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Solution 1

Part a

According to definition of this stream function, this flow is irrotational. Since
x = r cos θ and y = r sin θ, we have

ψ = Ur2 sin(2θ) = 2Ur2 sin θ cos θ = 2Uxy

So by definition of ψ in terms of x and y,

u =
∂ψ

∂y
= 2Ux, v = −∂ψ

∂x
= −2Uy, v =

√
u2 + v2 = 2U

√
x2 + y2

In the stagnation point (x, y) = (0, 0), (u, v) = (0, 0) and far from this point
x =∞ or y =∞, the velocity is equal to ∞.

To obtain an expression for the pressure, we recall Bernoulli’s equation,∫ 2

1

∂v

∂t
. ds+

1

2
v2
2 +

p2
ρ

+ gz2 =
1

2
v2
1 +

p1
ρ

+ gz1

Point 1 is the stagnation point and point 2 is an arbitrary point in flow, so
v1 = 0. we do not have body force, so gz1 = gz2 = 0. The integral term should
be zero because flow is steady,

1

2
(4U2(x2 + y2)) +

p2
ρ

=
p1
ρ
⇒ p2 = p1 − 2ρU2(x2 + y2)

Part b

The Navier-Stokes equations are as follow,

∂u

∂x
+
∂v

∂y
= 0

ρ
(∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ∇2u+ ρbx

ρ
(∂v
∂t

+ u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ∇2v + ρby
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By eliminating zero terms in Navier-Stokes equations, we get

∂u

∂x
+
∂v

∂y
= 0

ρu
∂u

∂x
= −∂p

∂x
+ µ

∂2u

∂x2
(1)

ρv
∂v

∂y
= −∂p

∂y
+ µ

∂2v

∂y2

according to part a, u = 2Ux, v = −2Uy, ∂u
∂x = 2U , ∂v

∂y = −2U , ∂p
∂x = −4ρU2x,

∂p
∂y = −4ρU2y, and ∂2u

∂x2 = ∂2v
∂y2 = 0. Therefore, equations (1) hold.

Since x axis Plane is without motion, boundary condition for viscous problem
is non-slip condition, so u and v, components of velocity field should be zero
close to x axis. This means u(x, 0) = v(x, 0) = 0, but u(x, 0) = 2Ux 6= 0. So,
non-slip boundary condition does not hold.

Part c

By assuming u = 2Uxf ′(y), the continuity equation (the first equation in (1))
gives,

∂v

∂y
= −2Uf ′(y)⇒ v = −2Uf(y)

and boundary condition is u(x, 0) = v(x, 0) = 0, so f ′(0) = 0 and f(0) = 0.
Besides, when y → ∞, f(y) → y based on condition for potential flow in part
a.

Part d

The y-momentum equation is,

4ρU2f(y)f ′(y) = −∂p
∂y
− 2µUf ′′(y)

by integrating with respect to y, we get an expression for the pressure as fol-
lowing:

p(x, y) = −2ρU2(f(y))2 − 2µUf ′(y) + h(x) (2)

In (2), we use this fact that (f2)′ = 2ff ′. Moreover, since pressure is a function
of both x and y, the constant of this integration should depends on x. To find
h(x), as we point out in part c, for large y, we have f(y) → y and f ′(y) → 1.
So the equation (2) is,

p(x, y)→ −2ρU2y2 − 2µU + h(x)
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by recovering the pressure as in part a,

p1 − 2ρU2(x2 + y2) = −2ρU2y2 − 2µU + h(x) (for large y)

⇒ h(x) = p1 + 2µU − 2ρU2x2

Thus, the pressure distribution is,

p(x, y) = p1 + 2µU − 2ρU2x2 − 2ρU2(f(y))2 − 2µUf ′(y)

= p1 + 2µU(1− f ′(y))− 2ρU2(x2 + (f(y))2)

Part e

By pressure distribution in hand, we rewrite the x-momentum equation as fol-
low:

4ρU2x(f ′)2 − 4ρU2xff ′′ = 4ρU2x+ 2µUxf ′′′

This is an ordinary differential equation of order 3 and depends on only y. So,
we divide both sides of this equation by 4ρU2x,

(f ′)2 − ff ′′ = 1 +
ν

2U
f ′′′

this equation is a nonlinear ordinary differential equation of order 3 with bound-
ary condition as follow:

f(0) = 0, f ′(0) = 0, f(y)→ y, and f ′(y)→ 1 as y →∞

By changing variable as follow:

η =

√
2U

ν
y, g(η) =

√
2U

ν
f(y)

we have,

f ′(y) = g′(η), f ′′(y) =

√
2U

ν
q′′(η), f ′′′(y) =

2U

ν
g′′′(η)

therefore, the differential equation is,

g′′′ + gg′′ − (g′)2 + 1 = 0

where,

g(0) = g′(0) = 0, g′(η)→ η as η →∞

This ODE is almost similar to boundary layer equation (PDE) with the same
boundary condition. So, we can solve it numerically.
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Solution 2

By assumption of the problem, the velocity profile is,

u

U
= a+ b

y

δ
+ c

y2

δ2

where the boundary conditions are,

u = 0 at y = 0

u = U,
∂u

∂y
= 0 at y = δ

So we have,

a = 0

1 = b+ c

1

U

∂u

∂y
=
b

δ
+

2cy

δ2

∣∣∣
y=δ
⇒ 0 = b+ 2c

so, b = 2, c = −1, and we can write velocity profile as follow:

u = U
(2y

δ
− y2

δ2

)
Now we can compute displacement thickness and momentum thickness. In
Kármán-Pohlhausen approximation, we have∫ δ

0

(U − u)u dy = U2

∫ δ

0

(
1− 2y

δ
+
y2

δ2

)(2y

δ
− y2

δ2

)
dy

= U2

∫ δ

0

(2y

δ
− 5y2

δ2
+

4y3

δ3
− y4

δ4

)
dy

= U2
(y2
δ
− 5y2

3δ2
+
y4

δ3
− y5

5δ4

)δ
0

= U2
(
δ − 5

3
δ + δ − δ

5

)
=

2

15
U2δ

also we have,

τ0
ρ

= ν
(∂u
∂y

)
0

= ν
(2U

δ
− 2Uy

δ2

)
y=0

=
2Uν

δ

thus,

2

15
U2 dδ

dx
=

2Uν

δ
, δ(0) = 0

By solving this differential equation, we get

δ2

2
=

15ν

U
x+ C, C = 0 ⇒ δ = 5.4772

√
νx

U
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Moreover,

τ0
(1/2)ρU2

=
4Uν

δU2
=

4ν

(5.4772)U
√

νx
U

=
0.7303√
Re

So,

δ

x
=

5.4772√
Re

,
θ

x
=

0.7303√
Re

Note that the Blasius solution is,

δ

x
=

5√
Re

,
θ

x
=

0.664√
Re

and the one which is obtained by cubic velocity profile is,

δ

x
=

4.64√
Re

,
θ

x
=

0.646√
Re

By comparing our solution and cubic velocity, we find the solution obtained
cubic velocity profile is better approximation and is closer to Blasius solution
which is exact solution. however, our approximation can be good because the
difference between it and Blasius solution is less than 0.1
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