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Homework 4: Navier Stokes Equation & Boundary Layer
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1. Fluid stream impinging a plate
a) The stream potential can also be expressed in Cartesian coordinates as:

Y = Ur’sin(20) = Ur'2sinBcosO = 2U(x*+7) )y 2U xy

x*+ y2
The velocity in the Cartesian coordinates can be calculated as:
oy o0y
V, = E = 2Ux and Vy = —a—x = —2Uy

At y=0 , we have:
v, = 2UXx and v, = 0

Hence, it satisfies the boundary condition for an inviscid flow over the plane boundary.
The Stream function can be checked for irrotationality as:

2 2
Vi = T8, 00
ox" Oy
Hence, the flow is irrotational. The Bernoulli's equation can be applied across the
streamlines.

The velocity at the origin is:

v, = 0 and v, = 0
which is a stagnation point. Assuming the pressure at the origin, the stagnation pressure
as the reference pressure P, , and in the absence of any body forces, we can apply

Bernoulli equation as:
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b) The Navier Stokes equation for a steady flow can be written as follows:
ov -Vv ==V p+uV?vy

Evaluating individual terms:
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v-Vv = [vanrvya]v = l4U2y
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The above terms satisfy the Navier-Stokes equation on substitution. Note that the
viscous term is zero, and the pressure gradient completely balances the acceleration
term.
¢) The modified velocity field with u=2U x f'(y) will satisfy the continuity equation

under the condition:

s and V2v=0

ov 6vy
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=v, ==2U f(y)+g(x)
Applying boundary conditions for no-slip condition over the wall, we get:
v, (y=0) = v,(y=0) =0
= —2U f(0)+g(x)=0 & 2Ux f'(0)=0
= g(x)=k & f'(y)=0 ,where k is a constant.
And the constant can be absorbed by the function f ( y) , so v, ==-2U f (y)
Hence, the boundary conditions are £ (0)=0 & f'(0)=0
d) The y-momentum equation is:
o’ | 0%

0 0 __0p
p(an—x'FVya)Vy = —6—y+u

On substituting the new velocity field, we obtain:

P 2Uf'(y)a% -2 Uf(y)%)[—2 Ufiy)l= —g—iﬂt
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=4p U f(y)f'(y) = —g—i —2uU f"'(y)

==2uU [ " (y)=4p U’ f () f"(¥)
On integrating the above obtained expression for pressure, we have:

fg—idy = [[—2uU " (»)-4p U f () f ' (¥)]dy

= py = [=2uU [ (y)=2pU" f2(y)|+h(x)

The pressure gradient in both velocity potentials must match at large » . Hence, at large
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y , we have:
lim p,, = p,—2pU*(x’+y’)
y—©

= lim f*(y)=y"  and lim [ (x)=2uU /" (y)] = —2pU’x’+ p,

y—o©

= lim /()=y  and h(x)—zw[lim f'(y)] = —2pU’x’+ p,

y—o®© y—o o

Since, f(y) approaches y assymptotically, we must have f "(y) approach 1 at © .



Hence, the function A(x) is:
h(x) = pp+2uU—2pU"x’
and the pressure field is:

Py = p—2uU1=f(p)]-2p U°[£*(3)+x°]
e) The x-momentum equation is:

0., .0 _Op_ |28
p(vxaerv y) ox +u 6x2+8y2)vx
= ! i i x f!
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= 4pUx[f(y)-f ()£ (»)] = 4pUx + 20Ux ()

= 2 o) =0

Since, this a 3" degree ODE, and we have three boundary conditions, the system has a
unique solution.

2. Karman-Pohlhausen approximation to Boundary Layer

The given velocity profile is:
2
v _ P P
U a+b(6)+c(6)

and the boundary conditions :

u=0 at y=0
ou
= —_—= 0 =
u=U , 3y at y=9
On substituting the given velocity proﬁle into the given boundary conditions, we get:
2
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Evaluate momentum thickness of the boundary layer using:
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Also, the shear stress at y=0 can be evaluated as:
T, _ 2vU
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since U does not vary with x ,
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We have the solution for boundary layer thickness and hence, the velocity profile in the
boundary layer.

On comparison with Blassius solution and General momentum solution with a 3™ degree
polynomic velocity profile, we can see that the 8/x is still proportional to Re™'”* . But the

constant of relation changes changes. For Blassius solution and with cubic polynomial, the
boundary layer thickness is:

(Blassius solution)

\/.T (cubic profile)

Hence, 6cubic < 6 Blassius < 6 quadratic

The shear stress on the plate for all three cases are ass follows:

T, _0.7303 drat .
p \/R_ex (quadratic profile)

To _ 0.6466 bi al
0 \/Rex (cubic profile)

T _0.664
1/2pU* VRe,

(Blassius solution).

= Tcubic < TBlassius < Tquadratic

Hence, it can concluded that the solution obtained using the quadratic boundary layer is
thicker and creates more drag.




