
 

 

1. Consider a fluid stream whose velocity vector coincides with the y-axis 

that impinges on a plane boundary that coincides with the x-axis, as 

shown in the figure below. 

 

(a) If we consider an ideal fluid, velocity can be obtained using the following stream function 

 
Compute the velocity field in Cartesian coordinates (u; v) and show that it verifies the 

boundary conditions. Obtain an expression for the pressure distribution. 

 

{
𝑈𝑟 = 𝑛𝑈𝑅

𝑛−1𝑐𝑜𝑠𝑛𝜃
𝑈𝑟 = −𝑛𝑈𝑅

𝑛−1𝑠𝑖𝑛𝑛𝜃
 

 

Using n=2 because in the case shown in the figure we have π/2: 

 

{
𝑈𝑟 = 2𝑈𝑅𝑐𝑜𝑠2𝜃
𝑈𝑟 = −2𝑈𝑅𝑠𝑖𝑛2𝜃

 

 

So changing to x and y, the next velocity field is obtained: 

 

{
𝑢 = 2𝑈𝑥
𝑣 = −2𝑈𝑦

 

Then from the Bernoulli equation: 

 

∫
𝜕𝑢

𝜕𝑡
𝑑𝜓 + (

1

2
𝑢2
2 +

𝑝0
𝜌
− 𝐹2) − (

1

2
𝑢1
2 +

𝑝

𝜌
− 𝐹1) = 0

2

1

 

 

0 + (𝜌2𝑈𝑦2 + 𝑝0 − 0) − (𝜌2𝑈𝑥
2 + 𝑝 − 0) = 0 

 

So the expression for the pressure distribution obtained is: 

 

𝑝 = 𝑝0 − 2𝜌𝑈(𝑥
2 + 𝑦2) 
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(b) Show that the former velocity and pressure distributions verify the Navier-Stokes 

equations but not the boundary conditions for the viscous problem. 

A potential flow has to follow: 

𝑢 = ∇∅ 

Then it is easy to compute: 

∇2𝑢 = ∇2(∇∅) = ∇(∇2∅) = 0 

So the velocity field found in the previous questions fulfils the Navier-Stokes equations for 

viscous problems. 

We can observed that the potential flow used do not respect the no-slip condition 

necessary. 

(c) A solution for the viscous problem can be obtained modifying the potential flow in such 

a way that meeting the boundary condition would be possible. If we attempt 

 
show that the continuity equation requires that : 

 
State appropriate boundary conditions for the function f. 

 

If the horitzontal component of velocity is defined as                          then the 

continuity requires: 

 
And integrating, the vertical component of the velocity: 

 
The boundary conditions has to respect the behaviour of the flow far of the stagnation point 

but also near it. Therefore, they are modified and described in the next way: 

 

𝑢(𝑥, 0) = 0 → 𝑓′(0) = 0 
𝑣(𝑥, 0) = 0 → 𝑓′(0) = 0 
𝑓′(𝑦) → 1 
𝑦 → ∞ 

 

(d) Use the y-momentum equation to obtain an expression for the pressure distribution in 

terms of the function f. In order to completely determine the pressure distribution, you 

can use that for large values of y; the potential flow pressure should be recovered. 

 

y-momentum: 

4𝑈2𝑓𝑓′ = −
1

𝜌

𝜕𝑝

𝜕𝑦
− 2𝑈ѵ𝑓′′ 

Integrating respect
𝑑𝑦

𝑑𝑝
: 

2𝑈2𝑓2 + 2𝑈𝑣𝑓′ + 𝑔(𝑥) = −
1

𝜌
𝑝 



Where the term g(x) will correspond with the behaviour of the pressure far from the 

stagnation point, and correspond with that expression for the pressure. Then with all this, 

we can write the next expression for the pressure: 

𝑝(𝑥, 𝑦) = 𝑝0 − 2𝜌𝑈
2𝑓2 + 2𝜌𝑈ѵ(1 − 𝑓′) − 2𝜌𝑈2𝑥2 

 

(e) Using the x-momentum equation and the pressure distribution obtained in the previous 

point, obtain a differential equation for the function f. Show that the problem can be 

solved using the boundary conditions stated in point c). 

Using the equation of x-momentum: 

4𝑈2𝑥𝑓′2 − 4𝑈2𝑥𝑓𝑓′′ = −
1

𝜌

𝑑𝑝

𝑑𝑥
+ 2𝑈ѵ𝑥𝑓′′′ 

Substituting 
𝑑𝑝

𝑑𝑥
= −4𝜌𝑈2𝑥, we obtain: 

4𝑈2𝑥𝑓′2 − 4𝑈2𝑥𝑓𝑓′′ = −4𝑈2𝑥 + 2𝑈ѵ𝑥𝑓′′′ 

And writing the higher terms in the left side: 

𝑣

2𝑈
𝑥𝑓′′′ + 𝑓𝑓′′ − 𝑓′

2
+ 1 = 0 

 

 

 

 

2. Use the Kármán-Pohlhausen approximation to compute the boundary 

layer solution for a uniform flow over a flat plate. Assume a quadratic 

polynomial form for the velocity profile:  

 
                   And use the following boundary conditions:  

 

 
Compare the results with the exact Blasius solution and with the ones   

obtained assuming a cubic velocity profile. 
 

Using Kármán-Pohlhausen approximation, we have the next two expressions: 

{
 
 

 
 𝑈2𝜃 = ∫ 𝑢(𝑈 − 𝑢)𝑑𝑦

∞

0

𝑑

𝑑𝑥
(𝑈2𝜃) =

𝜏0
𝜌

 

And it can be obtained: 



𝑑

𝑑𝑥
∫ 𝑢(𝑈 − 𝑢)𝑑𝑦
∞

0

=
𝜏0
𝜌

 

So, with that expression below and the boundary conditions it is possible to compute a,b,c and 

obtained the next expression: 

𝑢

𝑈
= 2(

𝑦

𝛿
) − (

𝑦

𝛿
)
2

 

And integrating : 

∫ 𝑢(𝑈 − 𝑢)𝑑𝑦,
𝛿

0

 

𝛿 = 0.84√
𝑥ѵ

𝑈
 

With the same procedure but using a cubic velocity profile, the next expression is obtained: 

𝛿 = 4.64√
𝑥ѵ

𝑈
 

And the Blasius exact solution: 

𝛿 = 5√
𝑥ѵ

𝑈
 

So comparing the expression obtained with the other two we can see that using a quadratic 

profile for the same parameters the 𝛿 will be smaller and far from the exact solution. 


