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1 Introduction

This report show the implementation of a Matlab code for 1D heat transfer cou-
pled problems with its respective analysis, working with iterative and non-iterative
schemes. The heat transfer equation is shown below:

−κ∂
2u

∂x2
= f

Where κ stands for the thermal diffusive coefficient; u is the temperature of the
domain (solution of the problem) and f represents the source term.

1.1 Tasks

1. Solve a single heat transfer problem. The domain is [0,1]. Fix u = 0 in both
boundaries.

(a) Study the effect of changing the value to the thermal diffusion coefficient
kappa.

(b) Study the effect of changing the source term value.

(c) Study the effect of changing the number of elements, evaluate the conver-
gence rate of the error in the maximum heat value in the domain.

2. Solve two independent heat transfer problems with kappa = 1, source = 1. The
first problem subdomain is [0, 0.25]. The second problem subdomain is [0.25,1].
Fix u in x=0 and x=1, leave it free in the interface between sub-domains.
Comment on the results.

3. Solve the previous problem in a Monolithic way.

(a) Study HP SolveMonolithic.m and relate it to what was explained in
theory. Comment on the results.

(b) Modify the kappa parameter of one of the sub-domains. Comment on the
results.

4. Solve the previous problem (kappa = 1 in both sub-domains) in an iterative
manner (Dirichlet Neumann). Apply Neumann boundary conditions at the
interface in the first (left) subdomain, and Dirichlet boundary conditions at the
interface in the second subdomain.

(a) Evaluate the convergence of the iterative scheme (in terms of u at the
interface).

(b) Increase the value for kappa at subdomain 1 (x100). Comment on the
convergence rate.

(c) Diminish the value for kappa at subdomain 1(/100). Comment on the
convergence rate.

(d) Motivate the previous results in terms of the stability of the coupling
scheme.
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5. Implement a relaxation scheme

(a) Relaxation scheme in terms of a fixed relaxation parameter w.

(b) Aitken relaxation scheme.

2 Problem 1

For this first problem, a single domain [0,1] is to be computed and analyzed. The
boundary conditions established for this specific problem are only Dirichlet, being
u = 0 at x = 0 and x = 1. The analysis will consist in varying some of the problem
parameters to show the physical and numerical behaviour.

2.1 Solution (a)

To show the response on the solution (temperature) of the problem when varying the
thermal diffusion coefficient κ, 5 different values for alpha from 2 to 10 were simulated
with a 100 element mesh and f = 1. The following image shows the results:
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Figure 1: Solution for different values of κ

Notice that as κ becomes higher, there is a significantly reduction of the tempera-
ture through all the domain. This is physically acceptable since a material with high
diffusivity moves the heat rapidly, dissipating the external heat sources (f) efficiently.

2.2 Solution (b)

Now, a variation of the source term will be simulated to analyze the effects on the
temperature over the domain, the problem is simulated with a 100 element mesh and
a thermal diffusion coefficient κ = 1, while the source term will be varying from 2 to
10. The results are shown in the following table:
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Figure 2: Solution for different values of f

We can notice that know, as the source term gets higher, the temperature over
the domain increases. This complements the analysis made for the case where κ was
varying show that as the source term gets higher, we will need a bigger diffusivity to
present lower temperatures over the domain.

To show better the behaviour of the source term compared to the thermal diffu-
sion coefficient, different simulations for the same values for both f and κ was carried
out, and its depicted in the following graph:
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Figure 3: Solution for different values of f and κ

Notice that the solution for the 5 different cases is the same, proving the previously
stated.

2.3 Solution (c)

In this case, we will perform a convergence analysis of the solution for different mesh
sizes (number of elements in the domain). The chosen parameters to perform this
analysis are κ = 1 and f = 1, and with the help of a 1000 elements size mesh
we obtained the exact solution at the x = 0.5 where the maximum temperature is
presented analytically.
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Figure 4: Solution for different meshes

Note: Odd numbers were used for the convergence analysis, because of the exact
nodal solution, when using even numbers the convergence check would have been
altered since no error will be presented for the maximum value because it lies exactly
at the mid point of the domain.
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Figure 5: Convergence analysis: Error vs Number of elements

A semi-logarithmic convergence plot is presented in this figure, to show better
the relative error obtained for certain number of elements, but if the graph was to
be plotted in logarithmic scale for both the y and x axis, a linear behaviour was
presented.

3 Problem 2

The second problem states to solve a two sub-independent problem, where the initial
domain [0,1] is splitted into to two sub-domains:

• Sub-domain Ω1:
This domain goes from [0,0.25] and will be represented with 25 elements, with
a fixed Dirichlet condition u = 0 at x = 0.
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• Sub-domain Ω2:
This domain goes from [0.25,1] and will be represented with 75 elements, with
a fixed Dirichlet condition at x = 1.

For both sub-domains, the thermal diffusion coefficient will be κ = 1 and the source
term f = 1. It is worth to mention that the interface between sub-domains will be
free of boundary conditions.

3.1 Solution:

This simulation was performed an the results obtained are shown in the following
figure:
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Figure 6: Solution for Ω1 and Ω2 with a free interface.

We can notice that a jump in the solution for both sub-domains is presented as
expected, since both problems where solved for their own boundary conditions and no
transmission conditions were imposed. The most important part of this problem is to
notice that the problem needs the transmission conditions to be fully coupled, even
if we impose Dirichlet conditions at the interface, the problem will have the proper
solution.
To prove this, a simulation was performed with the same Dirichlet boundary condi-
tions x = 0 and x = 1 (u = 0) and on the interface the Dirichlet boundary conditions
were established as u = 1.
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Figure 7: Solution for Ω1 and Ω2 with a Dirichlet conditions on the interface.
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It can be noticed that the solution of each subdomain does not take any condi-
tions from the other subdomain, this is solving the two problems by separated and
coinciding on the interface due to the fixed Dirichlet condition. We can noticed this
by solving separately as for the first problem of this assignment as a single problem.
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(a) Solution for Ω1 single problem

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

1.2

u

Temperature for 
2
 single problem

2

(b) Solution for Ω2 single problem

Notice that no difference on the solution was presented, therefore, we have again
proved that what we need to impose a solution of a coupled problem are the trans-
mission conditions.

4 Problem 3

As stated on the previous problem, to solve it transmission conditions have to be
applied. This can be done by applying a Neumann-Neumann coupling approach.
Where the sub-domains are defined for the following weak forms:

• Sub-domain Ω1: ∫
Ω1

∂w1

∂x
κ1
∂u1

∂x
−
∫

Γ

w1κ1
∂u1

∂x
=

∫
Ω1

w1f

• Sub-domain Ω2: ∫
Ω2

∂w2

∂x
κ2
∂u2

∂x
−
∫

Γ

w2κ2
∂u2

∂x
=

∫
Ω1

w2f

Neumann-Neumann:

−κ1
∂u1

∂x
= κ2

∂u2

∂x

Substituting this equation into the sub-domain Ω2:∫
Ω2

∂w2

∂x
κ2
∂u2

∂x
+

∫
Γ

w2κ1
∂u1

∂x
=

∫
Ω1

w2f

Since the meshes match on the interface, the imposition of the transmission conditions
is straightforward and the equations for the first domain is exactly the same, so there
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is no need to integrate the boundary terms and we can simply assemble the global
system and use the same unknowns at the interface. Therefore we can say that:∫

Γ

w2κ1
∂u1

∂x
=

∫
Γ

w1κ1
∂u1

∂x
=

∫
Ω1

∂w1

∂x
κ1
∂u1

∂x
−
∫

Ω1

w1f

This exact case is done in the matlab code for the HP SolveMonolithic.m function
when assembling both sub-domains.

4.1 Solution (a)

In this case, the problem 2 initial problem is to be solved in a monolithic way. The
parameters of the problem where stated the same:

• Sub-domain Ω1:
This domain goes from [0,0.25] and will be represented with 25 elements, with
a fixed Dirichlet condition u = 0 at x = 0.

• Sub-domain Ω2:
This domain goes from [0.25,1] and will be represented with 75 elements, with
a fixed Dirichlet condition at x = 1.

For both sub-domains, the thermal diffusion coefficient will be κ = 1 and the source
term f = 1. The problem was solved and the results are presented in the figure below:
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Figure 9: Solution for Ω1 and Ω2 in a monolithic way.

We now noticed that the transmission conditions make a whole difference on the
solution and considers the input of both sub-domains to solve a coupled problem.
Since the problem has the same parameters for the source term and κ, the diffusivity
will behave similar for those cases, and sub-domain Ω2 will behave as an extension
of sub-domain Ω1. If we decide to change the thermal diffusion coefficient, we expect
to have a totally different solution (the amount of change will only depend on the of
the change in κ).
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4.2 Solution (b):

Now the same problem is solved, but a change in sub-domain Ω2 was made for the
thermal diffusion coefficient, which was multiplied by 100 times (κ2 = 100). The
results are presented on the following figure.
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Figure 10: Solution for Ω1 and Ω2 in a monolithic way with different κ.

We can noticed a whole different solution, in which for the subdomain ω1 which
is the one with the lowest value of κ tends to be slower in terms of moving the heat
through its domain, meanwhile for the case of sub-domain Ω2, it moves diffuses a lot
quicker. It is important that this behaviour creates a visible jump on the derivatives
in the interface, but since the transmission condition is always satisfied, it can be
proven that there is a continuity of the flux on the interface.

5 Problem 4

The same problem (κ1 = κ2 = 1) is to be solved with an iterative scheme (with
Dirichlet-Neumann). Applying Neumann boundary (∂u

∂x
= 25) conditions at the in-

terface in the sub-domain Ω1, and Dirichlet boundary conditions at the interface in
the sub-domain Ω2.

Sub-domain Ω1 :

−k1
∂2u

[k]
1

∂x2
= f1 −→ in Ω1

u1 = 0 −→ on ∂Ω1

−k1
∂u

[k]
1

∂x
= k2

∂u
[k−1]
2

∂x
−→ on Γ
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Sub-domain Ω2 :

−k2
∂2u

[k]
2

∂x2
= f2 −→ in Ω2

u2 = 0 −→ on ∂Ω2

u
[k]
2 = u

[k]
1 −→ on Γ

To perform this, we will first solve the sub-domain Ω1 with the established Neumann
condition on the interface and set the Dirichlet condition of the sub-domain Ω2 on
the interface the solution obtained from Ω1 as follows:

Data2.FixLeft = 1;

Data2.LeftValue = HeatProblem.Solution.uRight;

Then, we can solve the sub-domain Ω2 and send the obtained value of the flux
to the first subdomain and established as a Neumann boundary condition to solve
it again. This will be done until a condition of tolerance is reached. The iteration
process in Matlab was implemented as follows:

error=[];%Intiialize error

condition= true;%Initialize condition for iteration

tol=1e-4;%Tolerance

cont=0;%Initialize counter

Comparacion1=HeatProblem.Solution.uRight;%First comparison

while condition

cont=1+cont;

Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft;

%Solve sub-domain 1

HeatProblem = HP_Initialize(Data);

HeatProblem = HP_Build(HeatProblem);

HeatProblem = HP_Solve(HeatProblem);

%Assign Dirichlet value to sub-domain 2

Data2.LeftValue = HeatProblem.Solution.uRight;

%Solve sub-domain 2

HeatProblem2 = HP_Initialize(Data2);

HeatProblem2 = HP_Build(HeatProblem2);

HeatProblem2 = HP_Solve(HeatProblem2);

Comparacion2=HeatProblem.Solution.uRight;%Second comparison

error(cont)=abs(Comparacion1-Comparacion2);%Error

condition=(error>tol);%Check condition (true/false)

Comparacion1=Comparacion2;%New comparison

%Break condition

if cont>100

break

end

end
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The simulation was done and the results are depicted in the following figures:
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(a) Iterative solutions for Ω1 and Ω2.
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(b) Solution for Ω1 and Ω2 with an
iterative scheme.
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Figure 12: Convergence for Ω1 and Ω2 with a iterative scheme.

If we now solve this problem for with κ1 = 100 and κ2 = 1, the numerical solution
obtained is the following:
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(a) Solution for Ω1 and ω2 with κ1 =
100 and κ2 = 1 with an iterative
scheme
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(b) Convergence for Ω1 and ω2 with
κ1 = 100 and κ2 = 1 with an iterative
scheme
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Notice that it behaved as previously discussed in other problems where κ is not
the same in both sub-domains, but if we now solve this problem for with κ1 = 1
and κ2 = 10 (note that the ratio between κ1 and κ2 is lower than the last one), the
numerical solution obtained is the following:
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(a) Solution for Ω1 and ω2 with κ1 = 1
and κ2 = 100 with an iterative scheme
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(b) Convergence for Ω1 and ω2 with
κ1 = 1 and κ2 = 100 with an iterative
scheme

Notice that now our problem diverges when iterating, and this behaviour can be
explained through the following concept:
Continuity of the fluxes:

−k1
∂u

[k]
1

∂x
= k2

∂u
[k−1]
2

∂x

∂u
[k]
1

∂x
= −k2

k1

∂u
[k−1]
2

∂x

This means that when as the ratio k2
k1

decreases, we converge faster, on the other
hand as this ratio increases, our iterative scheme starts to present instabilities and
will drag us to a divergence of the solution as presented when κ2 = 10.

6 Problem 5

6.1 Solution (a)

For this problem, we are asked to implement an iterative scheme with a relaxation
parameter, which will lead us to reduce the number of iterations implemented to
converge and also will introduce stability to the scheme to solve problems in which
the ratio between κ2 and κ1 decreases as in the previous problem. This relaxation
will be introduced on the Dirichlet boundary of the interface using the transmission
condition as follows:

u
[k]
Γ21

= θu
[k]
Γ12

+ (1− θ)u[k−1]
Γ21

Therefore, the first step will be as the iterative method implemented on the previous
problem, and then this relaxation on the transmission condition has to be added at
the iteration loop, as follows:
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theta=0.25;%Relaxation parameter

.

.

.

%Assign Dirichlet value to sub-domain 2

Data2.LeftValue = theta*HeatProblem.Solution.uRight...

+(1-theta)*HeatProblem2.Solution.uLeft;

Once this was implemented, we solved the initial problem for different values of
θ to check the number of iterations we need to solve the same problem with the
implementation of the relaxation with respect to the normal iterative scheme, the
results are presented below:
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Figure 15: Temperature for iterative relaxation scheme.
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(a) Convergence for θ = 1
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(b) Convergence for θ = 0.5

Note that if θ = 1, we recover the iterative scheme with no relaxation, and if
θ = 0.5 the number of iteration to converge to the tolerance decreased in 1. Now if
we propose an optimal θ = 0.75 the results obtained were the following:

13



Sebastian Ares de Parga R.
Computer Homework

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Iteration

10
-15

10
-10

10
-5

10
0

E
rr

o
r

Convergence for =0.25

Figure 17: Convergence for θ = 0.75

We decreased the number of iterations to converge to the same tolerance from 12
to 3 iterations.
If we now simulate the case of κ1 = 1 and κ2 = 10, which lead us to instability
problems in the non-relaxed iterative scheme, will produce similar instabilities if the
value of θ = 0.75 is used, therefore, we solved for a new optimal value which was
θ = 0.25. The results are depicted in the following figures:
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(b) Convergence for κ1 = 1 and κ2 =
10

We can notice that now we were able to successfully converge to the solution which
was unstable without relaxation. We can also conclude that depending on the ratio
of κ’s we will have to use a different optimal relaxation parameter θ.

Solution (b): To solve this problem regarding the change of θ depending on the
ratio of the κ’s of the problem, an implementation of the Aitken relaxation scheme.
This relaxation scheme, unlike the one previously used, offers a change of theta de-
pending on the results obtained in the Dirichlet conditions on the interface for different
steps, defined as follows:

θ =
u

[k−2]
Γ21
− u[k−1]

Γ21

(u
[k−2]
Γ21
− u[k−1]

Γ21
) + (u

[k]
Γ12
− u[k−1]

Γ12
)
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To implement this, we first solve for two iterations and save the Dirichlet values for
those 2 steps in the left boundary and only the last Dirichlet value for the right
domain (saved in variables named valorxx) and enter into an iterative scheme that
follows the algorithm presented below:

while condition

cont=1+cont;

valor21=HeatProblem2.Solution.uLeft;

Data.RightFluxes = -HeatProblem2.Solution.FluxesLeft;

%Solve sub-domain 1

HeatProblem = HP_Initialize(Data);

HeatProblem = HP_Build(HeatProblem);

HeatProblem = HP_Solve(HeatProblem);

valor10=HeatProblem.Solution.uRight;

%Aitken's relaxation parameter

theta=(-valor21+valor22)/(-valor21+valor22+valor10-valor11);

%Assign Dirichlet value to sub-domain 2

Data2.LeftValue = theta*valor10+(1-theta)*valor21;%Relaxation

valor11=valor10;

valor22=valor21;

%Solve sub-domain 2

HeatProblem2 = HP_Initialize(Data2);

HeatProblem2 = HP_Build(HeatProblem2);

HeatProblem2 = HP_Solve(HeatProblem2);

Comparacion2=HeatProblem.Solution.uRight;%Second comparison

error(cont)=abs(Comparacion1-Comparacion2);%Error

condition=(error>tol);%Check condition (true/false)

Comparacion1=Comparacion2;%New comparison

%Break condition

if cont>100

break

end

end
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To prove this relaxation scheme works, we will simulate the case for κ1 = 1 and
κ2 = 100 with the normal relaxation scheme vs the Aitken’s relaxation scheme below:
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(a) Normal relaxation scheme. Tem-
perature for κ1 = 1 and κ2 = 100
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(b) Aitken’s relaxation scheme. Tem-
perature for κ1 = 1 and κ2 = 100
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(a) Normal relaxation scheme. Con-
vergence for κ1 = 1 and κ2 = 100
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(b) Aitken’s relaxation scheme. Con-
vergence for κ1 = 1 and κ2 = 100

We can notice that Aitken’s relaxation scheme solves the instabilities on the so-
lution of this coupled problem when subjected to a high ratio of κ’s.
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