38.315612859697183.

8.4 Problem 4

Consider the monolithic ( 1 domain), transient (BDF1), finite element (linear ele-
ments, h = 1/4 ) approximation of the heat transfer equation in problem 1. Suppose
that a level set function (ψ = 0 at x = 0.4 ) divides the domain into a high ther-
mal conductivity (κ = 100) subdomain (x ∈ [0,0.4]) and a low thermal conductivity
(κ = 1) subdomain (x ∈ (0.4, 1]). Build the system matrix for this problem. Take
into account the need for subintegrating the element cut by the level set function.
Solution:
To represent the system, we will again use the same mesh as for the previous exam-
ple, noticing that the elemental mass matrix and the force vectors does not suffer any
change since κ does not play a role on the computation. The stiffness matrix do suffer
a change since we are dealing for a κ1 = 100 for the first element and κ2 = 1 for the
third and fourth element, yielding the elemental stiffness matrices of this elements as
follows:

K1 = 4

[
1 −1
−1 1

]
K3 = K4 = 400

[
1 −1
−1 1

]
Notice that the second element yields in the transition of the κ’s change, therefore,
the integral of this element will have to be split into two (x1 ∈ [0.25, 0.4] & x2 ∈
[0.4, 0.5]), but since we are dealing with the isoparametric formulations, this regions
are equivalent to ξ1 ∈ [−1, 0.2] & ξ2 ∈ [0.2, 1]. Therefore, the elemental stiffness
matrix for the second element is computed as follows:

K2 =

∫ 1

−1

κ

[
∂Ne

1

∂ξ

∂Ne
1

∂ξ

∂Ne
1

∂ξ

∂Ne
2

∂ξ
∂Ne

2

∂ξ

∂Ne
1

∂ξ

∂Ne
2

∂ξ

∂Ne
2

∂ξ

]
2

le
dξ

= 2κ1

∫ 0.2

−1

[
1 −1
−1 1

]
dξ + 2κ2

∫ 1

0.2

[
1 −1
−1 1

]
dξ

= 240

[
1 −1
−1 1

]
+

8

5

[
1 −1
−1 1

]
= −241.96

[
1 −1
−1 1

]
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The assembly of the global stiffness matrix yields as follows:

K =


400 −400 0 0 0
−400 641.6 −241.6 0 0

0 −241.6 245.6 −4 0
0 0 −4 8 −4
0 0 0 −4 4


The global system using a δt = 1 yields:

4801
12

−9599
24

0 0 0
−9599

24
19253

30
−28987

120
0 0

0 −28987
120

7373
30

−95
24

0
0 0 −95

24
49
6

−95
24

0 0 0 −95
24

49
12



Un+1

1

Un+1
2

Un+1
3

Un+1
4

Un+1
5

 =


B1

B2

B3

B4

B5


Applying the Dirichlet boundary conditions with Lagrange Multipliers the system
yields: 

4801
12

−9599
24

0 0 0 1 0
−9599

24
19253

30
−28987

120
0 0 0 0

0 −28987
120

7373
30

−95
24

0 0 0
0 0 −95

24
49
6

−95
24

0 0
0 0 0 −95

24
49
12

0 1
1 0 0 0 0 0 0
0 0 0 0 1 0 0





Un+1
1

Un+1
2

Un+1
3

Un+1
4

Un+1
5

λ1

λ2


=



B1

B2

B3

B4

B5

ūL
ūR


The resultant matrix is ill-conditioned, since the condition number is
4.696769356745330e+ 03.

References

[1] Donea, J., Huerta, A. (2004). Finite Element Methods for Flow Problems. Chich-
ester: Wiley.
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