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Homework 4.
Task 1.

Consider a fluid stream whose velocity vector coincides with the y axis that impinges on a plane
boundary that coincides with the x axis, as shown in the figure below.
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(a) Stream function ¥ (r,0) = Ur?sin(20) = 2Ur? sin(0) cos(H). As going to Cartesian coordinates
x =rcos(f) and y = rsin(0), the stream function takes the form ¥ (x,y) = 2Uxy. Let us compute
the velocity field:

dy
¥(x,y)
ox

0¥ (x,
!u:ﬂ:wx

kv = —2Uy

For ideal fluid the point (0, 0) is a stagnation point, so, here the velocity should be 0. Indeed
u(0,0)=v(0,0)=0.
From Bernoulli's equation we receive the pressure distribution:

1, p_Po p
§v2+;:? = p=po —5v > p=po— 2pU(x* +y?)

where v = (t‘igig)

(b) As we consider ideal fluid, the velocity does not depend on time (v, = 0) and there are no body
forces, the Navier-Stokes equations take the view:

V-v=0
1
(v -V)v— vV2v+;Vp=0

Let us check the first equation:

Ju OJv
= +—=20-2U=0
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The second equation has the form:
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{(v-V)u—vV2u+——p=0
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10
l(w-V)v— vW2u + Py
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Applying the velocity field to these equations, we receive:
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Which means that the obtained velocity satisfies to Navier-Stokes equations.

For viscous fluid there is a no-slip boundary condition at wall for the velocity which means that v = 0 if
y=0. This condition cannot be satisfied as velocity component u does not depend on y and u(x, 0) =
2Ux.

v (x,y)

(c) Let us attempt the u velocity component for viscous fluid as u = 2Uxf'(y). Asu = 5y, Wecan
find the stream function: ¥(x,y) = [udy = [ 2Uxf (y)dy = 2Uxf(y). Now we can obtain the
velocity component v: v = — %ﬁ:’}’) = =2Uf(y).

Let us determine boundary conditions for the function f(y). Asv(x,0) = 0,f(0) = 0. And as
u(x,0)=0,f (y) = 0.
For region sufficiently away from the wall, the viscous effect is negligible and the flow is expected to

match with the inviscid flow result. Thus we require:

{ 2Uxf' (y) - 2Ux {f'(y) 21 heny -

—2Uf(y) » —2Uy f@) -y

To sum up, boundary conditions for f:

fO)=f (=0
(677 s

(d) Let us consider the y-momentum equation to get pressure distribution in terms of function f(y):

—v[—+— |+ == =407 "2 P
uax+vay V(ax2+ay2>+pay U G +v-2Uf (y)+pay °
ap 2 7 n
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Integrating, we receive:
p=—pQRU2f%+2vUf) + C(x)

Recalling that f(y) — y for large values of y shows that
2
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p > —pQU%y?% + 2vU) + C(x)
which by comparison with the potential-flow pressure, requires:
po — 2pU?(x% +y?) = —pQRU?%y? + 2vU) + C(x) = C(x) = py — 2pU?x? + 2pvU.
Substituting, we receive the following pressure distribution:
p = —2pU%f2 —2pvUf +py— 2pU?x%+ 2pvU = py — 2pU%(f? +x2) + 2pvU(1 — ).

(e) Let us consider the x-momentum equation and obtained formula for pressure distribution:

Ou L0 (T 0T (LOP a6y aut - oS - 4V =0 =
Yox "ay V\ox2 9y2) pox X *f vUxf X =

Vo / "
gl P+ +1=0.

We have received differential equation for function f. Let us introduce the dimensionless variables:

2 2
n=ng and F(n)=\/g f).

Then the equation takes the view:
F'"—(F)2+FF +1=0
where F' = Z—z. Applying received boundary conditions for the function f(y), receive BC for new function
F(m):
F(0)=F(0)=0; F (1) - 1whenn - oo

This third-order ODE can be solved numerically.



Task 2.

A quadratic polynomial form for the velocity profile:

earn(B)re)

Boundary conditions:
u=0 ify=0

u="U
{a_u:() if y=46
dy

Applying boundary conditions, we receive the system of equations:

r u
So=0)=a=0

<%(y=5)=a+b+c=1;

%)

kT (y=6) =b+2c = 0.

a=0
Solving the system, receive unknown parameters: { b=2.

c=-1
These conditions give:

1-2)-6).

The momentum integral equation reduces to:

d TO d T TO
—(U?9)=— — U-wdy=— (1
w1 =d4ﬁ< way=2 (1)

where U260 = fooo u(U — u) dy - momentum thickness.

Thus, we can compute the momentum thickness:

)

0= U_qu(U—u)dy = f(%—(z)z) dy
0

U
0

[ -G - ) - f

The shear stress on the surface is given by formula:

ou Jdu
3 |y=0 =U5

2 2y 20u
ay|y=0 = .u<_ - _>U|y=0 =<

5§ &2
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A N Ty 2Uv (3)
S =pv —=— .
From equations (1)-(3) we receive:
2 ,d§ 2Uv 15v 30v
_ = >

- - 2
=V 5 odéd U dx = 6§ U x+C.

Ux

X
where Re, = —
v

JRex

Assuming 6(0) = 0, we receive § = 5.477\/% = 5.477

X

. . ) 2 o
From (2) receive the momentum thickness: 6 = = 0= 0.7303m

Comparing the results with the exact Blasius solution and with the ones obtained assuming a cubic
velocity profile:

u () 0
U _ x
Blasius 5— 0.664
f’/ y \ Rex vV Rex
\J5/
U
Karman-Pohlhausen y Y\ 5.477 — 0.7303 x
(quadratic) 2(6) (6) VRex JRey
Karman-Pohlhausen 3y 1 /yy\? 4.64—= 0,646 —
(cubic) 2 (5) 2 (E) VRex "~ J/Re,
The results of the boundary layer thickness §(x):
6
5 ///
4
6(x) 3 - Blasius
—— Karman-Pohlhausen (quadratic)
2 _
Karman-Pohlhausen (cubic)
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The results of the momentum thickness 6(x):
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