Homework 4.

Task 1.

Consider a fluid stream whose velocity vector coincides with the y axis that impinges on a plane boundary that coincides with the x axis, as shown in the figure below.

(a) Stream function $\Psi(r, \theta)=U r^{2} \sin (2 \theta)=2 U r^{2} \sin (\theta) \cos (\theta)$. As going to Cartesian coordinates $x=r \cos (\theta)$ and $y=r \sin (\theta)$, the stream function takes the form $\Psi(x, y)=2 U x y$. Let us compute the velocity field:

$$
\left\{\begin{array}{c}
u=\frac{\partial \Psi(x, y)}{\partial y}=2 U x \\
v=-\frac{\partial \Psi(x, y)}{\partial x}=-2 U y
\end{array}\right.
$$

For ideal fluid the point $(0,0)$ is a stagnation point, so, here the velocity should be 0 . Indeed $u(0,0)=v(0,0)=0$.

From Bernoulli's equation we receive the pressure distribution:

$$
\frac{1}{2} v^{2}+\frac{p}{\rho}=\frac{p_{0}}{\rho} \Rightarrow p=p_{0}-\frac{\rho}{2} v^{2} \Rightarrow p=p_{0}-2 \rho U^{2}\left(x^{2}+y^{2}\right)
$$

where $\boldsymbol{v}=\binom{u(x, y)}{v(x, y)}$.
(b) As we consider ideal fluid, the velocity does not depend on time ($\boldsymbol{v}_{t}=0$) and there are no body forces, the Navier-Stokes equations take the view:

$$
\left\{\begin{array}{c}
\nabla \cdot \boldsymbol{v}=0 \\
(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}-v \boldsymbol{\nabla}^{2} \boldsymbol{v}+\frac{1}{\rho} \nabla p=0
\end{array}\right.
$$

Let us check the first equation:

$$
\nabla \cdot \boldsymbol{v}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=2 U-2 U=0
$$

The second equation has the form:

$$
\left\{\begin{array}{l}
(\boldsymbol{v} \cdot \boldsymbol{\nabla}) u-v \boldsymbol{\nabla}^{2} u+\frac{1}{\rho} \frac{\partial p}{\partial x}=0 \\
(\boldsymbol{v} \cdot \boldsymbol{\nabla}) v-v \boldsymbol{\nabla}^{2} v+\frac{1}{\rho} \frac{\partial p}{\partial y}=0
\end{array}\right.
$$

Applying the velocity field to these equations, we receive:

$$
\begin{aligned}
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}-v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+\frac{1}{\rho} \frac{\partial p}{\partial x}=4 U^{2} x+0-0-4 U^{2} x=0 \\
& u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}-v\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\frac{1}{\rho} \frac{\partial p}{\partial y}=4 U^{2} y+0-0-4 U^{2} y=0
\end{aligned}
$$

Which means that the obtained velocity satisfies to Navier-Stokes equations.

For viscous fluid there is a no-slip boundary condition at wall for the velocity which means that $v=0$ if $\mathrm{y}=0$. This condition cannot be satisfied as velocity component u does not depend on y and $u(x, 0)=$ $2 U x$.
(c) Let us attempt the u velocity component for viscous fluid as $u=2 U x f^{\prime}(y)$. As $u=\frac{\partial \Psi(x, y)}{\partial y}$, we can find the stream function: $\Psi(x, y)=\int u d y=\int 2 U x f^{\prime}(y) d y=2 U x f(y)$. Now we can obtain the velocity component $v: v=-\frac{\partial \Psi(x, y)}{\partial x}=-2 U f(y)$.

Let us determine boundary conditions for the function $f(y)$. As $v(x, 0)=0, f(0)=0$. And as $u(x, 0)=0, f^{\prime}(y)=0$.

For region sufficiently away from the wall, the viscous effect is negligible and the flow is expected to match with the inviscid flow result. Thus we require:

$$
\left\{\begin{array} { c }
{ 2 U x f ^ { \prime } (y) \rightarrow 2 U x } \\
{ - 2 U f (y) \rightarrow - 2 U y }
\end{array} \Rightarrow \left\{\begin{array}{c}
f^{\prime}(y) \rightarrow 1 \\
f(y) \rightarrow y
\end{array} \text { when } y \rightarrow \infty\right.\right.
$$

To sum up, boundary conditions for f :

$$
\begin{gathered}
f(0)=f^{\prime}(y)=0 \\
\left\{\begin{array}{l}
f^{\prime}(y) \rightarrow 1 \\
f(y) \rightarrow y
\end{array} \text { when } y \rightarrow \infty\right.
\end{gathered}
$$

(d) Let us consider the y-momentum equation to get pressure distribution in terms of function $f(y)$:

$$
\begin{gathered}
u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}-v\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\frac{1}{\rho} \frac{\partial p}{\partial y}=4 U^{2} f(y) f^{\prime}(y)+v \cdot 2 U f^{\prime \prime}(y)+\frac{1}{\rho} \frac{\partial p}{\partial y}=0 \\
\frac{\partial p}{\partial y}=-\rho\left(4 U^{2} f(y) f^{\prime}(y)+v \cdot 2 U f^{\prime \prime}(y)\right)
\end{gathered}
$$

Integrating, we receive:

$$
p=-\rho\left(2 U^{2} f^{2}+2 v U f^{\prime}\right)+C(x)
$$

Recalling that $f(y) \rightarrow y$ for large values of y shows that

$$
p \rightarrow-\rho\left(2 U^{2} y^{2}+2 v U\right)+C(x)
$$

which by comparison with the potential-flow pressure, requires:

$$
p_{0}-2 \rho U^{2}\left(x^{2}+y^{2}\right)=-\rho\left(2 U^{2} y^{2}+2 v U\right)+C(x) \Rightarrow C(x)=p_{0}-2 \rho U^{2} x^{2}+2 \rho v U
$$

Substituting, we receive the following pressure distribution:

$$
p=-2 \rho U^{2} f^{2}-2 \rho v U f^{\prime}+p_{0}-2 \rho U^{2} x^{2}+2 \rho v U=p_{0}-2 \rho U^{2}\left(f^{2}+x^{2}\right)+2 \rho v U\left(1-f^{\prime}\right)
$$

(e) Let us consider the x-momentum equation and obtained formula for pressure distribution:

$$
\begin{gathered}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}-v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+\frac{1}{\rho} \frac{\partial p}{\partial x}=4 U^{2} x\left(f^{\prime}\right)^{2}-4 U^{2} x f^{\prime \prime}-2 v U x f^{\prime \prime \prime}-4 U^{2} x=0 \Rightarrow \\
\frac{v}{2 U} f^{\prime \prime \prime}-\left(f^{\prime}\right)^{2}+f f^{\prime \prime}+1=0
\end{gathered}
$$

We have received differential equation for function f. Let us introduce the dimensionless variables:

$$
\eta=y \sqrt{\frac{2 U}{v}} \text { and } F(\eta)=\sqrt{\frac{2 U}{v}} f(y)
$$

Then the equation takes the view:

$$
F^{\prime \prime \prime}-\left(F^{\prime}\right)^{2}+F F^{\prime \prime}+1=0
$$

where $F^{\prime}=\frac{\partial F}{\partial \eta}$. Applying received boundary conditions for the function $f(y)$, receive $B C$ for new function $F(\eta):$

$$
F(0)=F^{\prime}(0)=0 ; \quad F^{\prime}(\eta) \rightarrow 1 \text { when } \eta \rightarrow \infty
$$

This third-order ODE can be solved numerically.

Task 2.

A quadratic polynomial form for the velocity profile:

$$
\frac{u}{U}=a+b\left(\frac{y}{\delta}\right)+c\left(\frac{y}{\delta}\right)^{2}
$$

Boundary conditions:

$$
\begin{gathered}
u=0 \quad \text { if } y=0 \\
\left\{\begin{array}{l}
u=U \\
\frac{\partial u}{\partial y}=0
\end{array} \quad \text { if } y=\delta\right.
\end{gathered}
$$

Applying boundary conditions, we receive the system of equations:

$$
\left\{\begin{array}{c}
\frac{u}{U}(y=0)=a=0 \\
\frac{u}{U}(y=\delta)=a+b+c=1 \\
\frac{\left(\frac{\partial u}{\partial y}\right)}{U}(y=\delta)=b+2 c=0
\end{array}\right.
$$

Solving the system, receive unknown parameters: $\left\{\begin{array}{c}a=0 \\ b=2 \\ c=-1\end{array}\right.$.
These conditions give:

$$
\frac{u}{U}=2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}
$$

The momentum integral equation reduces to:

$$
\begin{equation*}
\frac{d}{d x}\left(U^{2} \theta\right)=\frac{\tau_{0}}{\rho} \Rightarrow \frac{d}{d x} \int_{0}^{\infty} u(U-u) d y=\frac{\tau_{0}}{\rho} \tag{1}
\end{equation*}
$$

where $U^{2} \theta=\int_{0}^{\infty} u(U-u) d y$-momentum thickness.
Thus, we can compute the momentum thickness:

$$
\begin{align*}
& \theta=U^{-2} \int_{0}^{\delta} u(U-u) d y=\int_{0}^{\delta}\left(\frac{u}{U}-\left(\frac{u}{U}\right)^{2}\right) d y \\
&=\int_{0}^{\delta}\left(2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}-4\left(\frac{y}{\delta}\right)^{2}-\left(\frac{y}{\delta}\right)^{4}+4\left(\frac{y}{\delta}\right)^{3}\right) d y=\frac{2}{15} \delta \tag{2}
\end{align*}
$$

The shear stress on the surface is given by formula:

$$
\tau_{0}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}=\left.\mu\left(\frac{2}{\delta}-\frac{2 y}{\delta^{2}}\right) U\right|_{y=0}=\frac{2 U \mu}{\delta}
$$

$$
\begin{equation*}
\text { As } \mu=\rho v \Rightarrow \frac{\tau_{0}}{\rho}=\frac{2 U v}{\delta} \tag{3}
\end{equation*}
$$

From equations (1)-(3) we receive:

$$
\frac{2}{15} U^{2} \frac{d \delta}{d x}=\frac{2 U v}{\delta} \Rightarrow \delta d \delta=\frac{15 v}{U} d x \Rightarrow \delta^{2}=\frac{30 v}{U} x+C
$$

Assuming $\delta(0)=0$, we receive $\delta=5.477 \sqrt{\frac{v x}{U}}=5.477 \frac{x}{\sqrt{R e_{x}}}$ where $R e_{x}=\frac{U x}{v}$.
From (2) receive the momentum thickness: $\quad \theta=\frac{2}{15} \delta=0.7303 \frac{x}{\sqrt{R e q_{x}}}$.
Comparing the results with the exact Blasius solution and with the ones obtained assuming a cubic velocity profile:

	$\frac{\boldsymbol{u}}{\boldsymbol{U}}$	$\boldsymbol{\delta}$	$\boldsymbol{\theta}$
Blasius	$f^{\prime}\left(\frac{y}{\sqrt{\frac{v x}{U}}}\right)$	$5 \frac{x}{\sqrt{R e_{x}}}$	$0.664 \frac{x}{\sqrt{R e_{x}}}$
Kármán-Pohlhausen (quadratic)	$2\left(\frac{y}{\delta}\right)-\left(\frac{y}{\delta}\right)^{2}$	$5.477 \frac{x}{\sqrt{R e_{x}}}$	$0.7303 \frac{x}{\sqrt{R e_{x}}}$
Kármán-PohIhausen (cubic)	$\frac{3}{2}\left(\frac{y}{\delta}\right)-\frac{1}{2}\left(\frac{y}{\delta}\right)^{2}$	$4.64 \frac{x}{\sqrt{R e_{x}}}$	$0.646 \frac{x}{\sqrt{R e_{x}}}$

The results of the boundary layer thickness $\delta(\mathrm{x})$:

The results of the momentum thickness $\theta(x)$:

