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1 Considering the problem of long distance oil transport proposed in the assignment.

1.1 )

The relevant quantities that describe the problem are shown in the table bellow.

∆P
L [ kg

m2s2
] ρ[ kg

m3 ] vo[
m
s ] R[m] R1[m] µ1[ kgms ] µ2[ kgms ] σ[m

s2
]

M 1 1 0 0 0 1 1 1

L -2 -3 1 1 1 -1 -1 0

T -2 0 -1 0 0 -1 -1 -2

With this data, the π-products can be calculated using v0, ρ and R1 as primary variables as

following:

π1 =
∆P

L
ρavb0R

c
1 ML−2T−2(ML−3)a(LT−1)b(L)c = M0L0T 0

π1 =
∆P

L

R1

ρv2
0

π2 = Rρavb0R
c
1 M(ML−3)a(LT−1)b(L)c = M0L0T 0

π2 =
R

R1

π3 = µ1ρ
avb0R

c
1 ML−1T−1(ML−3)a(LT−1)b(L)c = M0L0T 0

π3 =
µ1

ρv0R1

π4 = µ2ρ
avb0R

c
1 ML−1T−1(ML−3)a(LT−1)b(L)c = M0L0T 0

π4 =
µ2

ρv0R1

π5 = σρavb0R
c
1 MT−2(ML−3)a(LT−1)b(L)c = M0L0T 0

π5 =
σ

ρv2
0R1

1



1.2 )

From the π-products acquired, we can see that π2, π3 and π5 can be related to the Reynolds

and Weber numbers as:

Re1 =
1

π3
Re2 =

1

π4
We =

1

π5

Being the Reynolds and Weber numbers:

Re =
ρV l

µ
We =

ρV 2l

σ

Where l and V are respectively characteristic length and velocity. The Weber number is used

in �uid �ows when there is a interface between two di�erent �uids, it measures the relative

importance of the inertial forces compared to the surface tension. This quantity is important

to determine whether waves will develop on the interface of �uids. In order to this waves not

to form the tangential components σ/R1 has to be bigger them the inertial component v0ρ, in
other words, We < 1 or π5 > 1 .

1.3 )

The hypothesis can be considered reasonable because both �uids present the same density.

Gravity terms become important when density di�erence are signi�cant, as it can be seem in

another dimensionless number called Eotvos Number, which describes the possibility of wave

formation in the interface between to �uids.

Eo =
∆ρgL2

σ

For the case presented, ∆ρ is equal to 0 (Eo = 0) preventing the body forces (gravity) being

sources of wave generation.

1.4 )

The Navier-Stokes equations written in cylindrical coordinates are presented bellow considering

a velocity �eld on the form of v = (0, 0, vz(r)).

ρ
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∂vr
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vθ
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∂vr
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v2
θ
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−∂p
∂r

+ µ(
∂

∂r
(
1

r

∂

∂r
(rvr)) +
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r2

∂2vr
∂θ2

− 2

r2

∂vθ
∂θ
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∂2vr
∂z2

) + ρbr
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∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
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vrvθ
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+ vz
∂vθ
∂z

) =
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−1

r

∂p

∂θ
+ µ(

∂

∂r
(
1

r

∂

∂r
(rvθ)) +

1

r2

∂2vθ
∂θ2
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2

r2

∂vr
∂θ

+
∂2vθ
∂z2

) + ρbθ
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ρ
(((

((((
(((

((((
((

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

) = −∂p
∂z

+ µ(
1

r

∂

∂r
(r
∂vz
∂r

) +
���

���
���

��
1

r2

∂2vz
∂θ2

+
∂2vz
∂z2

) + ρbz

The r and θ components of the velocity, the derivatives vz with respect to θ and z, gravity
terms and the θ and r components of the pressure gradient are neglected (as it is stated in

the problem). After the all the simpli�cations, the resulting equation is presented with its

appropriate boundary conditions:



1

r

∂

∂r
(r
∂vz
∂r

) = − 1

µ

∆P

L

vwz (R) = 0

vwz (R1) = voz(R1)

τw(R1) = τ o(R1)

τw(0) = 0

1.5 )

In order to solve this problem, its necessary to integrate the resulting equation twice as fol-

lowing:

∂vz
∂r

= − r

2µ

∆P

L
+
A

r
vz =

r2

4µ

∆P

L
+Aln(r) +B

For oil 0 ≤ r ≤ R1 we have:

voz(r) =
−r2

4µ1

∆P

L
+Aln(r) +B τ o(r) = µ1

∂vz
∂r

= −r
2

∆P

L
+
Aµ1

r

For water R1 ≤ r ≤ R we have:

vwz (r) =
−r2

4µ2

∆P

L
+ Cln(r) +D τw(r) = µ2

δvz
δr

= −r
2

∆P

L
+
Cµ2

r

Now the boundary conditions are applied to �nd the integration constants:
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τw(0) = 0
Aµ1

0
→∞ A = 0

τ o(R1) = τw(R1)
R1

2

∆p

L
=
R1

2

∆p

L
+
Cµ2

R1
C = 0

vwz (R) = 0
R2

4µ2

∆p

L
+D = 0 D =

R2∆P

4µ2L

vwz (R1) = voz(R1)
−R2

1

4µ1

∆p

L
+B =

−R2
1

4µ2

∆p

L
+
R2∆p

4µ2L
B =

∆P

4L

(
R2

1

µ1
+

(R2 −R2
1)

µ2

)

Resulting on the �nal equations on the form of:

For oil 0 ≤ r ≤ R1

voz(r) =
−r2

4µ1

∆P

L
+

∆P

4L

(
R2

1

µ1
+

(R2 −R2
1)

µ2

)

voz(r) =
∆P

4L

(
R2

1 − r2

µ1
+
R2 −R2

1

µ2

)
For water R1 ≤ r ≤ R

vwz (r) =
−r2

4µ2

∆P

L
+
R2∆P

4µ2L

vwz (r) =
∆P

4µ2L
(R2 − r2)

For oil and water 0 ≤ r ≤ R

τ o(r) = τw(r) =
r

2

∆P

L

The velocity on the interface is the velocity in R1 and can be calculated using any of the

velocity equations (water or oil) resulting in:

vz(R1) =
∆P

4µ2L

(
R2 −R2

1)

Other relevant quantities are the shear stress on the wall and the maximum velocity.

τw(R) =
R

2

∆P

L
voz(0) =

∆P

4L

(
R2

1

µ1
+
R2 −R2

1

µ2

)
The velocity pro�le resulting from the equations can be visualized in Figure 1.1.
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Figure 1.1: Velocity and Shear stress pro�les

1.6 )

To calculate the �ux of each of the �uids it is necessary to integrate the velocity �eld over the

area as following:

For oil:

Qo =

∫∫
A1

vozdA1 =

∫ R1

0

∫ 2π

0

[
−r2

4µ1

∆p

L
+

∆P

4L

(
R2

1

µ1
+

(R2 −R2
1)

µ2

)]
rdrdθ

Qo = − r
4∆P

16µ1L
+
r2

2

∆P

4L

(
R2

1

µ1
+

(R2 −R2
1)

µ2

)∣∣∣∣∣
R1

0

2π = −2πR4
1∆P

16µ1L
+
R2

1

2

∆P

4L

(
R2

1

µ1
+

(R2 −R2
1)

µ2

)
2π

Qo =
π∆p

4L

(
R2

1

µ2
(R2 −R2

1) +
R4

1

2µ1

)

For water:

Qw =

∫∫
A2

vwz dA2 =

∫ R

R1

∫ 2π

0

[
− r2∆P

4µ2L
+
R2∆P

4µ2L

]
rdθdr

Qw =

(
− r4∆P

16µ2L
+
r2

2

R2∆P

4µ2L

)∣∣∣∣∣
R2

R1

2π =

(
− R4 −R4

1∆P

16µ2L
+
R2 −R2

1

2

(
R2∆P

4µL

))

Qw =
π∆p

8µ2L
(R2 −R2

1)2
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2 Considering the shock tube shown in Figure 2.1 with initial velocities equal to 0:

P

0x = Lx =x =-

P 10 <

P 0P 1
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Figure 2.1: Schematic of the problem

The Riemann invariants for the expansion and compression lines may be written as a function

of the di�erent pressures:

u

c
− 1

γ

p

po
= constant along x+ ct = constant

u

c
+

1

γ

p

po
= constant along x− ct = constant

We know that those expressions remain constant along characteristic lines, therefore by know-

ing the initial pressure and velocity at both sides of the diaphragm, we can calculate those

same quantities at a point after the wave front has passed as shown in Figure 2.2.

x
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A B

P

Figure 2.2: Wave front after the diaphragm breaks

From the points P to B (x+ ct), knowing that ub = 0 and pb = po

up
c
− 1

γ

pp
po

=
0

c
− 1

γ

po
po

up
c

=
1

γ

(
pp
po
− 1

)
(2.1)

From the points P to A (x− ct), knowing that ua = 0 and pa = p1

up
c

+
1

γ

pp
po

=
0

c
+

1

γ

p1

po
(2.2)
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Plugging (2.1) into (2.2)

1

γ

(
pp
po
− 1

)
+

1

γ

pp
po

=
1

γ

p1

po

We get the pressure at point P

pp =
po + p1

2
(2.3)

To �nd the velocity at that same point we just have to plug (2.3) into (2.1)

up
c

=
1

γ

(
po + p1

2po
− 1

)
The �nal expression for velocity at point P is:

up =
c

2γ

(
p1

po
− 1

)
(2.4)

To �nd the pressure and velocity after the wave hits the wall it is ncessary �rst to �nd the

pressure on the wall as shown in the Figure 2.3, remarking that the uw = 0.

t
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nexpansion

x

Figure 2.3: Wave front after it hits the wall and characteristic lines

From the points W to P (x− ct)

0

c
+

1

γ

pw
po

=
up
c

+
1

γ

pp
po

(2.5)

We can plug (2.3) into (2.5)

0

c
+

1

γ

pw
po

=
1

2γ

(
p1

po
− 1

)
+

1

γ

po + p1

2po

To get the pressure at the wall

pw = p1 (2.6)

The only remaining pressure and velocities unknown are pq and uq, when the wave bounces

against the wall and comes back. To �nd them we use the characteristic lines that pass through

points Q-P and Q-W.
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From point P to Q (x− ct)

up
c

+
1

γ

pp
po

=
uq
c

+
1

γ

pq
po

(2.7)

Plugging (2.3) and (2.4) into (2.7) we get:

1

2γ

(
p1

po
− 1

)
+

1

γ

po + p1

2po
=
uq
c

+
1

γ

pq
po

(2.8)

From point Q to W (x− ct)

uq
c
− 1

γ

pq
po

=
uw
c
− 1

γ

pw
po

We know that uw = 0 and pw = p1

uq
c
− 1

γ

pq
po

= −1

γ

p1

po
(2.9)

We have got a linear system of equations formed by (2.8) and (2.9) with pq and uq as unknowns.
If we solve it we get:

pq = p1 uq = 0

As a summary, we can identify 4 regions in the space-time domain as shown in Figure 2.4 and

Table 2.1.

t

0

w
a
ll

Figure 2.4: Pressure and velocity space-time regions

Table 2.1: Summary

a b c d

velocity 0 0 c
2γ

(
P1
P0
− 1
)

0

pressure P1 P0
P1+P0

2 P1

Looking at the graph, it is clear that for a big enough time the pressure and velocity are going

to be the same as region d of Figure 2.4.
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