
ADVANCED FLUID MECHANICS
Master of Science in Computational Mechanics/Numerical Methods

Fall Semester 2015

Homework 3: Dimensional analysis, compressible flow and Navier-Stokes equations
Due date: December 3, 2015

1. A common engineering challenge faced in pumping viscous crude oil over long distances is
the large power consumption required to convey the oil through the pipeline. One proposed
solution is to lubricate the pipeline as shown below (figure 1) using a thin layer of an immiscible
fluid (such as water) with a lower viscosity to surround the oil and lubricate the motion.

We shall model the flow as the flow in a cylindrical pipe of radius R with a core of thickness
R1 consisting of very viscous liquid oil with viscosity µ1 surrounded by a shell of water (or
other low viscosity fluid) of thickness δ = R−R1 that is density matched (so that ρ1 = ρ2 = ρ
and gravity effects can be neglected) with viscosity µ2 < µ1. The interfacial tension between
the two liquids is denoted σ. The average velocity of the oil through the pipe is denoted
vo = Qoil/πR
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1. Although the oil-water interface shown in the figure above is depicted as
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a)	 Although the oil-water interface shown in the figure 
above is depicted as planar, in reality under certain 
operating conditions interfacial waves may form as 
shown in the picture opposite: 

http://www.aem.umn.edu/research/pipeline/horizontalindex.html


Use dimensional analysis to determine an appropriate dimensionless form for expressing the 
�P �P

fully-developed pressure drop per unit length in the pipe � = as a function of the other 
�z L

relevant parameters in the problem. Use the average oil velocity vo = Qoil �R1
2  and core 

radius R1 as two of your primary variables together with as many other parameters as you need. 
Which dimensionless group is important in determining whether waves will develop. Based on 
your physical understanding of interfacial processes, express an appropriate inequality on the 
range for this dimensionless parameter in order for waves not to form. 

b) Assuming that your criterion above is satisfied so that the flow in the pipe remains a perfect 
smooth core-annular flow as shown in the sketch, write down the appropriate boundary 
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Figure 1: Geometry of a lubricated pipeline.

planar, in reality under certain operating conditions interfacial waves may form.

a) Use dimensional analysis to determine an appropriate dimensionless form for expressing

the fully-developed pressure drop per unit length in the pipe −∂p
∂z

=
∆P

L
as a function

of the other relevant parameters in the problem:

∆P

L
= f(ρ, vo, R,R1, µ1, µ2, σ).

Use the average oil velocity vo = Qoil/πR
2
1, the core radius R1 and the density ρ as your

primary variables.

b) Do you obtain any known dimensionless group? Which one is important in determining
whether waves will develop? Express an appropriate inequality on the range for this
dimensionless parameter in order for waves not to form.

c) Note that we have not considered gravity as a driving force to form waves at the interface.
Explain whether this hypothesis is reasonable.



Assume that the flow in the pipe remains a perfect smooth core-annular flow, as shown in the
sketch. Furthermore, assume that the pressure change across the interface is negligible and
pressure gradient is

∂p

∂z
= −∆P

L
r ∈ [0, R]

d) The steady-state velocity field is v = (0, 0, vz(r)). Write down Navier-Stokes equations
and simplify them accordingly to this velocity field. Clearly state appropriate boundary
conditions to be imposed on the wall (r = R) and on the interface r = R1.

e) Solve the equations stated in the previous point to obtain an expression for the fully-
developed velocity field vz(r) that are valid in the core domain 0 ≤ r ≤ R1 and the shell
R1 ≤ r ≤ R. Which is the interface velocity?
On a single large graph, sketch the velocity profile and the shear stress profile across the
entire pipe (i.e. for the region 0 ≤ r ≤ R).

f) Find expressions for the volume flow rate of oil Qo and for the volume flow rate of water
Qw through the pipeline as a function of the imposed pressure ∆P and the other physical
parameters defined in the figure.

2. The region −∞ < x < ` is occupied by a shock tube. The end x = ` of the tube is closed and
the diaphragm is located at x = 0. For 0 < x ≤ ` the pressure is p0 and for −∞ < x < 0 the
pressure is p1(> p0), where (p1 − p0)/p0 � 1. The velocity is everywhere zero. Draw an x, t
diagram showing the wave pattern which results from the breaking of the diaphragm. Obtain
expressions for the velocity and pressure behind the wave which is reflected from the closed
end of the tube.
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Solution1

Part a

By assuming of average oil velocity, core radius and density as the primary
variables, we obtain dimensionless groups as follow:

ρ v0 R1 R µ1 µ2 σ ∆P
L

M 1 0 0 0 1 1 1 1
L -3 1 1 1 -1 -1 0 -2
T 0 -1 0 0 -1 -1 -2 -2

Π1 = ρa(v0)bRc1R

M0L0T 0 = (ML−3)a(LT −1)b(L)c(L)

a = 0, b = 0, c = −1⇒ Π1 =
R

R1

Π2 = ρa(v0)bRc1µ1

M0L0T 0 = (ML−3)a(LT −1)b(L)c(ML−1T −1)

a = −1, b = −1, c = −1⇒ Π2 =
µ1

ρv0R1

and similarly we get,

Π3 =
µ2

ρv0R1

Π4 = ρa(v0)bRc1σ

M0L0T 0 = (ML−3)a(LT −1)b(L)c(MT −2)

a = −1, b = −2, c = −1⇒ Π4 =
σ

ρ(v0)2R1
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Π5 = ρa(v0)bRc1
∆P

L

M0L0T 0 = (ML−3)a(LT −1)b(L)c(ML−2T −2)

a = −1, b = −2, c = 1⇒ Π5 =
R1∆P/L

(v0)2ρ

Thus,

R1∆P/L

ρ(v0)2
= F

( R
R1

,
µ1

ρv0R1
,

µ2

ρv0R1
,

σ

ρ(v0)2R1

)
Part b

We have got two well-known dimensionless groups called Reynold number and
Weber number. In fact,

1

Π2
= Re,

1

Π3
= Re,

1

Π4
= We

Since the interfacial tension try to keep molecules close to each other, it does
not let to form wave between two liquids. Besides, the only dimensionless group
which has interfacial tension is Weber number. So, Weber number should be as
small as it can be. In other words, We� 1 or ρ(v0)2R1/σ � 1.

Part c

The only driving force to form wave in the pipeline is gravity, but it cannot come
to play because there is no difference in density of water and oil in this problem.
Therefore, considering gravity as a force to form waves is not reasonable.

Part d

According to velocity field which has given, mass conservation is a trivial equa-
tion so we do not need to write it. Navier Stokes equations (momentum conser-
vation) for cylindrical coordinates are:

ρ
(∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ
− v2

θ

r
+ vz

∂vr
∂z

)
=− ∂p

∂r
+ µ

(
∇2vr −

vr
r2
− 2

r2

∂vθ
∂θ

)
+ ρbr

ρ
(∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

+ vz
∂vθ
∂z

)
=− 1

r

∂p

∂θ
+ µ

(
∇2vθ −

vθ
r2

+
2

r2

∂vr
∂θ

)
+ ρbθ

ρ
(∂vz
∂t

+ vr
∂vz
∂θ

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
= −∂p

∂z
+ µ∇2vz + ρbz
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where,

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
+

∂2

∂z2

according to v = (0, 0, vz(r)), the first and second equations just tell us that the
pressure is not depend on r and θ. we simplify the third Navier Stokes equation
as follow:

0 = −∂p
∂z

+
µ1

r

∂

∂r

(
r
∂vz
∂r

)
(0 ≤ r ≤ R1) (1)

0 = −∂p
∂z

+
µ2

r

∂

∂r

(
r
∂vz
∂r

)
(R1 ≤ r ≤ R) (2)

The first equation is for the core domain and the second one is for shell domain.
to obtain the boundary conditions, we should note that on the wall of pipe

velocity is 0 and shear stress in center of pipe is 0 too. so,

vz(R) = 0, τ(0) = 0

In addition, since flow in the pipe remains a perfect smooth core-annular flow,
we have,

τ(R−
1 ) = τ(R+

1 )

for interface velocity we should have,

vz(R
−
1 ) = vz(R

+
1 )

Part e

Since −∂p∂z = ∆P
L We can write equation (1) and (2) as follow:

0 =
∆P

L
+
µ1

r

∂

∂r

(
r
∂vz
∂r

)
(0 ≤ r ≤ R1) (3)

0 =
∆P

L
+
µ2

r

∂

∂r

(
r
∂vz
∂r

)
(R1 ≤ r ≤ R) (4)

then we write (3) by integrating as follow:

− r∆P

µ1L
=

∂

∂r

(
r
∂vz
∂r

)
⇒ −r

2∆P

2µ1L
+A1 = r

∂vz
∂r

⇒ − r∆P
2µ1L

+
A1

r
=
∂vz
∂r
⇒ −r

2∆P

4µ1L
+A1 ln r +A2 = vz (5)

Similarly from (4) we obtain,

−r
2∆P

4µ2L
+B1 ln r +B2 = vz (6)
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Equations (5) and (6) are respectively core velocity and shell velocity and
A1, A2, B1, B2 are constants. now, we apply boundary conditions to find these
constants.

vz(R) = 0⇒ −R
2∆P

4µ2L
+B1 lnR+B2 = 0 (7)

τ(0) = 0⇒ µ1
∂vz
∂r

(0) = 0⇒ −r∆P
2L

+
µ1A1

r
= 0, in r = 0

So the first term should be 0 and to hold the equality, we should have A1 = 0.
For interface shear stress we have,

−R1∆P

2L
+
µ2B1

R1
= −R1∆P

2L
⇒ µ2B1

R1
= 0⇒ B1 = 0

Therefore we can write (7) as follow:

−R
2∆P

4µ2L
+B2 = 0⇒ B2 =

R2∆P

4µ2L

and finally for the interface velocity we have,

− R2
1∆P

4µ1L
+A2 = −R

2
1∆P

4µ2L
+
R2∆P

4µ2L

A2 =
(R2 −R2

1)∆P

4µ2L
+
R2

1∆P

4µ1L

Now we get velocity field and shear stress,

vz =
(R2 −R2

1)∆P

4µ2L
+

(R2
1 − r2)∆P

4µ1L
(0 ≤ r ≤ R1)

vz =
(R2 − r2)∆P

4µ2L
(R1 ≤ r ≤ R)

τ = −r∆P
2L

(0 ≤ r ≤ R1)

τ = −r∆P
2L

(R1 ≤ r ≤ R)

The graph has been drawn by hand and it is after solution of part f.
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Part f

To compute flux of oil Qo and flux of water Qw we should integrate of velocity
in core surface and shell surface respectively,

Qo =

∫ R1

0

( (R2 −R2
1)∆P

4µ2L
+

(R2
1 − r2)∆P

4µ1L

)
2πr dr

= r2π
(R2 −R2

1)∆P

4µ2L
+
R2

1r
2π

4µ1L
− r4π

∆P

8µ1L

∣∣∣R1

0

=
πR2

1(R2 −R2
1)∆P

4µ2L
− πR4

1∆P

8µ1L

Qw =

∫ R

R1

(R2 − r2)∆P

4µ2L
2πr dr = r2π

R2∆P

4µ2L
− r4π

∆P

8µ2L

∣∣∣R
R1

=
πR4∆P

4µ2L
− πR4∆P

8µ2L
− πR2

1R
2∆P

4µ2L
+
πR4

1∆P

8µ2L

=
πR4∆P

8µ2L
− 2πR2

1R
2∆P

8µ2L
+
πR4

1∆P

8µ2L
=
π(R2 −R2

1)2∆P

8µ2L
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