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1 Considering the problem of long distance oil transport proposed in the assignment.

1.1)

The relevant quantities that describe the problem are shown in the table bellow.
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M1 10 0 0 1 1 1
L2 311 1 1 10
T 2 0 1 0 0 1 12

With this data, the w-products can be calculated using vy, p and R; as primary variables as
following:
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1.2 )

From the w-products acquired, we can see that mo, m3 and 75 can be related to the Reynolds
and Weber numbers as:
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Being the Reynolds and Weber numbers:
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Where [ and V are respectively characteristic length and velocity. The Weber number is used
in fluid flows when there is a interface between two different fluids, it measures the relative
importance of the inertial forces compared to the surface tension. This quantity is important
to determine whether waves will develop on the interface of fluids. In order to this waves not
to form the tangential components o/R; has to be bigger them the inertial component vgp, in
other words, We < 1 or m5 > 1.

1.3)

The hypothesis can be considered reasonable because both fluids present the same density.
Gravity terms become important when density difference are significant, as it can be seem in
another dimensionless number called Eotvos Number, which describes the possibility of wave
formation in the interface between to fluids.
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For the case presented, Ap is equal to 0 (EFo = 0) preventing the body forces (gravity) being
sources of wave generation.

14)

The Navier-Stokes equations written in cylindrical coordinates are presented bellow considering
a velocity field on the form of v = (0,0, v,(r)).
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The r and 6 components of the velocity, the derivatives v, with respect to 6 and z, gravity
terms and the 6 and r components of the pressure gradient are neglected (as it is stated in
the problem). After the all the simplifications, the resulting equation is presented with its
appropriate boundary conditions:

vy (R) =0
vy (Ry) = v ()
T(Ry) = 7°(R1)
79(0)=0

1.5 )

In order to solve this problem, its necessary to integrate the resulting equation twice as fol-
lowing:
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For 0il 0 < r < R; we have:
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For water R; <r < R we have:
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Now the boundary conditions are applied to find the integration constants:
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Resulting on the final equations on the form of:
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For water R1 <r <R
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For oil and water 0 <r < R
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The velocity on the interface is the velocity in R; and can be calculated using any of the
velocity equations (water or oil) resulting in:

AP
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Other relevant quantities are the shear stress on the wall and the maximum velocity.

w RAP o AP (R? R*-RZ
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The velocity profile resulting from the equations can be visualized in Figure 1.1.



r
R
Vz
Ryl /o A—
0 VzT

Figure 1.1: Velocity and Shear stress profiles

1.6 )

To calculate the flux of each of the fluids it is necessary to integrate the velocity field over the
area as following:

For oil:

0 2 r’Ap AP (R}  (R?- R
QO_//A1 v = / / [4M1L 4L< T )]rdrd@

R1

AP r2AP (R2 (R? — R%))
+ -~ 0000 7

_2rRIAP  R}AP (R}  (R?-RY})
Qo = — + — ik il — " Ulog
16,&1L 2 4L 125)

16,&1L Tty 2 4L 125)

_ mAp R% 9 9 R‘ll
T VG

For water:
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2 Considering the shock tube shown in Figure 2.1 with initial velocities equal to 0:
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Figure 2.1: Schematic of the problem

The Riemann invariants for the expansion and compression lines may be written as a function
of the different pressures:

u 1p
— — —— = constant along = + ct = constant
¢ 7DPo
u 1p
— + —— = constant along x — ¢t = constant
¢ 7Po

We know that those expressions remain constant along characteristic lines, therefore by know-
ing the initial pressure and velocity at both sides of the diaphragm, we can calculate those
same quantities at a point after the wave front has passed as shown in Figure 2.2.
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Figure 2.2: Wave front after the diaphragm breaks

From the points P to B (x + ct), knowing that u, = 0 and p, = p,

w1y _0_1p,
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From the points P to A (x — ct), knowing that u, = 0 and p, = p1

w 1p, 0 1
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Plugging (2.1) into (2.2)
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We get the pressure at point P

_ Do + D1
DPp = 9

(2.3)
To find the velocity at that same point we just have to plug (2.3) into (2.1)
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The final expression for velocity at point P is:
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To find the pressure and velocity after the wave hits the wall it is ncessary first to find the
pressure on the wall as shown in the Figure 2.3, remarking that the u, = 0.
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Figure 2.3: Wave front after it hits the wall and characteristic lines

From the points W to P (z — ct)

0 1 1
0, 1pu _u , 1pp (2.5)
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We can plug (2.3) into (2.5)
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To get the pressure at the wall

Pw = P1 (2.6)

The only remaining pressure and velocities unknown are p; and ug, when the wave bounces
against the wall and comes back. To find them we use the characteristic lines that pass through
points Q-P and Q-W.



From point P to Q (z — ct)

¢ P ¢ Tpo
Plugging (2.3) and (2.4) into (2.7) we get:
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We know that u,, = 0 and p,, = p1
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We have got a linear system of equations formed by (2.8) and (2.9) with p, and u, as unknowns.

If we solve it we get:

Pq = D1 quO

As a summary, we can identify 4 regions in the space-time domain as shown in Figure 2.4 and

Table 2.1.
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Figure 2.4: Pressure and velocity space-time regions

Table 2.1: Summary

a b C d

: P
velocity 0 0 % (ﬁ) — ) 0
pressure P, Py @ P

Looking at the graph, it is clear that for a big enough time the pressure and velocity are going

to be the same as region d of Figure 2.4.



