Universitat Politècnica de Catalunya

Numerical Methods in Engineering Advanced Fluid Mechanics

Assignment 2

Navier Stokes equations
Boundary Layer

Eduard Gómez
Federico Valencia
December 18, 2019

Contents
1 Exercise 1 1
1.1 Problem 1
1.2 Solution 1
2 Exercise 2 4
2.1 Problem 4
2.2 Solution 4
free

1 Exercise 1

1.1 Problem

Consider the steady laminar flow through the annular space formed by two coaxial tubes. The radius of the outer tube is R_{1} and the radius of the inner tube is R_{2}. The flow is along the axis of the tubes and maintained by a constant pressure gradient $\frac{\partial p}{\partial z}$, where the z direction is taken along the axis of the tubes. We are asked to

- Finding the velocity field
- Finding the point with the highest local velocity
- Finding the volumetric flowrate
- Defining $\phi=R_{2} / R_{1}$, to compare the flowrate for $\phi \rightarrow 0$ with the Hagen-Poseuille flow in a cylindrical pipe.

1.2 Solution

We'll start off with the hypotheses

1. The fluid is Newtonian.
2. The fliud is incompressible.
3. The flow is in a steady state (i.e $\partial / \partial t=0$).
4. The flow is axially symmetrical (i.e $\partial / \partial \theta=0$).
5. The velocity only goes in the Z direction: $\boldsymbol{V}=\left[0,0, v_{z}\right]$
6. Gravity (and any other body force) is neglected.

The boundary conditions are typical for static walls:

$$
\begin{align*}
& \boldsymbol{V}\left(r=R_{1}\right)=[0,0,0] \tag{1}\\
& \boldsymbol{V}\left(r=R_{2}\right)=[0,0,0]
\end{align*}
$$

We'll start off with the continuity equation:

$$
\frac{1}{r} \frac{\partial r u_{r}}{\partial r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0
$$

Since both radial and angular velocity are zero (hypothesis 5), we obtain:

$$
\begin{equation*}
\frac{\partial u_{z}}{\partial z}=0 \tag{2}
\end{equation*}
$$

This together with hypothesis 4 implies that u_{z} only changes in the r direction: $u_{z}=f(r)$.
Here is the momentum balance equation for incompressible Newtonian fluids in the \mathbf{z}-axis in cylindrical coordinates. The other two axes are not useful to us.

$$
\begin{equation*}
\rho\left(\frac{\partial u_{z}}{\partial t}+u_{r} \frac{\partial u_{z}}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial u_{z}}{\partial \theta}+u_{z} \frac{\partial u_{z}}{\partial z}\right)=-\frac{\partial P}{\partial z}+\rho g_{z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{z}}{\partial \theta^{2}}+\frac{\partial^{2} u_{z}}{\partial z}\right] \tag{3}
\end{equation*}
$$

From hypotheses 3 and 5 we banish the left hand side.

$$
-\frac{\partial P}{\partial z}+\rho g_{z}+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{z}}{\partial \theta^{2}}+\frac{\partial^{2} u_{z}}{\partial z}\right]=0
$$

Hypothesis 4 and equation 2 allow removing the second and third terms in the brackets, respectively. The equation becomes:

$$
-\frac{\partial P}{\partial z}+\rho g_{z}+\frac{\mu}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{z}}{\partial r}\right)=0
$$

Hypothesis 6 allows one last simplification, removing the body forces. Rearranging, and expanding the double derivative we obtain our differential equation:

$$
\begin{equation*}
\frac{\partial^{2} u_{z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{z}}{\partial r}-\frac{1}{\mu} \frac{\partial P}{\partial z}=0 \tag{4}
\end{equation*}
$$

We know that u_{z} only depends on r. We can rewrite it as the following ODE:

$$
\begin{equation*}
u_{z}^{\prime \prime}(r)+\frac{1}{r} u_{z}^{\prime}(r)=\frac{1}{\mu} \frac{\partial P}{\partial z} \tag{5}
\end{equation*}
$$

The solution to this ordinary differential equation is

$$
\begin{equation*}
u_{z}(r)=\frac{1}{4 \mu} \frac{\partial P}{\partial z} r^{2}+A \ln (r)+B \tag{6}
\end{equation*}
$$

We have two integration constants and two boundary conditions, hence obtaining the following 2×2 equation system:

$$
\left.\begin{array}{l}
0=\frac{1}{4 \mu} \frac{\partial P}{\partial z} R_{1}^{2}+A \ln \left(R_{1}\right)+B \\
0=\frac{1}{4 \mu} \frac{\partial P}{\partial z} R_{2}^{2}+A \ln \left(R_{2}\right)+B \tag{7}
\end{array}\right\}
$$

After substantial algebraic manipulation we obtain the solution:

$$
\begin{equation*}
u_{z}(r)=-\frac{R_{1}^{2}-R_{2}^{2}}{4 \mu} \frac{\partial P}{\partial z}\left(\frac{r^{2}-R_{2}^{2}}{R_{1}^{2}-R_{2}^{2}}-\frac{\ln \left(r / R_{2}\right)}{\ln \left(R_{1} / R_{2}\right)}\right) \tag{8}
\end{equation*}
$$

If we want to obtain the position with highest local velocity, we must differentiate.

$$
\begin{equation*}
\frac{d v_{z}}{d r}=0 \tag{9}
\end{equation*}
$$

After some manipulation:

$$
\begin{equation*}
\left.r\right|_{v \text { max }}=\sqrt{\frac{R_{1}^{2}-R_{2}^{2}}{\ln \left(R_{1}^{2} / R_{2}^{2}\right)}} \tag{10}
\end{equation*}
$$

In order to obtain the volumetric flowrate we must integrate along a surface normal to the flow, that is, an annularsection of the pipe:

$$
\begin{equation*}
Q=2 \pi \int_{R_{2}}^{R_{1}} u_{z}(r) r d r \tag{11}
\end{equation*}
$$

If we substitute $\phi=R_{2} / R_{1}$, we obtain

$$
\begin{equation*}
Q=\frac{\pi R_{1}^{4}}{8 \mu} \frac{\partial P}{\partial z}\left[\left(\phi^{4}-1\right)-\frac{\left(\phi^{2}-1\right)^{2}}{\ln (\phi)}\right] \tag{12}
\end{equation*}
$$

Finally, if we take the limit:

$$
\begin{equation*}
\lim _{\phi \rightarrow 0} Q=-\frac{\pi R_{1}^{4}}{8 \mu} \frac{\partial P}{\partial z} \tag{13}
\end{equation*}
$$

we obtain the same flow than for Hagen-Poseuille flow in a cilindrical pipe.

$$
\begin{equation*}
Q_{\mathrm{HP}}=-\frac{\pi R^{4}}{8 \mu} \frac{\partial P}{\partial z} \tag{14}
\end{equation*}
$$

2 Exercise 2

2.1 Problem

Use the Kármán-Pohlhausen approximation to compute the boundary layer solution for an uniform flow over a flat plate. Assume a quadratic polynomial form for the velocity profile:

$$
\begin{equation*}
\frac{u}{U}=a+b \frac{y}{\delta}+c\left(\frac{y}{\delta}\right)^{2} \tag{15}
\end{equation*}
$$

and use the following boundary conditions:

$$
\begin{array}{llll}
u & =0 & & \text { at } \\
u & =U, & \frac{\partial u}{\partial y}=0 & \tag{17}
\end{array}
$$

Compare this solution with Blasius exact solution.

2.2 Solution

From the boundary condition at $y=0$ we get:

$$
\begin{equation*}
a=0 \tag{18}
\end{equation*}
$$

Then, the expression becomes:

$$
\begin{gather*}
\frac{u}{U}=b \frac{y}{\delta}+c\left(\frac{y}{\delta}\right)^{2} \tag{19}\\
\frac{\partial u}{\partial y}=b \frac{U}{\delta}+2 c \frac{U}{\delta^{2}} y \tag{20}
\end{gather*}
$$

And from the boundary conditions at $y=\delta$ we get:

$$
\begin{equation*}
b=2 \quad c=-1 \tag{21}
\end{equation*}
$$

Therefore, we get the expression:

$$
\begin{equation*}
\frac{u}{U}=2 \frac{y}{\delta}-\left(\frac{y}{\delta}\right)^{2} \tag{22}
\end{equation*}
$$

After defining the constant values we may calculate the momentum thickness as:

$$
\begin{gather*}
U^{2} \theta=\int_{0}^{\delta} u(U-u) d y=\frac{2}{15} U^{2} \delta \tag{23}\\
\theta=\frac{2}{15} \delta \tag{24}
\end{gather*}
$$

Substituting (23) in the momentum integral equation:

$$
\begin{equation*}
\frac{d\left(U^{2} \theta\right)}{d x}=\frac{2}{15} U^{2} \frac{d \delta}{d x}=\frac{\tau_{0}}{\rho} \tag{25}
\end{equation*}
$$

Where τ_{0} is the shear stress on the plate surface and can also be expressed as:

$$
\begin{equation*}
\frac{\tau_{0}}{\rho}=v\left(\frac{\partial u}{\partial y}\right)_{0}=2 v \frac{U}{\delta} \tag{26}
\end{equation*}
$$

Now, making an equality between (25) and (26) we have:

$$
\begin{equation*}
\frac{d \delta}{d x}=15 \frac{v}{U \delta} \tag{27}
\end{equation*}
$$

Integrating:

$$
\begin{equation*}
\frac{\delta^{2}}{2}=15 \frac{v x}{U}+C 1 \tag{28}
\end{equation*}
$$

Since $\delta(0)=0$, we know that $C 1=0$ and the expression becomes:

$$
\begin{equation*}
\frac{\delta}{x}=\sqrt{\frac{30}{R e}} \tag{29}
\end{equation*}
$$

Where $R e$ is the Reynolds number. For the Kármán-Pohlhausen approximation we may also compute:

$$
\begin{equation*}
\frac{\theta}{x}=\sqrt{\frac{8}{15 R e}} \tag{30}
\end{equation*}
$$

Summarizing, we have the following results for the approximation:

$$
\begin{equation*}
\frac{\delta}{x}=\sqrt{\frac{30}{R e}} \quad \frac{\theta}{x}=\sqrt{\frac{8}{15 R e}} \tag{31}
\end{equation*}
$$

We must now compare these results with the Blasius exact solution, which defines the following expressions:

$$
\begin{equation*}
\frac{\delta}{x}=\sqrt{\frac{25}{R e}} \quad \frac{\theta}{x}=\frac{0.664}{\sqrt{R e}} \tag{32}
\end{equation*}
$$

Figure 1: Comparison between Kármán-Pohlhausen and Blasius [1] velocity profiles.

Dividing the expressions found for the approximation by their respective equivalents in the exact solution, we have:

$$
\begin{equation*}
\frac{\delta_{k}}{\delta_{b}}=\sqrt{\frac{30}{25}}=1.0954 \quad \frac{\theta_{k}}{\theta_{x}}=\frac{0.7303}{0.664}=1.0998 \tag{33}
\end{equation*}
$$

Where δ_{k} and θ_{k} correspond to the approximation, while δ_{b} and θ_{b} correspond to the exact solution. For both expressions we have a difference of approximately 10%.

References

[1] Frank M. White. Fluid Mechanics. 7th. McGraw-Hill, 2001. ISBN: 978-0-07-352934-9.

