UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Theoretical Homework
Coupled Problems

Sebastian Ares de Parga Regalado

Master in Numerical Methods in Engineering

Universitat Politecnica de Catalunya
17™ June, 2020




Sebastian Ares de Parga R.
Theoretical Homework

Contents

[2

4.7 Problem 7 . . .. ... ...

Operator splitting techniques|

b1 Problem 1l . . .. .. ...

O SN N



Sebastian Ares de Parga R.
Theoretical Homework

1 Transmission conditions

1.1 Problem 1

The deflection v(x) of an Euler-Bernoulli beam is governed by the differential equation
d*v B
dat
where F is a mechanical property of the beam section and the beam material and f

is the distributed load. Assuming for example that the beam is clamped at x = 0 and
x = L, the Principle of Virtual Work (PVW) states that the solution v(z) satisfies

L Q250 d2v L
EI — = 0
/0 da? da? /0 of

for all §v such that 0v(0) = dv(L) = 0, 9%2(0) = (L) =0

) dx

ET

e (a) Postulate the space of functions where both v and dv must belong. Justify
the answer.

e (b) If [0,L] = [0,P] U (P, L], obtain the transmission conditions at P implied
by regularity requirements.

e (¢) Obtain the transmission conditions at P that follow by imposing in the
PVW that the integral is additive.

Solution (a):

In mathematics, a square-integrable function, also called a quadratically integrable
function or L? function, is a real- or complex-valued measurable function for which
the integral of the square of the absolute value is finite. Therefore the right hand side
function

L
/ Svf < oo — dv € L?
0

For the left hand side, we can also noticed that the function needs to be bounded,
therefore:

L 2

d=ov d=v

EI — = L?
/0 dz? dz? <

In dimension d € {2,3}, Embedding of W*?(D) says that functions in H?(D) that
the functions must not only be bounded, but must also be continuous, therefore:

[ dv,v € H?

Solution (b):
Considering a regularised function v¢ for the deflection and dv* for the first derivative

connecting two points separated a distance € across the boundary I'” of the partition
of Q.



Sebastian Ares de Parga R.
Theoretical Homework

U

< U,

L L
-

T L
Xp-a Xo-€/2 Xy xpt€/2 Xota X

Consider g = P and u = v for the aim of the problem

v = lim v°
e—0
dv o dE
—| = lim
—0
dx b € dz v
Let us assume that , »
e dy ’ e dye
— = lim
P—a d.?? =0 P—a d.T

Because
/P+a dve B /P—e/2 dve N /P+e/2 dve N /P+a dve
P—a dx P—a dx P—¢/2 dx P+e/2 dx
P—¢/2 . . P+a
:/ @+€|:U(P+€/2) v (P 6/2)} +/ dv

pa dz € P+e/2 dx

[ @+[U<P+e/z>—U(P—e/z)]+/mad”

—0 Jp_, dx p dx

the integral of he first derivative of a discontinuous functions makes sense and can be
written in terms of

W] =v(P") —v(P)

the jump of v at P However, we have
P+a dve 2 P—¢/2 dv 2 P+a dv 2
= JE— + N
\/P—a (dfﬂ) /P—a (d$> \/P—&—E/Q (dﬂf)
{v (P+¢/2)—v(P— €/2):|2
€

€

—r 0
e—0

therefore v ¢ H' ()

Which means, the first transmission condition is:

[ [v] =v(PT)—v(P7) =0

Now for the first derivative j—i, lets assume:

du . dv*
— = l1lm —
dr e0dx
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d*v
dz? |©

Repeating the same procedure than before, but substituting v for dv:

P+a d2v¢ P—¢/2 d2v P+a d?v
/P—a <W) N /P—a (ﬁ) " /P+6/2 (@>

d(pye/2)— 2 (p— 6/2)]

i dve
n el—% dx

P

+ €
€

The jump of > around P is defined as:

dv, dv oo dvo

P+a d2,Ue 2 P—e/2 d2’U 2 P+a dQU 2
/P—a (de > N /P—a (@> " /P+6/2 <@>
2
© (P yef2) — (P 6/2)]

€

But

— 0
e—0

+ €

The function v must be continuous therefore, the second transmission condition yields:

dv _dv o dv
=% ) %

/ 6vEI d:v . / ovf
Integrating by parts yields:

dév d d3

Applying divergence theorem:

ddv d3v
—FE]— 0 E[— = 0
/ dﬂ?3+/an EL = /Q vf

Considering a domain which is composed of two sub-domains 2 = Q; U €2, with an
interface I' = €2; N Qy:

Sub-domain €2;:
dév d3v
—EI— +/ 5vEl—n / ovf
/Ql dx? oM s o

Splitting the boundary of the sub-domain:

(P7) =0

Solution (c):

dov __d®v d?v d®v
— —EI—+/ ovEI—n +/ 5UEI—n ov
N dx d? 901N d? ! o0 NI d? b foh) !
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Sub-domain €25:

dov d®v
—EI— 5EI— )
e [ o= [ oo

Splitting the boundary of the sub-domain:

dd d>v d>v
/ —“E1—3 / SuEI=—n, + / SuEI —n; = | Suf
Qs dx 902100 dx 90N dx Qs

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to

Z€ro:
/ d* ) Eld3 0
(5UEI—n —|—/ vE[——ny =
80N da? ! QNI d? 2

which is simply written as:

e 3
/5v ((E " d—an 1 (EI), d—zng) — 0
I

The third transmission condition yields:
d®v d*v(P—) d*v(P+)
[P, = o () - o0 () =

3
1l —o
dxz3 =

This represents the equality of shear force on the interface.

Now integrating — |, d5”EId33 + [oq OVETS 3n = [, 0vf by parts:

d*ov __d*v d (dov _,_d*v d3v
prel_ | L (% pdY SwEISSn= [ §
/Q dz?  dx? /Qda; (d:r; dx2> +/a§z YA T /Q of

Applying divergence theorem:

d25v dév d*v
Ovprty SvBEIS S0 = [ s
/Q de de /89 dx dx2n+/aﬂ s /Q vf

Considering a domain which is composed of two sub-domains €2 = Q; U 2y with an
interface I' = €, N Qy:
Sub-domain §;:

d*ov __d*v dév _ _d*v d3v
El— — —EI— ) EI— )
/Ql dz? dx? /891 dx denl - /891 ! dx 3”1 /91 Uf

Splitting the boundary of the sub-domain:

2 2 2
[ [ gl g
Q, dr dx oounen dr  dw x

3 d®v

d’v
+ / ovET ——ni + / (5UEI—3n1 = ouf
901N dr o0 NI dx N
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Sub-domain €25:

d*6v __d*v dov __d*v d3v
El— — —FEI— ovEl——ny = d
/QQ dz?  dz? /892 dr " dz? +/892 U s /92 of

Splitting the boundary of the sub-domain:

d? d? d d? d d2
/ 0 prtY —/ i —/ i
Q o0no0 dr dx onr dr  dx

d3 d?
—l—/ (51}El—2n2+/ 5vE[—Zn2:/ ovf
202N00 dx PraNals dx o

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
Zero:

dsv & dév & & &
= / B - / S BIS Snat / SuET i+ / SUEI —n; =0
ounr dr du onpnr dr dx o NT dx Zielialy dx

which is simply written as:

dov d*v d*v d*v d*v
—/F% (Uﬂ)lﬁm + (Ef)zwm) +/F5U ((Ef)lﬁnl + (EI)2@”2> =0

Notice that the second term is the third transmission condition (which is zero), there-
fore:

d3v d3v d3v

The fourth transmission condition yields:

2
[[Eld_Zﬂ —0
dz? || ,

This represents the equality of bending moments on the interface.

1.2 Problem 2

The Maxwell problem consists in finding a vector field v : 2 — R? such that

vV xV xu= fin
V-u=01in
n X uw =0 on 0f)

where v > 0, f is a divergence free force field and n the unit external normal. Equation
V -u = 0 is in fact redundant.
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e (a) Write a variational statement of the problem. Postulate the space of func-
tions where u must belong. Justify the answer.

e (b) If I' is a surface that intersects €2, obtain the transmission conditions across
I implied by regularity requirements.

e (c) Obtain the transmission conditions across I' that follow by imposing in the
variational form of the problem that the integral is additive.

Solution (a):
Multiplying the Maxwell problem and integrating over the domain:

/Qéw(VVxqu):/Qéwf

Using the following identities:
V- (AxB)=(VxA)-B-—A-(VxB) — A (VxB)=(VxA)-B-V-(AxDB)

Where:
A=6u < B=Vxu

Therefore:

/QVA-(VXB):/QI/(VXA)-B—/VV-(AXB)

Q
Applying the divergence theorem:

/QVA'(VXB):/QV(VXA)-B—/WL-(AXB)

r

Applying the following identity:
A-BxC)=B-(CxA)=C-(AxB)
We get the following:

/QVA'(VXB)—/QV(VXA)-B—/FI/B-(nXA)

Now substituting:
A=0u <= B=Vxu

Yields:
/Qau-(quvxu):/Q(vxu)-<vxau)—/ry(vXu)-(nxau)

Where n x du = 0 on 052, therefore the weak form is:

/Q(VXU)-(quéu):/qu.f
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Where the space of functions for u and du are defined by H"! () which is the
space of vector functions of dimension (d) that are defined in € such that a function
and curl are square integrable (L?), therefore:

u € H™ (Q) such that (n x u)|yg =0
Su € HM™ (Q)  such that (n x du)|yq =0

H (@) = {u s 0 > RYu € (L), V x u € (L)}

Solution (b):
The following condition must be fulfilled:

/\qu\2<oo
0

Considering an split of the definition of the problem to overcome the discontinuities
n X 4 may present:

e r € ()
V xu

e rcxy—ec<zr<qxy+e

1
—[mxu(x,+¢)—nxu(x,—¢)
2e

o €y

V Xu

Therefore the square integral is calculated as:

L(qu)2:/§21(qu)2+Lji;6 (%[nxu(mo+s)—nxu(mo—s)])2+/92(V><u)2

:/Ql(V><'u,)2—|—2—1€[n><u(mo+6)—nxu(mo—s)]2+/g2(v><u)2

Noticed that as € — 0 = oo, therefore if n x u is discontinuous, V x u is not square
integrable. This means, u ¢ H .

Therefore, the first transmission condition yields:

[nxulr=0

Solution (c):
Considering a domain which is composed of two sub-domains 2 = Q; U €2, with an
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interface I' = ; N Qy:
Sub-domain €2;:

/(Vxéu) (vV xu) — / v(V xu) - (ng x ou)
o 991M0Q
/ v(Vxu)-(ngxou)= [ du-f
o1NI 941
Sub-domain €25:

/(VX5u)-(uVXu)—/ v(V X u) - (ng X du)
o 002000

—/ I/(qu)-(nzx&t):/éu-f
Q2N Qo

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
Zero:

/ V(VXU)'<H1X5U)+/ v(V xu)-(ng xdu)=0
o1Ne 0N’

Leading to have the second transmission condition defined as:

[ [(V x u x n)]r = 0

1.3 Problem 3

The Navier equations for an elastic material can be written in three different ways:
—2uV - (e(u)) = AV(V - u) =

b~ (A V(Y ) =
uV x (Vxu)—(AN+2u)V(V - u) = pb

b

where u is the displacement field, (u) the symmetric part of Vu, A and p the Lamé
coefficients, p the density of the material and b the body forces. Let us assume that
u =0 on 0f)

e (a) Write down the variational form of the previous equations in the appropriate
functional spaces.

e (b) If I is a surface that intersects 2, obtain the transmission conditions across I'
that follow by imposing in the variational form of the problem that the integral
is additive.

Solution (a):

o —2uV - (e(u)) —AV(V -u) = pb



Sebastian Ares de Parga R.
Theoretical Homework

To obtain the weak form, we first have to multiply by a test function du and integrate
over the domain:

/Qéu~(—2uV~5(u))—/Qciu')\V(V~u):/Q(5u-pb

Integrating by parts and applying the divergence theorem:
First term:

/ u - (—2uV -e(u)) = 2,u/ Vou:e— Q/A/ (edu) - n
Q Q )
Second term:

—/Q(su.ww.u)_A/Q(v-auw-au)—A/ Su(V -u) - n

o0

Therefore the weak form yields:

2/L/QV5U:5—2/1/89(5510-n+/\/ﬂ(v-5u)(v-5u)—)\/Bﬂcm(v-u)-n:/Qéu-pb

Since u = 0 on 9Q(du = 0), the weak form can be simplified to:

2/L/QV5U:6+)\/Q(V-5U)(V-5U):/5u-pb

Q

o —pAu— A+ p)V(V-u)=pb

To obtain the weak form, we first have to multiply by a test function du and integrate
over the domain:

/—uéu-V-Vu—/()\—l—,u)(Su-V(V-u):/5u-pb
Q Q Q

Integrating by parts and applying the divergence theorem:
First term:

/—uéu-V-Vu:u/V5u:Vu—,u/ (Vudu) -n
Q Q o9
Second term:
—/()\+u)5u~V(V-u):(A+u)/(V~5u)(V-u)—()\+u) Su(V ) - n
) Q o9
Therefore the weak form yields:
,u/ Vou : Vu—,u/ (Vuou) -n+()\+,u)/(v-5u)(v-u)—()\—i-u)/ ou(V-u)-n
Q 09 Q o9

Since u = 0 on 9Q(du = 0), the weak form can be simplified to:

M/Qvau:vu—(Mu)/Q(v.au)(v-u):/Q&L-pb

10
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o uV x (Vxu)—(A+2u)V(V-u)=pb
Vector calculus identity:
VxVxu=V(V-u)—Vu
Substituting we have:
puV(V-u) — uV2u — (A +2p)V(V - u) = pb
This proves that it can be used the same expression as before.

Now without considering this identity we have that:

/5u-(,uV><Vxu)—/éu-()\+2u)V(V~u):/(5u-pb

0 0 Q

For the integration by parts:
u-(VxVxu)=(Vxdu) - (Vxu) —V-(ouxV xu)

V- (0u(V-u)=0u-V(V-u)+ (V-ou)(V-u)

Hence, the weak form of the problem yields:
/(V><(5u)-(,uV><u)—/V-(uéuxqu)—i—/()\—{—Z,u)(V-&u)(V-u)
Q Q 0
—/(qu)v-(au(v-u)) :/5u-pb
Q

Q

Applying divergence theorem to the second and fourth terms on the LHS yields:

/Q(vx5u).(uwu)_/m(wm).(nxauH/

Q

()\+2u)(V~6u)(V-u)—/

()\+2u)(§u(V~u))~n:/6u~pb
00 Q

Since u = 0 on IQ(du = 0), the weak form can be simplified to:

/Q(Vxéu)-(,uvxu)+/SZ(A+2M)(v.5u)(v,u):/Q(;u_pb

Solution(b):
e First equation

Considering a domain which is composed of two sub-domains 2 = ; U €25 with an
interface I' = €2; N y:

Sub-domain €2y:

/ 2uVou : e — / 2u(edu) - ny — / 2u(edu) - ny +/ AV - ou) (V- u)
o 20,N00 89,10 o

— /8(21089 Aouw(V -u)) -ny — / Aouw(V - -u)) -ny= [ ou-pb

o1Nr 951

11



Sebastian Ares de Parga R.
Theoretical Homework

Sub-domain €25:

/ 2uVou @ e — / 2u(edu) - my — / 2u(edu) - ng +/ AV - ou) (V- u)
Qo 0Q22NM002 0N

Qo

—/892089)\(5u(v-u))-n2—/ Aow(V - w))-ms = | Su-pb

0N’ Qo

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
Zero:

/ 2u(edu) - ny + / 2u(edu) -mny =0
o1Nr

Q>N

[, Ao ) [ AGue ) =0

0N’

Therefore, the transmission conditions yields:

[we -n]r =0
ANV -u)n]r=0

e Second equation

Considering a domain which is composed of two sub-domains 2 = Q; U 2y with an
interface I' = Q; N Qy:

Sub-domain §2;:

/ uVou : Vu — / u(Vudu) - ny — p(Vuou) - ny + / A+ u)(V-0u)(V - u)
o 90190 Blsals o
—/ (A+u)(5u(V'u))-n1—/ A+ w)(0u(V-u)) -ny = [ du-pb
90119 Blsals o
Sub-domain €25:
/ uVou : Vu — / u(Vudu) - ng — u(Vuou) - ng + / A+ w)(V-ou)(V -u)
Qs 902N 8QMT Qs
—/ A+ 1) (0u(V - u)) -ng—/ A+ p)(0u(V-u)) -ny= [ ou-pb
0Q22N002 0QNI Qo

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
Zero:

/ p(Vudu) - ny + / p(Vuou) -ny =0
oM

0N

/mmuw)(au(vu)»nﬁ [ O u)ny =0

0N

12
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Therefore, the transmission conditions yields:

[1(Vu) - nfr = 0
[(A+ ) (V- wn]r =0

e Third equation

Considering a domain which is composed of two sub-domains €2 = ; U {2y with an
interface I' = Q; N Qy:

Sub-domain ;:
/(Vxéu)-(quu)—/ (,quu)-(nlxé'u,)—/ (uV x u) - (ng X du)
04 021NN o1Nr

+

\

(A +2u)(V - 0u)(V - u) — / (A +2u)(0u(V - u)) - ny
o 901N

/ (A =+ 2u) (du(V - u))~n1:/(5u~pb
o1 N 1971

Sub-domain §25:
/(Vxéu)-(quu)—/ (,quu)-(nQX(Su)—/ (uV x u) - (ny X du)
Qo 002NN 0N

+/Q2()\+2,u)(V~(5u)(V-u)—/d (A +20)(0u(V - u)) - ny

0Q2NON
—/ (A+2u)(5u(V-u))-n2:/ du - pb
OQsNI Qo

Considering the additive splitting, summing the resultant equations from both sub-
domains must lead to the same equation before we split the domain into sub-domains.
This means the extra terms that arise from the interface boundary must be equal to
Zero:

/ (quu)-(nlxéu)+/ (uV xu) - (ny x ou) =0
QNI 0QaNI’
Which yields as:
/5u~(,uV><u><n1+uV><u><n2):O
r
And:
/ (A +2p)(0u(V - u)) -nl—i-/ (A +2u)(0u(V -u)) -ny =0
oQNI

0QaNI’

Therefore, the transmission conditions yields:

[uV x uxn]r=0
[N+ 2u)(V - u)n]r =0

13
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2 Domain decomposition methods

2.1 Problem 1

Consider Problem 1 of Section 1. Let [0, L] = [0, Ly] U [Lo, L], with Ly < L,

e (a) Write down an iteration-by-subdomain scheme based on a Schwarz additive
domain decomposition method.

e (b) Obtain the matrix version of the previous scheme once space has been
discretized using finite elements.

Solution (a):

Considering the Euler-Bernoulli beam, the Schwarz additive domain decomposition
method with a Jacobi scheme yields as follows:

N\

Sub-domain €, : Sub-domain €2 :
d4v§k) , d4v§k) ,
El o =f—in ET o =f—in ()
v§k):0—>0n I' vék):O—>0n I'y
d (k) d (k)
Y _0—son I, 2 _0—on Iy
dx dx
v§ ) — é Vs on I vék) = Uik_l) —son 'y
dv%k) dv( dvék) dvik_l)
= — r = — r
dx dx on S dx dx on S

Solution (b):
The system of equations yields:
Au=1>
With a Galerkin formulation:
L 27 2
A= Bl / d*N d*N

de? dr?

b_/Nf

Therefore the matrix version of the Schwarz method for this problem yields:

(k)
{ An Airy, } {ul } = { by } — Sub — domain
AF121

AF12F12 U1T, bFlQ

(k)
[ Ay Aor,, 1 {% } _ [ by ] — Sub — domain

AF212 AF21F21 2Ty, bF21
Where:
_ , (k=1)
UIr,, = Uy on Ly
_ o (k=1)
Ugr,, = Uy on Lo

14
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2.2 Problem 2

Consider Problem 2 of Section 1. Let I be a surface that intersects (2

e (a) Write down an iteration-by-subdomain scheme based on the Dirichlet-Neumann
coupling.

e (b) Obtain the expression of the Steklov-Poincaré operator of the problem.

e (c) Obtain the matrix version of the previous scheme once space has been dis-
cretized using finite elements.

Solution (a):

Sub-domain 2 :

nyqugk):fl—m'n 04

V-u&k):O—M'n 0

nlxugk):O—>0n Iy

ny x (V x ugk)) =ny x (V x WYY — on Ty,

Sub-domain €2, :

VVXVXUék):fQ—)in QQ
V-ugk)zo—mn Qy
ngxugk):0—>0n Ty

(k) _ (k—1)

— on F21

Solution(b):
Let u; = uY + u; for i = 1,2 with:
Sub-domain €; :

VVXVXUO—fi—>’iTL Q, I/VXqungi—Hjn Q;

nzxu?—0—>0nF n, Xu;=0—on T}
nzxu?—0—>0n I'io

nixﬂi:g0—>0n '

Where the unknown ¢, must satisfy the second transmission condition:

nx (Vxu)=nx(Vxu) —nx(Vx@+i)) =nx(Vx@u)+i))

Rearranging terms we obtain:

nx (Vxd)—nx (Vi) =nx(Vxuy) —nx(Vxu)
S g

Sp=g

15
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Solution (c):
The matrix version yields:

1 1
Aillli (IAEF) (2) (()2) Ugl) S
Arg Arl2 + Arp Ajr UF212 = | fri,
0 A(FQI) A?I) ug ) f2

Neumann problem for the sub-domain €2;, can be written as follows:

1 1
g
AFI AFF

ul® [ 3
k - 2 2) [k—1 2 k—1
qu fFl? - Agf)ug) [ ! o Ag‘lzu%m ]

The Dirichlet problem for the subdomain €25, can be written as follows:

k k—
A = gy~ A

2.3 Problem 3
Consider the problem of finding u : {2 — R such that

—kAu = fin Q)
u = 0 on 02

where k& > 0. Let I' be a surface crossing €2

e (a) Write down an iteration-by-subdomain scheme based on the Dirichlet-Robin
coupling.

e (b) Obtain the matrix version of the previous scheme once space has been
discretized using finite elements.

e (c) Obtain the Schur complement as discrete version of the Steklov-Poincaré
operator.

e (d) Identify the preconditioner for the Schur complement equation arising from
the iterative scheme of section (a).

Solution (a):

Sub-domain §2; : (Dirichlet)

—szu[lk] =fi —in
up=0—o0n I

u[lk] = u[Qk_l] —on 'y

16
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Sub-domain 25 : (Robin)

kv = f —in Q,
Uy =0 —1in QQ

Ouy’ W Our ! [k—1]
kW + YUy = kw + mu —on 'y
Solution (b):
Sub-domain €2;: (Dirichlet)
/ kV6u1Vu1 = 5U1f1 —in Ql
Ql Ql

Sub-domain §25: (Robin)

/ I{ZV(SUQVUQ - / k5UQVUQ N = / (5U2f2
Q2 T2 93}

/ k:V(SuQVuQ—/ k:éuz%Z/ dug fo
Qo IND) on 91

/ ]CV(SUQVUQ—F/ ]C’}/Q(SUQUQ :/ 5U2f2+/ k5u1%+/ k”}/l(SUqu —in Qg
Qo 12 2 IND! on ISP

The matrix version yields:

A = £y — AR

2 2 (2) [¥]
Gt ][] G

T
k (1 1)y (1) [k—1 (1) (1
A1{“21) A(p? +’Y2M1(~? UHQ Fry, — (AFI) - 71M1(“1))“1 el (App — ’Yerr))“rm

Where M is the mass matrix.
Solution (c):

u) =0 — on O€Y u; =0 — on 0L
u) =0 — on OT u; =¢ —>on OI
Where:
Therefore: . . o 9
ky— — kg— = —k;—% + ko—"
) ) Yon 7?0
&
And:
Uy = A;llFl {Ll = —A;ll(AlrUp)
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Therefore recalling that u; = u) + @;: Sub-domain Q:
k 1)-1 1) [
28— A Al

Sub-domain QQZ N
2 -1 2

Performing a matrix-vector multlphcatlon of the second row, and using the second
sub-domain €25, we obtain:

(~ARAT AR = Fr — Appup? T — ARy - AR AR TR
Substituting the first sub-domain €2y, we obtain:
(~ARAR AR = Fr — AR AR (P = Apvay) — ARdu ™ — AR AT R
Simplifying yields:

2 2) 4(2)-1 4(2 1 1) 4(1)-1 401 1) 4(1)-1
(AR — AT ATTAR + AR - AR TAR) ur = B - ADAT R - AN AT R

S Ur G

SUr =G

Where S is the Schur complement:

2 2 2)—1 4(2 1 1 1)—1 4(1
(AR = AR AT AR + AR — AR AT ARR)

Solution (d):
To find the preconditioner for the Schur complement we define the following:

S =51+ 55

Where: (1) (1) 4(1) (1)
1 1) 4(1)=1 4(1
S = Arr - AFI AH AII‘

2 2) ((2)—=1 4(2
o= A - ADAG A
And we define G as:
G=F —AYAY " E - AL AN R
Now we have that:
(Sl + SQ)U[‘ = G

Therefore:

Sour = G — Sjup — Soulf! = G — (8 = Sy)ulf !
Syultl = G — Sul T Spuf Y s W = 571G — 5 sl 5t s, ul Y

1

u?] — u[rlf_l] + 52_1 (G — Su#ﬂ_”)

Preconditioner
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3 Coupling of heterogeneous problems

3.1 Problem 1

Consider the beam described in Problem 1 of Section 1. Apart from being clamped at
x =0 and x = L, the beam is supported on an elastic wall that occupies the square
[0, L] x [-L,0], where y = 0 corresponds to the beam axis. The wall is clamped
everywhere except on the upper wall, where the beam is. The wall displacements in
the « - and y -directions are u and v, respectively, and the elastic properties E (Young
modulus) and v (Poisson’s coefficient). No loads are applied on the wall, except for
those coming from the beam.

e (a) Write down the equations in the wall assuming a plane stress behavior.

e (b) Write down the equations for the beam modified because of the presence of
the wall.

e (c) Obtain the adequate transmission conditions for v and the normal compo-
nent of the traction on the wall at y =0

e (d) Suggest transmission conditions for u and the tangent component of the
traction on the wall at y = 0. Discuss the implications if this component is not
assumed to be zero.

Solution (a):
Hooke’s Law:

O E 1 v 0 Epu
Oyy| = o2 v 1 0 Eyy
Tay 0 0 52| (274
Where the strains vector is defined as:
r r ou
Exx oz
A 179 a_Z )
[y 15(5 +5)
Therefore: i 5 )
Oyy | = Vo t+ 5
1—w 1—v (Ou %v
Tay | = (5 + 3
Momentum equation (equilibrium):
Vo+b=0
0 (0u ov 0 —v (Ou ov
E §(3_”g+y?)+§(17(??+§))} N |:bx:| B m
T- [0+ 8+ 205G + 3] T L] T Lo

Boundary conditions:
Fixed displacements on laterals and bottom sides, and the traction forces of the beam
are the boundary condition on the top of the wall.
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Solution(b):
Considering the governing equation:
d*v
El— =
da?
The wall will give a distributed load to the beam, therefore the governing equation
yields:

dtv
EI@ = f —t O'yy|y:0
Where ”t” corresponds to the thickness of the wall.

And:
E ou Ov

Uyy|y:o = m(’/% + 6_3/)

y=0
Solution (c):

Knowing that the interface I' is between the wall and the beam, we know the vertical
displacements must be the same for the wall and beam all over the I'. Therefore its
jump across the interface must be equal to zero.

Therefore the first transmission condition yields:

[v]r =0

Since the reaction of the wall must be equal to the imposed force coming from the
beam, the normal traction force must be the same on I', hence, the second transmis-
sion condition yields:

[n-(V-0)]r=0

Solution (d):

The completely fulfill the Euler-Bernoulli theory, the displacements for the beam and
the wall must be set equal to zero everywhere, meanwhile for the traction forces must
be set to zero on I for both the wall and the beam.

If these conditions are not set to zero, the angular momentum on the linear elastic
solid will be unbalanced.

3.2 Problem 2

Let Sp and Sg be the Dirichlet-to-Neumann operators for the Darcy and the Stokes
problems, respectively (see the class notes, chapter 3 ). The Steklov-Poincaré equation
can be written as

Ss(A) = Sp(A)
where A is the normal velocity on I, the interface between the Darcy and the Stokes
regions.

e (a) Obtain the discrete version of the previous equation when space is discretized
using finite elements. Relate the resulting matrices to those arising from the
discretization of the Darcy and the Stokes problems separately.
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e (b) Write down the matrix form of a Dirichlet-Neumann iteration-by-subdomain
using the matrices of the Darcy and the Stokes problems.

e (c) Identify the Richardson iteration for the algebraic problem in (a) resulting

from (b).
Solution (a):
Sub-domain (g : Sub-domain Qp :
—vAugs + Vps=f —in Qg klup+Vo=0—in Qp
V- ug=0—in Qg V-up=0—1in Qp
usg = ug —> on I'g n-up = Upp —>on I'p

Interface conditions:
n-ug=mn-up

ps — (n-vVug) -n=¢
us -t =———(n-vVug) -t
aBJ
Where ¢ is a unit tangential vector on I

e Stokes weak form:

—/ 5uS-VAuS+/ 6us-Vp5:/ ous - f
Qs Qs Qs

/QSwS(V-us):O

Integrating by parts and setting dug = 0 on I'g yields:

V5u5 . I/VUS — /

Qs

PS(V'5US)—/

r

/stsw-us):o

Where dug is a vector test function and wg is a scalar test function.

dug - [ng - (—psI + vVug)] = / oug - f

Qg Qg

e Darcy weak form:

/ (5’U,D-/{2_1’UJD+/ dup - V=0
Qp

Qp
/ Wp (V'UD) =0
Qp

Integrating by parts and setting dJup = 0 on I'p yields

5UD'I€_1UD— ¢(V5UD)+/(SUD¢TLD:O
Qp Qp r
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/QDwDW-uD):o

Where dup is a vector test function and wp is a scalar test function.
After a Galerkin discretization of the problem, the matrix form yields:

Stoke’s problem:

Ks Gs| [Us] _ [fs
G§ 0] |Ps hs
Darcy’s problem: o
Mp Gp| |Up| _ |/p
GhL 0] |®p hp
Where U = [UF,\T]". Therefore, the system of equations can be rewritten as:
Sub-domain (g : Sub-domain Qp :
Ay A% B[0P [ Ap AR BRY[UP] [/R
Ag[ AEF BI§I Al = fISr Ar; Arp B Al = |/
B, B 0 PS hi BE BR. 0 oP hP
Combining both systems, we obtain:
Domain Qg U Qp :
Ay B AR o o1][ur fir
B, 0 Bz, 0 0 P3 hi
APp BRp Afr+ AL AR BRI | A | = | fiet+ IR
0 0 AD, AD BB |UP Nz
0 0 BE. BE 0 P hP

By combining all the degrees of freedom of velocity and pressure in each subdomain
) T . T
as Usg = [UZS”tT, Pig] and Up = [U g‘tT, @g] , the matrix form is further simplified

to:
Ass Asr 0
Ars Arr Arp
0 Apr App

The first equation gives:

Us Fy
A = Fr
Up Fp

Us = Agév (FS — Asr)\)

The third equation gives:

Up = Aph (Fp — Apr))

And the second equations gives:

ArsUs + Arr A+ ArpUp = Fr

Eventually, after substituting the first equation and the third equation into the second
equation the following equation is obtained:

(Arr - AFSAEéASF — AFDAf)lDADF) A= Fr— AFSAgé*Fl — AFDA;DFz

Which is written as:
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Where:

(Ss—Sp)A=G

'SS - rr - AFSAESASF
Sp = AFDADDADF AP

FF

G FI‘ - AFSASSFl

For the problem at hand, G is given to be 0 in the question.

Solution (b):
The Dirichlet-Neumann scheme yields:

Sub-domain (g :

[]

(K]
Ug -t =
o apyj

yAugc] —|— Vp[k] —in Qg
V- u
“s =ug —ron I'g

n-Uug =N-Up

k
—i(n . I/Vugc]) -t—on I

:0—>in QS

[k~ 1]—>0n I

Sub-domain 2p :

(%]
¢[k] []l

4 vl =0 — in Qp
V-u%]—m'n Qp
n-up = Upp —ron I'p

(n-uVuS)-n—>on I

The matrix form of the scheme yields:

Domain Qg :

A?I B}qf Arr UIS k]
B}S} 0 Bi“ql PSS =
AISI B}gr A?F ALK I IT

fir
he

D [k—1
— AB — app2

Domain Qp :

Ap Bh
B 0

ys
P W

_ {fﬁ - A,FAW]

hy

Solution (c):
Richardson scheme:
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Domain Qg :

ps Y s e 7 A%, B Ap] [US B
PS [k pS k=11 | + I _ BISI 0 B?I pPS [k-1]
Ak Ale=1] fir = AR A — AR UG Al Af; B Afp Ale—1]

Domain Qp :

ys

P W

S -1l

I
8P -1 e |71 o

()i

UIS [k—1]
q)? [k—1]

4 Monolithic and partitioned schemes in time

Consider the one-dimensional, transient, heat transfer equation:

2
%—ma—xuzf in [0, 1]
u(x =0,t) =0

u(z =1,t) =0
u(z,t=0)=0

4.1 Problem 1

Discretize it using the finite element method (linear elements, element size h ) for the
discretization in space, and a BDF'1 scheme for the discretization in time. Write down
the weak form of the problem and the resulting matrix form of the problem, including
the corresponding boundary integrals if necessary. Consider k =1, f = 1,0t =1
Solution: The weak form of the problem is obtained by multiplying by a test function
v and integrating over the domain $2:

dQ /vmaxQdQ /vfdQ

Integrating by parts yields:

/v—dQ+ %/@—dQ / vma—ndf‘ /vfdQ
ax Q

The boundary condition term correspond to a Neumann condition. Since we only
have Dirichlet condition, this term vanishes and the weak form yields:

dQ / @n—dﬂ /vfdQ

Using Galerkin finite elements the system yields:
1
M = / NTNd
0
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ONT ONT
K = ds)
/ or Ox

F:/ NT fdQ)

0
The matrix form of the system yields as follows:

du
M Ku=F
dt+ U

The BDF1 time discretization scheme is defined as follows:

Mu”“é—t—u" + Kyt = ot

Considering the proposed values (6t = 1 <> f = 1) the system yields:

(M + K)u"™ = F + Mu"

u" = (M + K) N (F + Mu™)

4.2 Problem 2

Consider a domain decomposition approach for the previous problem. The left subdo-
main is composed of 2 elements (h = 0.2), while the right subdomain is composed of
3 elements (h = 0.2 ). Show that, if a monolithic approach is adopted, no boundary
integrals are required at the interface. From now on, we denote the values at the
nodes of the mesh as ug, uq, us, us, ug, us The interface is at us

Solution:

Splitting the domain into two sub-domains (2, = [0,0.4] and €, = [0.4,1]), where
the interface (I") lies on uy node. The weak for this problem yields:

Sub-domain ;:

ou ov
vgdﬂl + o %ﬁ%dﬂl /vm—nldF /Q1 vfd$

Sub-domain (2,:

Ju v Ou ou
UEdQQ o, 8_,%%%6“22 /vafa—xnzdF —/ deQz

Recalling the transmission conditions:

[ulr = 0 — 1st transmission condition

ou

[[Kia—n]]p = 0 — 2nd transmission condition
T
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The two equations must be summed to solve the problem in a monolithic way, which
yields:

ou ou ov Ou ov Ou
—dQ2 —dy + —dy + —rk—df?
/ Ut 1+/92U8t ’ /Qla “ox T J, o et
e o Bongean
( /vm—nldf /v/f—nQdF) / vfdQl—i-/ vfdSs
Ql QQ
oy o

Therefore:

v
/v—deL/a—x/fa—de /QvfdQ

4.3 Problem 3

Obtain the algebraic form of the Dirichlet-to-Neumann operator (Steklov-Poincaré’s
operator) for the left subdomain, departing from given values of u} at time step n,
and an interface value uj™!

Solution:

Recalling the system of equations for the first part of the current problem:

1 1
Ay AR

A Apr

u"tt = (M + K)"YF + Mu") — (M + K)u"*! = (F + Mu")
1 1
L[ M;;]

ugl) [n+1] flgl) U[In]
e R

)
(1) [n+1]
1 1) [n+1] (1 n+1 1 1 1) [n 1 n
A PP A = 10 1 MDD 4 Pl

Note that the only unknown we have in this system is u,

Wl ) 40 - < W) | a0y bl 4 Wyl _ 40, [Fn+11>

Alternate solution:
Recalling the system of equations for the first part of the current problem:

Ut = (M + K)"YF + MU™) — (M + K) U™ = (F + Mul")
A B

Therefore:
U[n+1] — A 'B
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The complete matrix form for this specific problem yields:

(A Ay 0 0 0 0] U([)n+1] B([Jn]
Aw Ay Ap 0 0 o | (ol | B
0 Ay Apy Ay 0 0| |UFY] | BY
0 0 Az Aszz Ass O UZE"H] B B:[),n]
0 0 0 A43 A44 A45 UinJFl] BZE"]
| 0 0 0 0 Ass Ass U5[n+1] Bén]

If we know from Dirichlet boundary conditions that uy = us = 0, the system reduces
to:
Ay A, 0 o] [or
n+1 n
Aoi Az Ay 0| U B
0 Asy Az Aga| DS
0 0 A43 A44 Uz,[Ln+1]

Where:
e Sub-domain €2;:

Ul[n—i— 1]
U2[n+1]

Bl
By

|:A11 A12:|
Ay AY

Note that the only unknown we have in this system is U 1(1) 1,

AUt = B _ 4 uf Y
Where:

—A12U2[n+” — Dirichlet boundary condition

4.4 Problem 4

Obtain the algebraic form of the Neumann-to-Dirichlet operator for the right sub-
domain, departing from given values of ] and an interface value for the fluxes
"t = kO,u"t! at the coordinate of node 2.

Solution:

From the reduced system:

Ay A O 0 Ul[nﬂ}
Ay Ay Ay 0 Ué"*? By
]

0 Az Ass A UE\[,TLJrl B:[,,n]
0 0 A43 A44 Uz,[Ln+1 Bz[ln]

We have that:

e Sub-domain {5:
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A% Ay 0 U2[n+1} Bgn] — Ay Ul[n+1} _ A U2[n+1]
Azg Asz Azl |U. énﬂ] = Bg"]
0 A43 A44 U[J[Ln-l-l} Bz[ln]

Where:

— A UMY — A% Ul 5 Neumann boundary condition

4.5 Problem 5

Write down the iterative algorithm for a staggered approach applying Dirichlet bound-
ary conditions at the interface to the left subdomain and Neumann boundary condi-
tions at the interface for the right subdomain.

Solution:

Staggered approach: Fist we need to define a prediction U™ to replace all the
unknowns on the RHS of the equation, allowing parallel computing making it faster:
T+l 1
U =

Fist order approximation

rrn+1 n _ rrn—1

Umtt = our — !
TV

Second order approximation

The iterative scheme will be performed for each time step and iterating over k until
convergence has reached:

e Sub-domain €2:

AL A 0 U2[n+1}(k) Bg"] _ AmUl[nJrl](kfl) i 02[n+1](k71)
Ass Asz Az U{En-l—l}(k) = Bén}
O A43 A44 UiTH’lKk) BZ[LTL}

e Sub-domain €;:

AHUl[n—i—l](k) _ Bgn] _ A1202[n+1](k)

Convergence or stability of this scheme is not guaranteed.

4.6 Problem 6

Do the same for a substitution and an iteration by subdomains scheme.

Solution:

Substitution:

The idea is now only predict the unknown in one subdomain and using the resolved
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variable for the solution of the the other subdomain. Notice that this scheme will
not be parallelizable, but will have higher accuracy that staggered approach, and it
is defined as follows:

e Sub-domain {)5:

AQQ A23 0 U2[n+ﬂ(k) Bgn] . AmUl[nJrl](kfl) . A%l 02[n+1](k71)
22
A32 A33 A34 U?[’n—i_l}(k) = Bgn}
n+1](k -
0 A43 A44 Ui +1](k) B£ ]

e Sub-domain €;:

AHUl[n—i-l](k) _ Bgn] . A12U2[n+1](k)

Convergence or stability of this scheme is not guaranteed.

Iteration bu subdomains:

Now the problem can be iterated without any predictions. If we reach convergence,
we recover the solution of the monolithic problem, and yields as follows:

e Sub-domain {5:

A Ay 0 UQ["HM) Bé"] _ A21Ul[n+1](k71) i U2[n+1](k71)
22

A32 A33 A34 Us[n—i_l}(k) = Bgn}
O A43 A44 UiTH’H(k) BZ[LTL}

e Sub-domain €;:

AHUl[n—f—l](k) _ Bgn] . A12U2[n+1](k)

Convergence or stability of this scheme is not guaranteed.

4.7 Problem 7

Rewrite the algebraic system associated to the left subdomain (Dirichlet boundary
conditions at the interface ), using Nitsche’s method for applying the boundary con-
ditions. How does the condition number of the resulting system of equations vary
with the penalty parameter a?
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Solution:
Recalling the weak form for the left subdomain €2;:

U% + @m@ — vﬁ@n = (v, f)
"ot o or’ Ox . ox 891_ 14 /5h

Adding the Nitsche’s method terms as a better condition version of the penalthy

method:
(v, @) + (@J{@_u) — <U,/{@TL1> + O./E<U,U>ag — K <8vn1 > = (v, fa
ot ) g, dr’ 0z ) ¢ 0r [ sq, h ! 9r "/ pa, T
K, ov
+ Ozﬁ<v, Won, — K <%n1, u>891
Where:

e o — penalty parameter to ensure stability
e i — element size

e i —» prescribed Dirichlet function

For this case the left subdomain ; = [0, 0.4], therefore it yields:
ou Ov  Ou ou ou
(50, o), ()|~ ()

ov ov
(DI )

ov ov
|Gl (@)

} ol ()]s — (v0)],0]

S =

=0

] = wena - af (00— @0l

|

Considering ny =1 at x =0.4 and ny = —1 at x = 0:
v% + @n@ —K é)u’ +va ] +a— [vu! — VU =0
; 8t o 8337 856 o a z=0.4 =0 h z=0.4 =0
ov ov K
— K [8—U|x 04+ agg“b:o} = (v, fla, + Oéﬁ[vﬂ|x:0,4 — VU 3—0]

ov ov

— K [%uh 0.4+ %U!Fo}

Recalling the Finite Element approximation derived in problem 1 of this section,
obtain the following discrete problem:

0.4 d 0.4 NT ON N. N,
/ NTNa?Y / ONTON 10t — {NTQUQ 1 yr2 OU} +at [NTU, — NTU,]
0

dt 8:(: ox 0 0 h
ONT ONT 04 @) o
_ﬁ{ax Us + - Uo}— 0 NfdQ+ah[N U N(O)}
ONT (Q2) aN

Where:
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[ ] N: [No,Nl,NQ]
o U= [U07U17U2]

° UQ(QQ) — Dirichlet value imposed at the interface, where {25 super index indi-
cates that this value is computed by solving the problem in sub-domain €.

To simplify this expression we consider the following;:
e )M is the mass matrix

e K is the stiffness matrix

o C=NT

_ ONT

e D= Ox
{;}% = % = % — due to the use of linear elements of equal size

The system yields as follows:

d h
Md—(t]+KU—H§C (Us + Uo)—i-Oé%C (U = Up)—kD (Uy + Up) = F+OA%CU§QQ)—“DU2(QQ)

Further simplification yields:

dU h o h « K (Q2)
M—+KU—k|-C—-—+D —k | = —+D =F —C — kD ?
dt+ U /{(20 h—l— >U2 /@(2C+h+ )Uo +<ozhC K )UQ

Using BDF1 time discretization, the system of equations is written as:

yrntlt _pygn i h o nt1 h o n+1

—F 4 (a%C - /€D> Ui h©2)

The condition number of the traditional methods increases. On the other hand, the
condition number of the Nitsche’s method stays bounded for fixed h. Of this reason
the traditional methods may cause troubles for iterative solvers such as multigrid
method.

It is now sufficient to take: o > 2¢; to ensure stability.

¢; depends on the shape of the elements, so for non-stretched elements ¢; = O(1). For
penalty method, the required value for « is difficult to estimate. In practice it is taken
very large (10°), which can result in ill-conditioned systems of equations, meanwhile
for Nitsche’s method lower values of a can be used and thus, better conditioned
systems.
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5 Operator splitting techniques

Consider the one dimensional, transient, convection-diffusion equation:

% "o am%:f in [0, 1]
u(x =0,t) =
u(z =1,t) =
u(z,t=0)=0

withk=1,a,=1,f=1

5.1 Problem 1

Discretize it in space using finite elements (3 elements) and in time (finite differences,
BDF1). Solve the first step of the problem, writing the solution as a function of the
time step size ot

Solution:

We first have to obtain the weak form of the problem by multiplying by a test function
and integration over the domain:

ou 0%u ou
/5ua—/5um@+/5uaxax /Qéuf

Integrating by parts and neglecting the boundary term due to lack of Neumann bound-
ary conditions it yields:

ou 0du Ou ou

Using a Galerkin discretization for space, and considering xk = 1, a, = 1 and f =1,
it yields:

T
/NTNdQ a—U+ ON a—NdQ U+/NT dQ U = /NTdQ
Q

ot q Or Ox
Where:
M = / NTNAQ
ONT ON
K = —df
/ Ox (%d

Therefore the system can be simplified to:

M%—[Z+KU+CU F
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If we now apply a BFD1 scheme for time discretization:

Un+1 —_pyn
M——s——+ KU + CU™ = F™

Since vector F isn’t time dependent, the system of equations yields:
1 1
— M+ K+ =F+ —MU"
G+ E+C) 5

If we want to solve 1 time step for a mesh of 3 elements and 4 nodes, we first need to
apply the boundary conditions in order to reduce the system to:

L [ NaNo NaoNs OV 0M 00 0N N9 N,o%s ;
_ T Ox T Ox T dQ yntl =
/Q <5t [ N3Ny  N3Nj + —8523 —63]\;2 85?’ 88]\;3 i ]\f:«zal\[2 NaaN3

Ny 1 NyNy  NoNj
. dQ) + — dQy U"
/Q{ N3 } + 5t/ﬂ [ N3Ny  N3N3 v
Where U™ = 0:

1 | NaNy NyN3 } { 9Ny 0Ny QN3 ON3 } { N2 N, D 1
— + 8:1:’ oz ox 8:1:’ + ox dO Un+
LG LA o]+ [ |+ [N N

..:/ﬂ{%ﬁ}dﬁ

If we consider the following shape functions:

3z 0<zx<1/3
Ny = 2—-3z 1/3<2<2/3

0 2/3<z<1
3 0<x<1/3
oM = =3 1/3<x<2/3
0 2/3<z<1
0 0<x<1/3

Ny={ 3z—1 1/3<2<2/3
3-3r 2/3<z<1
0 0<z<1/3

=03 1/3<x<2/3
-3 2/3<z<1
Solving the system of equations with the help a software (CASIO FX-CP400), we
obtain:
U 65t(515t+1)
2| | 29435t2+3245t+5
{UJ [ 60t(575t+1) ]
294351243245t +5
Therefore:
Uy 0
U 65t(515t+1)
Ul = 2| [ 2943612+3245¢+5
Us 65t(575+1)
2943512132451 +5
U, 0
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5.2 Problem 2

Solve the same time step by using a first order operator splitting technique.
Solution:
If we consider a first order operator splitting technique, we have to define the following:

L=L.~+Ly
ou
Lou= aa—x
0%*u
Edu = —H@

Hence, the equation is rewritten as:

ou
E—i—ﬁdu—f—ﬁcu_f

The intermediate variables are u,. and uy.

Fist step:
Ue(ty) = u”
ou,
S+ Lou.=0
or et

Second step:
ud(tn) - uc(tn—i—l)
aud

EqL,Cdud:f

We finally will obtain the solution at the next time step as:

utt = ud(tn—i-l)
Therefore, the system of equations needs to be divided as follows:
Fist step:
U.=0"
1

M+@W“_&MW

1
i
Second step:
Uy =Urt!
(lM+mwm:F+iMW
ot d ot ¢
We finally will obtain the solution at the next time step as:

n+1 __ n+1
Ut = U7

Solution of the problem:
Fist step:
1 1
1 — —M -1 -
U: = ( +O) 5

M 0
c 5t Uc
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Applying boundary conditions for t = 0 — U° = 0:

Ul=0

C

Second step:

1
Uj = (EM + K)'F

Applying boundary conditions U} = U! = 0 and solving the problem with the help of
a software (CASIO FX-CP400):

U] _ [sirs

U?} - 60t

545t+5
Therefore:
o1 0
1 60t
Ul — Us| _ 545t+5
- Ul - 60t
31 546t+5
Uy 0

5.3 Problem 3

Evaluate the error of the splitting approach with respect to the monolithic approach.
Plot the splitting error vs. the time step size for ot = 1,6t = 0.5, 6t = 0.25. Comment
on the results.

Solution:

To show the behaviour of the solutions for different ¢ (from 0 to 1), it is worth to
plot both solutions:

Monolithic
Split

Monolithic
Split

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
st ot

(a) Us solution for monolithic and split (b) Us solution for monolithic and split
techniques. techniques.

35



Sebastian Ares de Parga R.
Theoretical Homework

When splitting the system of oos —
equations, we are introducing an |/
error of O(dt), therefore, it can
be notice that as &t is smaller,

we will reach the same solution o
as for the monolithic system of - _|
equations. —

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
gt

Error for Uy and Us.

6 Fractional step methods

Consider the fractional step approach for the incompressible Navier-Stokes equations
(Yosida scheme):

M% (Un-H _ Un) + KUn—H = f— Gpn—I—l
DM-'GP™' = LpUm*t! — DM-1GP"H
M (Ut = 0m) ks (U= 07 ) 4 G (Pt = Prit) =0

6.1 Problem 1

Which is the optimal value for the o parameter?
Solution:
From [1] the incompressible Navier-Stokes equations using BDF1 yields:

1

M
ot

(U™ —U") + KU = f - GpP™H

DU =0

If we add the following equations:

1 /- N -
M (U"+1 - U") 4 KO = f - gpr!
+
M% <Un+1 _ Uvn+1> oK <Un+1 _ Uvn+1> e <Pn+1 _ ]5n+1> —0
M% (Un+1 _ Un) LK (fjnﬂ LUt aUn+1) — f—Gp™

To recover the original scheme, we have to set a = 1:

Mi (Un—l-l _Un) +K(W+ Un—&-l_m :f_GP'rH—l

ot
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1
ot
Therefore the optimal value for the parameter is a = 1.

M (Un+1 _ Un) + KUn+1 — f - GPn+1

6.2 Problem 2

What is the source of error of the scheme?

Solution:

Yosida method is implemented with the purpose of splitting the original problem
into smaller problems, by separating the velocity field from the pressure field. The
splitting of the problem always introduces an error (see previous exercise) affecting
the continuity equation to stabilize the solution.

These errors can be noticed by defining the consistent incompressibility constraint:

1

Dn
5tU

DM *GP™ =DM 'f - DM*KU"™ +

Compared to:

1
ot

We can notice that the source of errors comes form U and P.

DM IGPY = — DU — pMlGPY!

7 ALE formulations

7.1 Problem 1

Given the spatial description of a property

P)/(:L'? Y, %, t) = [21‘, yeta Z}

the equations of movement:

xr=Xe'
y=Y +e" -1
2=/

and the equations of the movement of the mesh:

Tm =X +at
Zm = Z

e (a) Obtain the description of the property in terms of the ALE coordinates
(X, ), 2)

e (b) Compute the velocity of the particles and the mesh velocity.
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e (c) Compute the ALE description of the material temporal derivative of ~.

Solution (a):
To obtain the description of the property in terms of the ALE coordinates (X, ), Z),
we have to perform a substitution of the equations of the movement of the mesh into

the spatial description:

Yare(X, Y, Z,t) = [2(X + at), (Y — Bt)e!, Z]T

Solution (b):
Velocity of the particles:

v= %‘f’t) = [Xe et, 0)F
Velocity of the mesh:
Uy, = —&r(;f,t) = [a, —,0]"
Solution (c):
Material temporal derivative of ~:
dvaLe _ OYaLE 4 (v =) - Vy

dt ot
Where:

e Derivative of yarg:

a”é‘tw = [2a, (Y — B(1 +t))et, 0"

e Relative velocity:

v— v, = [Xe e 07 — [, —B,0]" = [Xe' —a,e + 3,0"

e Gradient of v:
0

6t

0

Vv =

S O N
— o O

Therefore substituting into the material temporal derivative of :

dvarp 20 [2 0 0] [Xe!—a
= (Y-8 +¢t)et| + [0 e 0| | e+p
dt 0 00 1| o
dvarp 2 ] 2Xe! —2a
= (V=B +1))e"| + | ¥+ e’
dt 0 0
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d 2X et
YALE _ (y . /Bt + €t)€t
dt 0

If we know substitute:
r=Xe=X+at — X =(X+at)e’

We obtain the following:

d 2(X + at)
YALE _ (y . 5t + et)et
dt 0

7.2 Problem 2

Write down the ALE form of the incompressible Navier-Stokes equations. Where (in
time and space) is each of the terms of the equation evaluated? How are temporal
derivatives computed?

Solution:

Navier-Stokes for incompressible flow in ALE form:

e Momentum equation:

auALE(X, t)

5 e Vule,t) = V- o(x,t) = pla, )b(x. 1)

C=V— Uy

e Mass conservation:

8UALE(X, t)
P

Calculated at the mesh position

~
Calculated at spatial coordinates

e Incompressibility:
V-u(z,t) =0

Where for an incompressible flow, the Cauchy stress tensor o(x, t) is defined as follows:
o(2,1) = —p(w, ] + 24V °u(z, 1)
Therefore the momentum equation yields:
8u ALE (X s t)
ot
—_—

Calculated at the mesh position

+c- Vu(z,t) + Vp(z,t) — uVu(x,t) = p(z, t)b(z, t)

Calculated at spatial coordinates

For incompressible flow, the mass conservation yields:

8UALE(X, If)

5 +c-Vp(x,t) =0
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Therefore the incompressible Navier-Stokes equations in ALE form yields:

GUALS—;XJ) + ¢ Vu(z, t) + Vp(z,t) — pV2u(z, t) = p(z,t)b(z, 1)

TV
Momentum equation

pauALg—t(Xﬁ—l—c‘Vp(x,t) =0

(. J
-~

Mass conservation
V-u(z,t) =0
————

Incompressibility

.

For the first term (calculated at the mesh position) any time discretization with
finite differences can be done, meanwhile for the other terms (calculated at spatial
coordinates), the temporal derivative is evaluated as the difference from n to n+1 at
a moving node.

7.3 Problem 3

Do a bibliographical research on existing methods for the definition of the mesh
movement in ALE formulations (Poisson problem, Elasticity problem, etc.). Describe
the main advantages of each of these methods.

Solution:

The mesh movement must fulfill the following requirements:

e In some boundaries of the domain, it must follow the movement of the particles
in the boundaries (Lagrangian boundary)

e In some boundaries of the domain, it must remain static (Eulerian boundary)

e In the interior of the domain, the mesh movement must be such that the shapes
of the elements do not get excessively distorted (avoid and increase of the nu-
merical approximation error).

The movement in the Lagrangian boundary can be prescribed a priori, or it can be

the result of a couple problem computation (Fluid-structure interaction, free surface
flows) [7].

There are several possibilities for computing the mesh displacements.
The boundary conditions are:

dm - dL > in FLagrangian

dm =0-—1n 1ﬂEulerian

In the interior of the domain, various problems can be solved. For instance:
Poisson problem:
—Ad=0—1in

An Elasticity problem:
Kd=0—1in
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Different properties can be assigned to different areas of the domain. The objective
is always to avoid mesh distortion, because the error of the finite element analysis is
related to the shape of the elements.

Methods:
e Transfinite mapping method:

The transfinite mapping technique establishes a curvilinear coordinate system in arbi-
trary 2D domains. These mappings are described by adequate projectors. A projector
is a linear operator which maps a true surface F' onto a unit square. For example,
the lofting projector ¢ performs a linear interpolation between two boundary curves,

(&) and ¥2(8)

plF]=(1-n)p1(&) +na(€); 0<E<1,0<p<1

If more than 2 opposite sides of F' are curvilinear, such a projector may be blended
with another one of the same type in order ti interpolate a region F bounded by four
curves 11(£),12(€),91(n),92(n). This new projector matches exactly F on its entire
boundary:

(p1 @ pa)[F] =(1 — n)¥1(§) + na(€) + (1 - €)d1(n) + £d2(n) — EnF(1,1)
= (1-€)(1-n)F(0,0) - (1 - €)nF(0,1) - (1 - m)F(1,0);
0<E<1,0<n<1

The latter may be called the transfinite bilinear Lagrange interpolant of F.
In the finite element framework, imposing discrete values to the reduced coordinates &
and 7 generates very easily a mesh on surface F: e.g. equidistant reduced coordinates
or values of £ and 7 linked to a gradient of an unknown quantity (strain energy, local
stress...) [2].

e Laplacian smoothing:

Laplacian smoothing is by far the most popular smoothing method due to its simplic-
ity and time efficiency. Despite its long history, the original Laplacian smoothing has
been presented as a heuristic method almost everywhere in the engineering literature.
However, Laplacian smoothing can be derived from a finite difference approximation
of the Laplace operator. In particular, it efficiently minimizes a certain convex mesh
quality function with a guaranteed and unique result. Since we have found very few
mentions of it minimizing a simple quadratic energy functional, we will first review
the relationship of Laplacian smoothing to the gradient descent of a convex objective
function, before we relate it to the popular mean ratio quality criterium and discuss
suitable generalizations to polygonal and polyhedral meshes [3].

e Mesh smoothing:
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In shape optimization the surface of a component is modified. If only the surface
nodes are displaced and the inner nodes remain at their location, the surface layer
elements will be strongly distorted. As a result, the quality of the FE calculation
suffers and may no longer form a reliable basis for the optimization. To ensure
realistic and high-quality results, a displacement of the surface usually necessitates a
mesh displacement (mesh smoothing) in the inner of the structure in most cases.

In ALE we can always use a mesh smoothing algorithm as long as the topology of
the problem is conserved.

8 Fluid-Structure Interaction

8.1 Problem 1

Describe the added mass effect problem for fluid structure interaction problems.
When does it appear, what kind of problems suffer from it? What are the main
methods for dealing with it?

Solution:

The added mass effect issue appears in fluid-structure interaction problems when the
densities of both the fluid and the solids are similar or close to each other, and this is
of great importance to tackle. Therefore, to fix the non-convergence of the partition
schemes that presents this issues, relaxation methods for the schemes works pretty
well to tackle not only the high frequency eigenvectors but also the middle frequency
eigenvectors by weighting the boundary conditions applied at the interface of one of
the sub-domains to control the instabilities.

One relaxation method is the Aitken relaxation scheme which varies the relaxation
parameter and it is defined as follows:

@F (v=1) _ @{ (v)

7

Wyt+1 =
+ or (v—=1) or ) @ir (v) N @@'F (v+1)

8.2 Problem 2

Consider the iteration by subdomain scheme for the heat transfer problem described
in problem 1. Apply 2 iterations of the Aitken relaxation scheme to it.

Solution:

Heat transfer problem:

% - /@% =f inl0,1]
u(z =0,t) =1, (1)
u(zr =1,t) = ug (2)
u(z,t =0) = ug (3)
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Dirichlet-Neumann coupling scheme:

Sub-domain €2; :

ulr (k) 52T D(F) . D (k) 2D () .
o — = —=f i e — e — = i
(n+1)(k) _ ~ 1k _
Uy = on Fl uén—f— (k) = UR on 1—‘2
(n+1)(k) (n+1)(k—1) 1)(k 1)(1
rp 24 = ko 22 onT ugH k) — uﬁ"* 4o on I’
on on

\.

Sub-domain () :

J

The Aitken relaxation scheme uses the last two iterations to approximate the relax-
ation parameter, therefore the first iteration will be the third one, you can simply
apply a relaxation scheme for the two first iterations and then switch to Aitken re-

laxation scheme.

With the Gauss-Seidel scheme (not parallel), 1=k, the first iteration on the Aitken

scheme yields:

Sub-domain 2 :

) (n+1)(2) 52 (n+1)(2) .
! 55— — K1 ulaxg in
HE) -
u§n+ @ = on I'y
8u5n+1)(2) 6ugnJﬁl)(l)
KIT = KQT onI'
Sub-domain (), :
PR 524+ D(@) .
e K2 — = in
e -
u§n+ @ = UR on I'y
1)(2 (1 1)(2 (1
ugH )2 _ ugnJr SO o u§n+ )(2) _ ugnJr ) )) on T
(n+1)(0) _, (n+1)(1)
. _ ’LL2 7’U42
with w = g el T D I G D)
The following iteration yields as follows:
Sub-domain ; :
PRI N ON _
( f’i)(g) — K15 in
uy” =1 on I'y
8u5n+1)(3) . 8ugn+1)(2)
HlT = HQT on I'
Sub-domain €2, :
Hu D) (3 524, +D®)
) ey P on 2,
HE) -
WS = gp on I'y
1)(3 1)(2 1)(3 1)(2
ugﬂr )(3) _ uénJr i <u§n+ )3) _ ug’” ) )) on T
th u;n+1)(1 _ugn+1)(2)
with w =
ugn+1)(1)_ugn+1)(2)+ugn+l)(3)_ugn+1)(2)
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8.3 Problem 3

Consider the monolithic ( 1 domain), transient (BDF1), finite element (linear ele-
ments, h = 1/4 ) approximation of the heat transfer equation in problem 1. Enforce
the Dirichlet boundary conditions in x = 0 and x = 1 by using Lagrange multipliers.
What is the form of the discrete system? What is the condition number of the re-
sulting matrix?

Solution:

Recalling the system of equations obtained in Problem 4.1:

1 1
(gM + K)U™tt = prtt 4 aMU”
—— N ~~

A B

So the system yields:
AUn—H — B

Lets set up an uniform mesh of 4 elements with 5 nodes, with an [¢ = }L, and define
linear isoparametric functions:

1 ON¢ -1
Ni(§) = 5(1=¢) 851 =5

1 ONE 1
N3 (€)= 5(1+¢) 852 =3

Assuming k = f = 1, the local stiffness matrices are computed as follows:
e — " IN¢NE NENg l_edgzl_e 2 1] _ 121
NENE NENZ| 2 61 2 " 24[1 2

-1
zdg =4 { 11 _11]

1
oo
1 le

a%; 8%16 a%; a%;

06 9E  0E B¢

1
C NS e 11
F ‘/1 M 5%‘8{1}

Now since the problem was divided into 4 uniform elements, the assembly of the
global stiffness matrix considering a 0t = 1 yields as follows:

ONg ONE  ONE azv;}

98 —95 0 0 o0 [urt? 1 2 1.0 0 0] [Up
L |95 196 —950 0 Uyt |2 1410 0| |Up
5| 0 =9 196 —95 0 Uptt =3 2(424 (0 1 4 1 0| |Up| =
0 0 —95 196 —95| |Uptt 2 00 1 4 1| |Up
0 0 0 —95 98 | |Urt! 1 00012 |Ur

Imposing the Dirichlet boundary conditions with Lagrangian Multipliers, the system
yields as follows:
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98 —95 0 0 0 24 07 [Ur']  [Bi]

-95 196 -95 0 0 0 oOf |Ust! By

L0 =9 196 -95 0 0 0 Uyt Bs

— 10 0 -95 196 -95 0 O |U'| = |By

2410 0o o0 —95 98 o 24||ur| |Bs

24 0 0 0 0 0 0 A1 ur,

0 0 0 0 24 0 0] A | |ur

The condition number of the resulting matrix is 38.315612859697183.

8.4 Problem 4

Consider the monolithic ( 1 domain), transient (BDF1), finite element (linear ele-
ments, h = 1/4 ) approximation of the heat transfer equation in problem 1. Suppose
that a level set function (¢p = 0 at © = 0.4 ) divides the domain into a high ther-
mal conductivity (k£ = 100) subdomain (z € [0,0.4]) and a low thermal conductivity
(k = 1) subdomain (z € (0.4,1]). Build the system matrix for this problem. Take
into account the need for subintegrating the element cut by the level set function.
Solution:

To represent the system, we will again use the same mesh as for the previous exam-
ple, noticing that the elemental mass matrix and the force vectors does not suffer any
change since k does not play a role on the computation. The stiffness matrix do suffer
a change since we are dealing for a k1 = 100 for the first element and k9 = 1 for the
third and fourth element, yielding the elemental stiffness matrices of this elements as

follows:
1 1 -1
K _4{_1 1

5 1 -1
K _zc._4oo[_1 ]

Notice that the second element yields in the transition of the x’s change, therefore,
the integral of this element will have to be split into two (z; € [0.25,0.4] & 9 €
[0.4,0.5]), but since we are dealing with the isoparametric formulations, this regions
are equivalent to & € [—1,0.2] & & € [0.2,1]. Therefore, the elemental stiffness
matrix for the second element is computed as follows:

1 [ONEONE ONg ONg
K

2
K2=/_1 oNg o a%;a%g] T

5 96 0t O¢
0.2 1
1 -1 1 -1
o [ e [T e
A S *Joo -1 1
1 —11 8[1 -1
._240{_1 1}4—5[_1 1}
1 -1
oo} 7]
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The assembly of the global stiffness matrix yields as follows:

400  —400 0 0 O
—400 6416 —2416 0 O
K = 0 —2416 2456 -4 0
0 0 —4 8 —4
0 0 0 -4 4
The global system using a 6t = 1 yields:
4801 —9599 n+1
_d809 153 —280987 8 8 Z}H-l gl
TR N Sl I Y B
R R R e g
O i 8 I
24 12 5 5
Applying the Dirichlet boundary conditions with Lagrange Multipliers the system
yields:
[OE =2 0 0 0 1 0] —U{”i' [ By |
—0599 19253  —28987 n+
T e M e Y B
120 30 24 3 3
0 0 =2 2 = o0 o] (Ut = |Bs
0 0 0 =2 £ o0 1| |ust! Bs
1 0 0 0 0 00 A ur,
| 0 0 0 0 1 0 0] [ A | | UR |
The resultant matrix is ill-conditioned, since the condition number is
4.696769356745330¢e + 03.
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