ADVANCED FLUID MECHANICS

Homework 4: Navier Stokes Equation \& Boundary Layer

Kiran Sagar Kollepara
Computational Mechanics

1. Fluid stream impinging a plate

a) The stream potential can also be expressed in Cartesian coordinates as:

$$
\psi=U r^{2} \sin (2 \theta)=U r^{2} \cdot 2 \sin \theta \cos \theta=2 \mathrm{U}\left(x^{2}+y^{2}\right) \frac{x y}{x^{2}+y^{2}}=2 U x y
$$

The velocity in the Cartesian coordinates can be calculated as:

$$
v_{x}=\frac{\partial \psi}{\partial y}=2 \mathrm{Ux} \text { and } v_{y}=-\frac{\partial \psi}{\partial x}=-2 \mathrm{Uy}
$$

At $y=0$, we have:

$$
v_{x}=2 \mathrm{Ux} \text { and } v_{y}=0
$$

Hence, it satisfies the boundary condition for an inviscid flow over the plane boundary. The Stream function can be checked for irrotationality as:

$$
\nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0
$$

Hence, the flow is irrotational. The Bernoulli's equation can be applied across the streamlines.
The velocity at the origin is:

$$
v_{x}=0 \text { and } v_{y}=0
$$

which is a stagnation point. Assuming the pressure at the origin, the stagnation pressure as the reference pressure p_{0}, and in the absence of any body forces, we can apply Bernoulli equation as:

$$
\begin{gathered}
p_{0}=p_{x y}+\frac{1}{2} \rho v^{2} \\
\Rightarrow p_{x y}=p_{0}-\frac{1}{2} \rho v^{2} \\
\Rightarrow p_{x y}=p_{0}-\frac{1}{2} \rho \cdot 4 U^{2}\left(x^{2}+y^{2}\right) \\
\Rightarrow p_{x y}=p_{0}-2 \rho \cdot U^{2} r^{2}
\end{gathered}
$$

b) The Navier Stokes equation for a steady flow can be written as follows:

$$
\rho \boldsymbol{v} \cdot \nabla \boldsymbol{v}=-\nabla p+\mu \nabla^{2} \boldsymbol{v}
$$

Evaluating individual terms:

$$
\boldsymbol{v} \cdot \nabla \boldsymbol{v}=\left[v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}\right] \boldsymbol{v}=\left[\begin{array}{l}
4 U^{2} x \\
4 U^{2} y
\end{array}\right],
$$

$$
-\nabla p==\left[\begin{array}{l}
-4 \rho U^{2} x \\
-4 \rho U^{2} y
\end{array}\right], \text { and } \quad \nabla^{2} \boldsymbol{v}=\mathbf{0}
$$

The above terms satisfy the Navier-Stokes equation on substitution. Note that the viscous term is zero, and the pressure gradient completely balances the acceleration term.
c) The modified velocity field with $u=2 U x f^{\prime}(y)$ will satisfy the continuity equation under the condition:

$$
\begin{gathered}
\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0 \\
\Rightarrow 2 U f^{\prime}(y)+\frac{\partial v_{y}}{\partial y}=0 \\
\Rightarrow v_{y}=-2 U f(y)+g(x)
\end{gathered}
$$

Applying boundary conditions for no-slip condition over the wall, we get:

$$
\begin{gathered}
v_{y}(y=0)=v_{x}(y=0)=0 \\
\Rightarrow-2 \mathrm{U} f(0)+g(x)=0 \& 2 U x f^{\prime}(0)=0 \\
\Rightarrow g(x)=k \& f^{\prime}(y)=0, \text { where } k \text { is a constant. }
\end{gathered}
$$

And the constant can be absorbed by the function $f(y)$, so $v_{y}=-2 U f(y)$
Hence, the boundary conditions are $f(0)=0 \& f^{\prime}(0)=0$
d) The y-momentum equation is:

$$
\rho\left(v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}\right) v_{y}=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) v_{y}
$$

On substituting the new velocity field, we obtain:

$$
\begin{gathered}
\rho\left(2 U f^{\prime}(y) \frac{\partial}{\partial x}-2 U f(y) \frac{\partial}{\partial y}\right)[-2 U f(y)]=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)[-2 U f(y)] \\
\Rightarrow 4 \rho U^{2} f(y) f^{\prime}(y)=-\frac{\partial p}{\partial y}-2 \mu U f^{\prime \prime}(y) \\
\Rightarrow \frac{\partial p}{\partial y}=-2 \mu U f^{\prime \prime}(y)-4 \rho U^{2} f(y) f^{\prime}(y)
\end{gathered}
$$

On integrating the above obtained expression for pressure, we have:

$$
\begin{aligned}
\int \frac{\partial p}{\partial y} d y & =\int\left[-2 \mu U f^{\prime \prime}(y)-4 \rho U^{2} f(y) f^{\prime}(y)\right] d y \\
\Rightarrow p_{x y} & =\left[-2 \mu U f^{\prime}(y)-2 \rho U^{2} f^{2}(y)\right]+h(x)
\end{aligned}
$$

The pressure gradient in both velocity potentials must match at large y. Hence, at large y, we have:

$$
\begin{gathered}
\lim _{y \rightarrow \infty} p_{x y}=p_{0}-2 \rho U^{2}\left(x^{2}+y^{2}\right) \\
\Rightarrow \lim _{y \rightarrow \infty} f^{2}(y)=y^{2}, \text { and } \lim _{y \rightarrow \infty}\left[h(x)-2 \mu U f^{\prime}(y)\right]=-2 \rho U^{2} x^{2}+p_{0} \\
\Rightarrow \lim _{y \rightarrow \infty} f(y)=y, \text { and } h(x)-2 \mu U\left[\lim _{y \rightarrow \infty} f^{\prime}(y)\right]=-2 \rho U^{2} x^{2}+p_{0}
\end{gathered}
$$

Since, $f(y)$ approaches y assymptotically, we must have $f^{\prime}(y)$ approach 1 at ∞.

Hence, the function $h(x)$ is:

$$
h(x)=p_{0}+2 \mu U-2 \rho U^{2} x^{2}
$$

and the pressure field is:

$$
p_{x y}=p_{0}-2 \mu U\left[1-f^{\prime}(y)\right]-2 \rho U^{2}\left[f^{2}(y)+x^{2}\right]
$$

e) The x-momentum equation is:

$$
\begin{gathered}
\rho\left(v_{x} \frac{\partial}{\partial x}+v_{y} \frac{\partial}{\partial y}\right) v_{x}=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) v_{x} \\
\Rightarrow \rho\left[\left(2 U x f^{\prime}(y)\right) \frac{\partial}{\partial x}+(-2 U f(y)) \frac{\partial}{\partial y}\right]\left(2 U x f^{\prime}(y)\right) \\
=4 \rho U^{2} x+\mu\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(2 U x f^{\prime}(y)\right) \\
\Rightarrow 4 \rho U^{2} x\left[f^{\prime 2}(y)-f(y) f^{\prime \prime}(y)\right]=4 \rho U^{2} x+2 \mu U x f^{\prime \prime \prime}(y) \\
\Rightarrow f^{\prime \prime \prime}+\frac{2 \rho U}{\mu}\left(f \cdot f^{\prime \prime}-f^{\prime 2}+1\right)=0
\end{gathered}
$$

Since, this a $3^{\text {rd }}$ degree ODE, and we have three boundary conditions, the system has a unique solution.

2. Kármán-Pohlhausen approximation to Boundary Layer

The given velocity profile is:

$$
\frac{u}{U}=a+b\left(\frac{y}{\delta}\right)+c\left(\frac{y}{\delta}\right)^{2}
$$

and the boundary conditions :

$$
\begin{gathered}
u=0 \text { at } y=0 \\
u=U, \frac{\partial u}{\partial y}=0 \text { at } y=\delta
\end{gathered}
$$

On substituting the given velocity profile into the given boundary conditions, we get:

$$
\frac{u}{U}=2 \frac{y}{\delta}-\left(\frac{y}{\delta}\right)^{2}
$$

Evaluate momentum thickness of the boundary layer using:

$$
\begin{gathered}
\frac{\theta}{\delta}=\int_{0}^{1} \frac{u}{U}\left(1-\frac{u}{U}\right) d\left(\frac{y}{\delta}\right) \\
\Rightarrow \theta=\frac{2}{15} \delta
\end{gathered}
$$

Also, the shear stress at $y=0$ can be evaluated as:

$$
\begin{gathered}
\frac{\tau_{0}}{\rho}=\frac{2 v U}{\delta} \\
\frac{d}{d x} U^{2} \theta=\frac{\tau_{0}}{\rho}
\end{gathered}
$$

since U does not vary with x,

$$
\Rightarrow U^{2} \frac{d}{d x}\left(\frac{2}{15} \delta\right)=\frac{2 v U}{\delta}
$$

$$
\begin{aligned}
& \Rightarrow \delta^{2}=30 \frac{v x}{U} \\
& \Rightarrow \frac{\delta}{x}=\frac{5.4772}{\sqrt{\mathrm{Re}_{x}}}
\end{aligned}
$$

We have the solution for boundary layer thickness and hence, the velocity profile in the boundary layer.
On comparison with Blassius solution and General momentum solution with a $3^{\text {rd }}$ degree polynomic velocity profile, we can see that the δ / x is still proportional to $\mathrm{Re}^{-1 / 2}$. But the constant of relation changes changes. For Blassius solution and with cubic polynomial, the boundary layer thickness is:

$$
\begin{gathered}
\frac{\delta}{x}=\frac{5}{\sqrt{\mathrm{Re}_{x}}} \quad \text { (Blassius solution) } \\
\frac{\delta}{x}=\frac{4.64}{\sqrt{\mathrm{Re}_{x}}} \quad \text { (cubic profile) }
\end{gathered}
$$

Hence, $\delta_{\text {cubic }}<\delta_{\text {Blassius }}<\delta_{\text {quadratic }}$
The shear stress on the plate for all three cases are ass follows:

$$
\begin{aligned}
& \frac{\tau_{0}}{\rho}=\frac{0.7303}{\sqrt{\mathrm{Re}_{x}}} \text { (quadratic profile) } \\
& \frac{\tau_{0}}{\rho}=\frac{0.6466}{\sqrt{\mathrm{Re}_{x}}} \quad \text { (cubic profile) } \\
& \frac{\tau_{0}}{1 / 2 \rho U^{2}}=\frac{0.664}{\sqrt{\operatorname{Re}_{x}}} \text { (Blassius solution). } \\
& \Rightarrow \tau_{\text {cubic }}<\tau_{\text {Blassius }}<\tau_{\text {quadratic }}
\end{aligned}
$$

Hence, it can concluded that the solution obtained using the quadratic boundary layer is thicker and creates more drag.

