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Homework 4. 

Task 1. 

Consider a fluid stream whose velocity vector coincides with the y axis that impinges on a plane 

boundary that coincides with the x axis, as shown in the figure below. 

 

(a)  Stream function 𝛹 𝑟,𝜃 = 𝑈𝑟2 sin 2𝜃 = 2𝑈𝑟2 sin 𝜃 cos 𝜃 . As going to Cartesian coordinates 

𝑥 = 𝑟 cos 𝜃  𝑎𝑛𝑑 𝑦 = 𝑟 sin 𝜃 , the stream function takes the form 𝛹 𝑥,𝑦 = 2𝑈𝑥𝑦. Let us compute 

the velocity field: 

 
 

 𝑢 =
𝜕𝛹 𝑥, 𝑦 

𝜕𝑦
= 2𝑈𝑥

𝑣 = −
𝜕𝛹 𝑥, 𝑦 

𝜕𝑥
= −2𝑈𝑦

  

For ideal fluid the point (0, 0) is a stagnation point, so, here the velocity should be 0. Indeed 

u(0,0)=v(0,0)=0. 

From Bernoulli's equation we receive the pressure distribution: 

1

2
𝒗2 +

𝑝

𝜌
=
𝑝0

𝜌
   ⇒    𝑝 = 𝑝0  −

𝜌

2
𝒗2    ⇒   𝑝 = 𝑝0 −  2𝜌𝑈2 𝑥2 + 𝑦2  

where 𝒗 =  𝑢 𝑥 ,𝑦 

𝑣 𝑥 ,𝑦 
 . 

(b) As we consider ideal fluid, the velocity does not depend on time  𝒗𝑡 = 0  and there are no body 

forces, the Navier-Stokes equations take the view: 

 

∇ ∙ 𝒗 = 0

 𝒗 ∙ 𝛁 𝒗 −  𝜈𝛁2𝒗 +
1

𝜌
 𝛁𝑝 = 0

  

Let us check the first equation:  

∇ ∙ 𝒗 =  
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 2𝑈 − 2𝑈 = 0 

The second equation has the form: 
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  𝒗 ∙ 𝛁 𝑢 − 𝜈𝛁2𝑢 +

1

𝜌

𝜕𝑝

𝜕𝑥
= 0

 𝒗 ∙ 𝛁 𝑣 −  𝜈𝛁2𝑣 +  
1

𝜌

𝜕𝑝

𝜕𝑦
= 0

  

Applying the velocity field to these equations, we receive: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
−  ν 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
 +

1

𝜌

𝜕𝑝

𝜕𝑥
= 4𝑈2𝑥 + 0 − 0− 4𝑈2𝑥 = 0; 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
−  ν 

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
 +

1

𝜌

𝜕𝑝

𝜕𝑦
= 4𝑈2𝑦+ 0 − 0 − 4𝑈2𝑦 = 0. 

Which means that the obtained velocity satisfies to Navier-Stokes equations. 

For viscous fluid there is a no-slip boundary condition at wall for the velocity which means that 𝒗 = 0  if 

y=0. This condition cannot be satisfied as velocity component 𝑢 does not depend on y and 𝑢 𝑥, 0 =

2𝑈𝑥. 

(c) Let us attempt the 𝑢 velocity component for viscous fluid as 𝑢 = 2𝑈𝑥𝑓′(𝑦). As 𝑢 =
𝜕𝛹 𝑥 ,𝑦 

𝜕𝑦
, we can 

find the stream function:  𝛹 𝑥,𝑦 =  𝑢𝑑𝑦 =  2𝑈𝑥𝑓 ′ 𝑦 𝑑𝑦 = 2𝑈𝑥𝑓 𝑦 . Now we can obtain the 

velocity component 𝑣: 𝑣 = −
𝜕𝛹 𝑥 ,𝑦 

𝜕𝑥
= −2𝑈𝑓 𝑦 . 

Let us determine boundary conditions for the function 𝑓 𝑦 . As 𝑣 𝑥, 0 = 0,𝑓 0 = 0. And as 

𝑢 𝑥, 0 = 0,𝑓 ′ 𝑦 = 0.  

For region sufficiently away from the wall, the viscous effect is negligible and the flow is expected to 

match with the inviscid flow result. Thus we require:  

 
2𝑈𝑥𝑓 ′ 𝑦 → 2𝑈𝑥

−2𝑈𝑓 𝑦 → −2𝑈𝑦
    ⇒      

𝑓 ′ 𝑦 → 1

𝑓 𝑦 → 𝑦
  𝑤ℎ𝑒𝑛 𝑦 → ∞ 

To sum up, boundary conditions for f: 

𝑓 0 = 𝑓 ′ 𝑦 = 0 

 
𝑓 ′ 𝑦 → 1

𝑓 𝑦 → 𝑦
  𝑤ℎ𝑒𝑛 𝑦 → ∞ 

(d) Let us consider the y-momentum equation to get pressure distribution in terms of function f(y): 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
−  ν  

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
 +

1

𝜌

𝜕𝑝

𝜕𝑦
= 4𝑈2𝑓 𝑦 𝑓 ′ 𝑦 + ν ∙ 2𝑈𝑓 ′′  𝑦 +

1

𝜌

𝜕𝑝

𝜕𝑦
= 0 

𝜕𝑝

𝜕𝑦
= −𝜌 4𝑈2𝑓 𝑦 𝑓′ 𝑦 + ν ∙ 2𝑈𝑓 ′′  𝑦   

Integrating, we receive: 

𝑝 = −𝜌 2𝑈2𝑓2 + 2ν𝑈𝑓 ′ + 𝐶(𝑥) 

Recalling that 𝑓 𝑦 → 𝑦 for large values of y shows that   
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𝑝 → −𝜌 2𝑈2𝑦2 + 2ν𝑈 + 𝐶(𝑥) 

which by comparison with the potential-flow pressure, requires: 

𝑝0 −  2𝜌𝑈2 𝑥2 + 𝑦2 = −𝜌 2𝑈2𝑦2 + 2ν𝑈 + 𝐶 𝑥  ⇒  𝐶 𝑥 = 𝑝0 −  2𝜌𝑈2𝑥2 + 2𝜌ν𝑈. 

Substituting, we receive the following pressure distribution: 

𝑝 = −2𝜌𝑈2𝑓2 − 2𝜌ν𝑈𝑓 ′ + 𝑝0 −  2𝜌𝑈2𝑥2 + 2𝜌ν𝑈 = 𝑝0 −  2𝜌𝑈2 𝑓2 + 𝑥2 + 2𝜌ν𝑈 1− 𝑓 ′ . 

(e) Let us consider the x-momentum equation and obtained formula for pressure distribution: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
−  ν  

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
 +

1

𝜌

𝜕𝑝

𝜕𝑥
= 4𝑈2𝑥 𝑓 ′ 2 − 4𝑈2𝑥𝑓 ′′ − 2ν𝑈𝑥𝑓 ′′′ − 4𝑈2𝑥 = 0   ⇒ 

𝜈

2𝑈
𝑓 ′ ′ ′ −  𝑓 ′ 2 + 𝑓𝑓 ′ ′ + 1 = 0. 

We have received differential equation for function f. Let us introduce the dimensionless variables: 

𝜂 = 𝑦 
2𝑈

𝜈
   𝑎𝑛𝑑   𝐹 η =  

2𝑈

𝜈
  𝑓 𝑦 . 

Then the equation takes the view: 

𝐹′ ′ ′ −  𝐹′ 2 + 𝐹𝐹′ ′ + 1 = 0 

where 𝐹′ =
𝜕𝐹

𝜕𝜂
. Applying received boundary conditions for the function f(y), receive BC for new function 

F 𝜂 : 

𝐹 0 = 𝐹′ 0 = 0;  𝐹′ 𝜂 → 1 𝑤ℎ𝑒𝑛 𝜂 → ∞ 

This third-order ODE can be solved numerically. 
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Task 2. 

A quadratic polynomial form for the velocity profile: 

𝑢

𝑈
= 𝑎 + 𝑏  

𝑦

𝛿
 + 𝑐  

𝑦

𝛿
 

2

 

Boundary conditions: 

𝑢 = 0       𝑖𝑓  𝑦 = 0 

 

𝑢 = 𝑈
𝜕𝑢

𝜕𝑦
= 0

      𝑖𝑓  𝑦 = 𝛿 

Applying boundary conditions, we receive the system of equations: 

 
  
 

  
 

𝑢

𝑈
(𝑦 = 0)  =  𝑎 =  0;

𝑢

𝑈
(𝑦 = 𝛿)  =  𝑎 +  𝑏 +  𝑐 =  1;

 
𝜕𝑢
𝜕𝑦

 

𝑈
  (𝑦 = 𝛿)  =  𝑏 + 2𝑐 =  0.

  

Solving the system, receive unknown parameters:  
𝑎 = 0
𝑏 = 2
𝑐 = −1

 . 

These conditions give: 

𝑢

𝑈
= 2  

𝑦

𝛿
 −  

𝑦

𝛿
 

2

. 

The momentum integral equation reduces to: 

𝑑

𝑑𝑥
 𝑈2𝜃 =

𝜏0

𝜌
    ⇒    

𝑑

𝑑𝑥
 𝑢(𝑈 − 𝑢) 𝑑𝑦

∞

0

=
𝜏0

𝜌
      (1) 

where 𝑈2𝜃 =  𝑢(𝑈 − 𝑢) 𝑑𝑦
∞

0
 - momentum thickness. 

Thus, we can compute the momentum thickness: 

𝜃 = 𝑈−2  𝑢(𝑈−𝑢) 𝑑𝑦

𝛿

0

 =    
𝑢

𝑈
−  

𝑢

𝑈
 

2

  𝑑𝑦

𝛿

0

 

=    2  
𝑦

𝛿
 −  

𝑦

𝛿
 

2

− 4  
𝑦

𝛿
 

2

−  
𝑦

𝛿
 

4

+ 4  
𝑦

𝛿
 

3

  𝑑𝑦 =

𝛿

0

 
2

15
𝛿      (2) 

The shear stress on the surface is given by formula: 

𝜏0 = 𝜇
𝜕𝑢

𝜕𝑦
|𝑦=0 = 𝜇

𝜕𝑢

𝜕𝑦
|𝑦=0 = 𝜇  

2

𝛿
 −  

2𝑦

𝛿2
  𝑈|𝑦=0 =

2𝑈𝜇

𝛿
. 
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As    𝜇 = 𝜌𝜈    ⇒      
𝜏0

𝜌
=

2𝑈𝜈

𝛿
                 (3). 

From equations (1)-(3) we receive: 

2

15
𝑈2

𝑑𝛿

𝑑𝑥
=

2𝑈𝜈

𝛿
   ⇒    𝛿𝑑𝛿 =

15𝜈

𝑈
𝑑𝑥   ⇒    𝛿2 =

30𝜈

𝑈
𝑥 + 𝐶. 

Assuming 𝛿(0)  =  0, we receive 𝛿 = 5.477 
𝜈𝑥

𝑈
= 5.477

𝑥

 𝑅𝑒𝑥
  where 𝑅𝑒𝑥 =

𝑈𝑥

𝜈
. 

From (2) receive the momentum thickness:    𝜃 =
2

15
𝛿 = 0.7303

𝑥

 𝑅𝑒𝑥
. 

Comparing the results with the exact Blasius solution and with the ones obtained assuming a cubic 

velocity profile: 

 𝒖

𝑼
 𝜹 𝜽 

Blasius 

𝑓 ′

 

 
𝑦

 
𝜈𝑥
𝑈 

  

5
𝑥

 𝑅𝑒𝑥
   0.664

𝑥

 𝑅𝑒𝑥
 

Kármán-Pohlhausen 
(quadratic) 

2  
𝑦

𝛿
 −  

𝑦

𝛿
 

2

 
5.477

𝑥

 𝑅𝑒𝑥
   0.7303

𝑥

 𝑅𝑒𝑥
 

Kármán-Pohlhausen 
(cubic) 

3

2
 
𝑦

𝛿
 −

1

2
 
𝑦

𝛿
 

2

 
4.64

𝑥

 𝑅𝑒𝑥
   0.646

𝑥

 𝑅𝑒𝑥
 

 

 

The results of the boundary layer thickness δ(x): 

 

 

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1 1,2

δ(x)

x

Blasius

Kármán-Pohlhausen (quadratic)

Kármán-Pohlhausen (cubic)
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The results of the momentum thickness 𝜃(𝑥): 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,2 0,4 0,6 0,8 1 1,2

θ(x)

x

Blasius

Kármán-Pohlhausen (quadratic)

Kármán-Pohlhausen (cubic)


