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 1. Fluid stream impinging a plate
 a) The stream potential can also be expressed in Cartesian coordinates as:

ψ = U r 2sin (2θ) = Ur2
⋅2sinθcosθ = 2U( x2

+ y2
)
x y

x2
+ y2

= 2U xy

The velocity in the Cartesian coordinates can be calculated as:

v x =
∂ψ

∂ y
= 2Ux and v y = −

∂ ψ

∂ x
= −2Uy

At y=0 , we have:

v x = 2Ux and v y = 0

Hence, it satisfies the boundary condition for an inviscid flow over the plane boundary.
The Stream function can be checked for irrotationality as:

∇
2
ψ =

∂
2
ψ

∂ x2 +
∂

2
ψ

∂ y2 = 0

Hence,  the  flow  is  irrotational.  The  Bernoulli's  equation  can  be  applied  across  the
streamlines.
The velocity at the origin is:

v x = 0 and v y = 0

which is a stagnation point. Assuming the pressure at the origin, the stagnation pressure

as the reference pressure p0 ,  and in the absence of any body forces, we can apply

Bernoulli equation as:

p0= pxy+
1
2
ρ v2

⇒ pxy= p0−
1
2
ρ v2

⇒ pxy= p0−
1
2
ρ⋅4U 2

( x2
+ y2

)

⇒ pxy= p0−2ρ⋅U 2r 2

 b) The Navier Stokes equation for a steady flow can be written as follows:

ρv ⋅∇ v = −∇ p+μ∇
2 v

Evaluating individual terms:

v ⋅∇ v = [v x ∂
∂ x

+v y
∂

∂ y ] v = [ 4U 2 x
4U 2 y] ,



−∇ p = =[−4ρU 2 x
−4ρU 2 y] , and ∇

2 v=0

The  above  terms  satisfy  the  Navier-Stokes  equation  on  substitution.  Note  that  the
viscous term is  zero,  and the pressure gradient  completely balances  the acceleration
term.

 c) The modified velocity field with u=2U x f ' ( y) will  satisfy the continuity equation
under the condition:

∂v x
∂ x

+
∂ v y
∂ y

= 0

⇒2U f ' ( y)+
∂ v y
∂ y

= 0

⇒ v y = −2U f ( y)+g (x )

Applying boundary conditions for no-slip condition over the wall, we get:
v y ( y=0) = vx ( y=0) = 0  

⇒ −2U f (0)+g (x )=0 & 2U x f ' (0)=0

⇒ g ( x)=k & f ' ( y )=0 , where k is a constant.

And the constant can be absorbed by the function f ( y) , so v y = −2U f ( y)

Hence, the boundary conditions are f (0)=0 & f ' (0)=0

 d) The y-momentum equation is:

ρ(v x ∂
∂ x

+v y
∂

∂ y )v y = −
∂ p
∂ y

+μ( ∂
2

∂ x2
+ ∂

2

∂ y2)v y
On substituting the new velocity field, we obtain:

ρ(2U f ' ( y) ∂
∂ x

−2U f ( y) ∂
∂ y )[−2U f ( y)] = −

∂ p
∂ y

+μ( ∂
2

∂ x2
+ ∂

2

∂ y2)[−2U f ( y)]

⇒4ρU 2 f ( y ) f ' ( y ) = −
∂ p
∂ y

−2μU f ' ' ( y)

⇒
∂ p
∂ y

= −2μU f ' ' ( y )−4ρU 2 f ( y ) f ' ( y)

On integrating the above obtained expression for pressure, we have:

∫
∂ p
∂ y

dy =∫ [−2μU f ' ' ( y )−4ρU 2 f ( y ) f ' ( y )]dy

⇒ pxy = [−2μU f ' ( y )−2ρU 2 f 2
( y )]+h( x)

The pressure gradient in both velocity potentials must match at large y . Hence, at large

y , we have:

lim
y→∞

pxy= p0−2ρU 2
(x 2

+ y2
)

⇒ lim
y→∞

f 2
( y)= y 2

, and lim
y→∞

[h( x)−2μU f ' ( y)] = −2ρU 2 x2
+ p0

⇒ lim
y→∞

f ( y)= y , and h( x)−2μU [ lim
y→∞

f ' ( y)] = −2ρU 2 x2
+ p0

Since, f ( y) approaches y assymptotically, we must have f ' ( y ) approach 1 at ∞ .



Hence, the function h( x) is:

h( x) = p0+2μU−2ρU 2 x2

and the pressure field is:

pxy = p0−2μU [1− f ' ( y )]−2ρU 2 [ f 2
( y )+x2 ]

 e) The x-momentum equation is:

ρ(v x ∂
∂ x

+v y
∂

∂ y )v x = −
∂ p
∂ x

+μ( ∂
2

∂ x2
+ ∂

2

∂ y2)vx
⇒ ρ[( 2U x f ' ( y) ) ∂

∂ x
+(−2U f ( y) ) ∂

∂ y ](2U x f ' ( y ))

= 4ρU 2 x + μ( ∂
2

∂ x2
+ ∂

2

∂ y2)(2U x f ' ( y))
⇒ 4ρU 2 x [ f ' 2

( y)− f ( y) f ' ' ( y)] = 4ρU 2 x + 2μU x f ' ' ' ( y)

⇒ f ' ' '+
2ρU

μ ( f ⋅f ' '− f ' 2
+1) = 0

Since, this a 3rd degree ODE, and we have three boundary conditions, the system has a
unique solution.

 2. Kármán-Pohlhausen approximation to Boundary Layer
The given velocity profile is:

u
U

=a+b( yδ )+c( yδ )
2

and the boundary conditions :
u=0 at y=0

u=U , 
∂ u
∂ y

=0 at y=δ

On substituting the given velocity profile into the given boundary conditions, we get:

u
U

=2
y
δ

−( yδ )
2

Evaluate momentum thickness of the boundary layer using:

θ
δ
=∫

0

1
u
U (1−

u
U )d ( yδ )

⇒θ=
2

15
δ

Also, the shear stress at y=0 can be evaluated as:

τ0
ρ =

2νU
δ

d
dx
U 2

θ =
τ0
ρ

since U does not vary with x ,

⇒U 2 d
dx (

2
15

δ)=2νU
δ



⇒δ
2
=30

ν x
U

⇒ δ
x
=

5.4772

√Rex
We have the solution for boundary layer thickness and hence, the velocity profile in the
boundary layer. 
On comparison with Blassius solution and General momentum solution with a 3rd degree

polynomic velocity profile, we can see that the δ/ x is still proportional to Re−1 /2 . But the

constant of relation changes changes. For Blassius solution and with cubic polynomial, the
boundary layer thickness is:

δ
x
=

5

√Rex
   (Blassius solution)

δ
x
=

4.64

√Rex
  (cubic profile)

Hence, δcubic<δBlassius<δquadratic

The shear stress on the plate for all three cases are ass follows:
τ0
ρ =

0.7303

√Re x
 (quadratic profile)

τ0
ρ =

0.6466

√Rex
 (cubic profile)

τ0

1 /2ρU 2
=

0.664

√Rex
(Blassius solution).

⇒ τcubic<τBlassius<τquadratic

Hence, it can concluded that the solution obtained using the quadratic boundary layer is
thicker and creates more drag.

*** END ***


