Advanced Fluid Mechanics

Homework4

Yuyang Wang

Master on Numerical Methods in Engineering

Part one

(a) Considering that,

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
\tan (\theta)=\frac{y}{x}
\end{gathered}
$$

We can rewrite the stream function in the following way,

$$
\psi(\mathrm{x}, \mathrm{y})=\psi(\mathrm{r}, \theta)=U r^{2} \sin (2 \theta)=2 U r^{2} \sin (\theta) \cos (\theta)
$$

Hence, we get the stream function in Cartesian coordinates,

$$
\begin{aligned}
\Psi(\mathrm{x}, \mathrm{y})= & 2 U\left(x^{2}+y^{2}\right) \frac{y}{\sqrt{x^{2}+y^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}}=2 U x y \\
& \mathrm{x}-\text { component: } \mathrm{u}=\frac{\partial \psi}{\partial y}=2 U x \\
\mathrm{y} & - \text { component: } \mathrm{v}=-\frac{\partial \psi}{\partial x}=-2 U y
\end{aligned}
$$

It is clearly shown that at the point $(0,0)$, the velocity is zero, so this point is a stagnation point.
Considering the boundary condition that,

$$
\begin{aligned}
& u(x, 0)=0 \\
& v(x, 0)=0
\end{aligned}
$$

Sot the x-component velocity does not satisfy the no-slip boundary condition, while the y-component velocity satisfies the boundary condition.

From the Bernoulli equation, the pressure distribution will be,

$$
\mathrm{p}=p_{0}-2 \rho U^{2}\left(x^{2}+y^{2}\right)
$$

where p_{0} is the Bernoulli constant that corresponds to the pressure at the stagnation point.
(b) Firstly, we write the N-S equations,

$$
\left\{\begin{array}{c}
\nabla \cdot v=0 \\
v_{t}+(v \cdot \nabla) v-v \nabla^{2} v+\nabla P=0
\end{array}\right.
$$

Substituting the known x, y-component to the N-S equations, we can get the follow equation,

$$
\left\{\begin{aligned}
0 & =0 \\
4 U^{2} x & =4 U^{2} x \\
4 U^{2} y & =4 U^{2} y
\end{aligned}\right.
$$

So this velocity and pressure distributions verify the $\mathrm{N}-\mathrm{S}$ eqautions.
However, the viscous-shear terms in the Navier-Stokers equations are identically zero for the potential-flow fields, so it does not fulfill the boundary conditions for the viscous problem.

Advanced Fluid Mechanics

(c) Continuity equation,

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
\frac{\partial v}{\partial y}=-\frac{\partial u}{\partial x}=-2 U f^{\prime}(y)
\end{gathered}
$$

So that the vertical component of the velocity will be of the form,

$$
v=-2 U f(y)
$$

Define the velocity field in this way enable all function $f(y)$ could satisfy the continuity equation. Considering the boundary condition, we stipulate that,

$$
\begin{gathered}
\mathrm{f}(\mathrm{y}) \rightarrow \mathrm{y} \text { as } \mathrm{y} \rightarrow \infty \\
\mathrm{f}(0)=\mathrm{f}^{\prime}(0)=0 \\
\mathrm{f}^{\prime}(\mathrm{y}) \rightarrow 1 \text { as } \mathrm{y} \rightarrow \infty
\end{gathered}
$$

(d) The y-momentum equation can be written,

$$
\mathrm{u} \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+v\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)
$$

Substituting the knowing results,

$$
4 U^{2} f f^{\prime}=-\frac{1}{\rho} \frac{\partial p}{\partial y}-2 U v f^{\prime \prime}
$$

Hence, the pressure distribution,

$$
\mathrm{p}(\mathrm{x}, \mathrm{y})=-2 \rho U^{2} f^{2}-2 \rho U v f^{\prime}+h(x)
$$

where $h(x)$ is some function of x that may be determined by comparison with the potential-flow pressure distribution that should be recovered for large values of y . Since $\mathrm{f}(\mathrm{y}) \rightarrow \mathrm{y}$ as $\mathrm{y} \rightarrow \infty$,

$$
\mathrm{p}(\mathrm{x}, \mathrm{y}) \rightarrow-2 \rho U^{2} y^{2}-2 \rho U v+h(x)
$$

Recalling the in the previous (a), we have,

$$
\mathrm{p}(\mathrm{x}, \mathrm{y})=p_{0}-2 \rho U^{2}\left(x^{2}+y^{2}\right)
$$

So compare the two pressure distribution,

$$
\mathrm{h}(\mathrm{x})=p_{0}-2 \rho U^{2} x^{2}+2 \rho U v
$$

The final pressure distribution should be,

$$
\mathrm{p}(\mathrm{x}, \mathrm{y})=p_{0}-2 \rho U^{2}\left(f^{2}+x^{2}\right)-2 \rho U v\left(f^{\prime}-1\right)
$$

(e) Using the pressure distribution in (d),

$$
\frac{\partial p}{\partial x}=-4 \rho U^{2} x
$$

So that the x -momentum becomes,

$$
4 U^{2} x\left(f^{\prime}\right)^{2}-4 U^{2} x f f^{\prime \prime}=4 U^{2} x+2 U v x f^{\prime \prime \prime}
$$

Rewrite it in the following way,

$$
\frac{v}{2 U} f^{\prime \prime \prime}+f f^{\prime \prime}-\left(f^{\prime}\right)^{2}+1=0
$$

This is a three order differential equation with the boundary conditons,

$$
\mathrm{f}(\mathrm{y}) \rightarrow \mathrm{y} \text { as } \mathrm{y} \rightarrow \infty
$$

Advanced Fluid Mechanics

$$
\begin{gathered}
\mathrm{f}(0)=\mathrm{f}^{\prime}(0)=0 \\
\mathrm{f}^{\prime}(\mathrm{y}) \rightarrow 1 \text { as } \mathrm{y} \rightarrow \infty
\end{gathered}
$$

Part two

According to the boundary conditions:

$$
\begin{gathered}
\mathrm{u}=0 \text { at } \mathrm{y}=0 \\
\mathrm{u}=\mathrm{U}, \frac{\partial \mathrm{u}}{\partial y}=0 \text { at } \mathrm{y}=\delta
\end{gathered}
$$

We can solve the quadratic polynomial equation,

$$
\frac{u}{U}=a+b \frac{y}{\delta}+c\left(\frac{y}{\delta}\right)^{2}
$$

that,

$$
\mathrm{a}=0, \mathrm{~b}=2, \mathrm{c}=-1
$$

Hence, the polynomial equation is,

$$
\frac{u}{U}=2 \frac{y}{\delta}-\left(\frac{y}{\delta}\right)^{2}
$$

Now in this case is an uniform flow over a flat plate, so the momentum integral equation is,

$$
\frac{d}{d x} \int_{0}^{\infty} u(U-u) d y=\frac{\tau_{0}}{\rho}
$$

Since,

$$
\frac{\tau_{0}}{\rho}=v \frac{\partial u}{\partial y}(y=0)=\frac{2 v U}{\delta}
$$

and the momentum thickness,

$$
\theta=\int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\frac{2}{15} \delta
$$

Substituting in the momentum integral equation,

$$
\frac{2}{15} U^{2} \frac{d \delta}{d x}=\frac{2 v U}{\delta}
$$

By integration, we obtain,

$$
\delta=5.477 \sqrt{\frac{v x}{U}}
$$

And,

$$
\frac{\delta}{x}=\frac{5.477}{\sqrt{R e}}
$$

As a comparison, the following table is shown,

Advanced Fluid Mechanics

	Blasius solution	Quadratic solution	Cubic solution
thickness: $\frac{\delta}{x}$	$\frac{5}{\sqrt{R e}}$	$\frac{5.477}{\sqrt{R e}}$	$\frac{4.64}{\sqrt{R e}}$
momentum thickness: $\frac{\theta}{x}$	$\frac{0.644}{\sqrt{R e}}$	$\frac{0.73}{\sqrt{R e}}$	$\frac{0.646}{\sqrt{R e}}$

