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Part one
(a) Considering that,
r2 = x2 4 y2

tan(0) = %

We can rewrite the stream function in the following way,
Y(x,y) = Y(r,0) = Ur?sin(20) = 2Ur?sin(8) cos()
Hence, we get the stream function in Cartesian coordinates,

X
U(xy) = 20 (% + y?) —= = 2Uxy

VX2 +y2x2 +y?

t: —alp—ZU
X componen.u—ay— X

- tv=——=-2U
y — component: v I y

It is clearly shown that at the point (0,0), the velocity is zero, so this point is a
stagnation point.
Considering the boundary condition that,

ux,0)=0

v(x,0) =0
Sot the x-component velocity does not satisfy the no-slip boundary condition, while
the y-component velocity satisfies the boundary condition.

From the Bernoulli equation, the pressure distribution will be,

p=po—2pU%(x* +y?)
where pgis the Bernoulli constant that corresponds to the pressure at the stagnation
point.

(b) Firstly, we write the N-S equations,
{ V- v=0
v+ @ - VY v—vV2v+VP =0

Substituting the known x,y-component to the N-S equations, we can get the follow
equation,

0=0
{4U2x = 4U%x
4U%y = 4U%y
So this velocity and pressure distributions verify the N-S eqautions.
However, the viscous-shear terms in the Navier-Stokers equations are identically zero
for the potential-flow fields, so it does not fulfill the boundary conditions for the
viscous problem.
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(c) Continuity equation,

Ju OJv
I + @ =0
v du ,
oy T ax —2Uf'(y)
So that the vertical component of the velocity will be of the form,
v = —2Uf(y)

Define the velocity field in this way enable all function f(y) could satisfy the continuity
equation. Considering the boundary condition, we stipulate that,

fly) > yasy - o
£(0) = f'(0) = 0
f'(y) > lasy — o

(d) The y-momentum equation can be written,

ov  0v 1dp 0%v 9%
Uai-‘l?@: —;a+v W-Fa—yz
Substituting the knowing results,
QU ff' = _la_p — 2Uvf"
p Oy
Hence, the pressure distribution,
p(x,y) = —2pU?f? — 2pUvf" + h(x)
where h(x) is some function of x that may be determined by comparison with the
potential-flow pressure distribution that should be recovered for large values of .
Since f(y) »yasy — oo,
p(xy) = —2pU%y? — 2pUv + h(x)
Recalling the in the previous (a), we have,
p(x,y) =po — 2pU%(x* + y?)
So compare the two pressure distribution,
h(x) = py — 2pU?x?% + 2pUv
The final pressure distribution should be,

p(x,y) = po — 2pU(f? + x?) — 2pUv(f' = 1)

(e) Using the pressure distribution in (d),
dp

— = —4pU?
0x pUmx

So that the x-momentum becomes,
4U%x(f")? — 4Uxff" = 4U?x + 2Uvxf""
Rewrite it in the following way,
v " " "2 —
s/ = ()2 1= 0
This is a three order differential equation with the boundary conditons,
f(y) »yasy » o
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f(0) =f'(0) =0
f'(y) » lasy - 0

Part two

According to the boundary conditions:

u=0aty=0
—Uau—Ot =9
u= By aty =

We can solve the quadratic polynomial equation,

%=a+b%+c(§)2

that,
a=0b=2,c=-1
Hence, the polynomial equation is,
u Yy Yy
—=72Z_|(Z
=255
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Now in this case is an uniform flow over a flat plate, so the momentum integral

equation is,
d J‘°° U p _ T

Since,
o Ou_ = 20U
p—vay(y—o)— 5

and the momentum thickness,

e—J6u1 Ly = =
=) v PV =1

Substituting in the momentum integral equation,

2 ,dé  2vU
15 dx &
By integration,we obtain,
5= 5477 |
= 5. 7
And,
6 5477
x VRe

As a comparison, the following table is shown,



UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Advanced Fluid Mechanics

drati
Blasius solution Qua r.a Ic Cubic solution
solution
hick 1) 5 5.477 4.64
thickness:— — kel
hick 0 0.644 0.73 0.646
momentum thickness: — —
X VRe VRe VRe




