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ADVANCED FLUID MECHANICS 
Master of Science in Computational Mechanics/ Numerical Methods 

Fall Semester 2015 
Homework 4: Navier-Stokes equations and Boundary Layer 

Due date: December30th, 2015 

 

Albert Capalvo Viladot   and    Jordi Parra Porcar 

Exercise 1· Consider a fluid stream whose velocity vector coincides with the y axis that 

impinges in a plane boundary that coincides with the x axis, as shown in the figure below. 

 

(a) If we consider an ideal fluid, velocity can be obtained using the following stream 

function 

𝜓 𝑟,𝜃 = 𝑈𝑟2 sin 2𝜃  

Compute the velocity field in Cartesian coordinates (u, v) and show that it verifies the 

boundary conditions. Obtain an expression for the pressure distribution. 

 
Figure 1.  Stream function contours (left) and vector plot of the velocity field (right). 
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Taking into account that we are considering an incompressible fluid in a plane domain we can 

express the velocity field in terms of the stream function through the following relations, 

𝑢 =
𝜕𝜓

𝜕𝑦
 ;𝑣 = −

𝜕𝜓

𝜕𝑥
, 

Furthermore, we have that 

sin 2𝜃 = 2𝑠𝑖𝑛𝑐𝑜𝑠𝜃 , 

𝑥 = 𝑟𝑐𝑜𝑠𝜃; 𝑦 = 𝑟𝑠𝑖𝑛𝜃 , 

So, now we can express the stream function in Cartesian coordinates yielding 

𝜓 𝑟,𝜃 = 𝑈𝑟2 sin 2𝜃 = 𝑈2𝑟𝑠𝑖𝑛𝜃𝑟𝑐𝑜𝑠𝜃 , 

𝜓 𝑥,𝑦 = 2𝑈𝑥𝑦 , 

Being the associated velocity field, 

𝑢 =
𝜕𝜓

𝜕𝑦
=

𝜕

𝜕𝑦
 2𝑈𝑥𝑦 = 2𝑈𝑥 , 

𝑣 = −
𝜕𝜓

𝜕𝑥
= −

𝜕

𝜕𝑥
 2𝑈𝑥𝑦 = −2𝑈𝑦 , 

So, 

𝑽 =  2𝑈𝑥,−2𝑈𝑦 . 

It may be shown that this velocity field satisfies the prescribed boundary conditions which are: 

𝑢 𝑥, 0 = 𝑢(𝑥)    𝑠𝑙𝑖𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

𝑣 𝑥, 0 = 0      𝑛𝑜 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛  

Assuming inviscid flow, whether subject to conservative body forces or neglecting them, we 

can apply the Bernoulli principle between points 0 and another point in order to obtain the 

pressure distribution: 

 

Reading, 

1

2
( 𝐕 )2 +

𝑝

𝜌
+ 𝑔𝑧 −

1

2
  𝐕𝟎  

2 −
𝑝0

𝜌
− 𝑔𝑧0 = 0 , 

 

 

Another point 

Point 0 (stagnation point) 
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Concerning this equality we know the following information: 

- Whether not taking into account body forces or through the statement that, the 

stagnation region is very narrow, we vanish the body forces terms. 

- Velocity at the stagnation point is equal to zero. 

Accounting for all the aforementioned the Bernoulli equation yields, 

1

2
  𝐕  2 +

𝑝

𝜌
− −

𝑝0

𝜌
= 0 , 

Being,  

 𝐕 =    2𝑈𝑥 2 + (−2𝑈𝑦)2 , 

𝑝 𝑥,𝑦 = 𝑝0 − 𝜌
1

2
   2𝑈𝑥 2 +  −2𝑈𝑦 2 

2
= 𝑝0 − 2𝜌𝑈2 𝑥2 + 𝑦2  . (1) 

 

(b) Show that the former velocity and pressure distributions verify the Navier-Stokes 

equations but not the boundary conditions for the viscous problem. 

Mass conservation, 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0  (2) 

Momentum conservation, 

𝜌  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
 = −

𝜕𝑝

𝜕𝑥
+ 𝜇∇2𝑢 + 𝜌𝑏𝑥  ,     𝑋 −𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚      (3𝑎) 

𝜌  
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
 = −

𝜕𝑝

𝜕𝑦
+ 𝜇∇2𝑣 + 𝜌𝑏𝑦  ,     𝑌 −𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 

(3𝑏) 

To simplify the set of equations we apply all the information we know of the stated problem: 

· Plane flow: 

w =  0 , 

· Stationary velocity field so:  

𝜕𝑢

𝜕𝑡
= 0; 

𝜕𝑣

𝜕𝑡
= 0 , 

· Body forces no considered: 

𝜌𝑏𝑥 = 0;  𝜌𝑏𝑦 = 0 , 

· Potential flow: 

∇2𝑽 = 𝟎 , 

And further simplifications due to derivation of velocity field in equations (3a) and (3b), these 

ones simplifies into, 

𝜌𝑢
𝜕𝑢

𝜕𝑥
= −

𝜕𝑝

𝜕𝑥
 (4𝑎) 

𝜌𝑣
𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
 (4𝑏) 



4 

In order to demonstrate equations (4a) and (4b) we have from (1), 

𝑝 𝑥,𝑦 = −2𝜌𝑈2 𝑥2 + 𝑦2 , 

And finally we get, 

−
𝜕𝑝

𝜕𝑥
= 4𝜌𝑈2𝑥 = 𝜌𝑢

𝜕𝑢

𝜕𝑥
 

−
𝜕𝑝

𝜕𝑦
= 4𝜌𝑈2𝑦 = 𝜌𝑣

𝜕𝑣

𝜕𝑦
 

However in this case the non-slip boundary conditions is not accomplished whereas the no 

penetrability condition is. 

𝑢 𝑥, 0 ≠ 0    𝑛𝑜𝑛 − 𝑠𝑙𝑖𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

𝑣 𝑥, 0 = 0      𝑛𝑜 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ,  

(c) A solution for the viscous problem can be obtained modifying the potential fow in such 

a way that meeting the boundary conditions would be possible. If we attempt, 

 

𝑢 = 2𝑈𝑥𝑓′(𝑦) 

Show that the continuity equation requires, 𝑣 = −2𝑈𝑓(𝑦). State appropriate 

boundary conditions for the function f. 

 

Recalling the equation of continuity (2), and applying the new definition of u, 

𝜕

𝜕𝑥
 2𝑈𝑥𝑓 ′ 𝑦  +

𝜕𝑣

𝜕𝑦
= 0 , 

proceeding, 
𝜕𝑣

𝜕𝑦
= −2𝑈𝑓 ′ 𝑦      𝑎𝑛𝑑     𝑣 = −2𝑈𝑓 𝑦 . 

The suitable boundary conditions for the viscous problem are first, the non-slip condition, 

𝑢 𝑥, 0 = 2𝑈𝑥𝑓 ′ 0 = 0     𝑠𝑜     𝑓 ′ 0 = 0 (5) 

𝑣 𝑥, 0 = −2𝑈𝑓 0 = 0     𝑠𝑜     𝑓 0 = 0 (6) 

And in addition it must be considered that at the far-field we recover the potential flow 

expression so, 

𝑢(𝑥,𝑦) = 𝑢𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙      𝑎𝑠 𝑦 → ∞ 

So under this consideration we know that, 

𝑢 = 2𝑈𝑥 = 2𝑈𝑥𝑓 ′ 𝑦      𝑤𝑎𝑡 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡𝑎𝑡 𝑓 ′ 𝑦 = 1 (7) 
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(d) Use the y-momentum equation to obtain an expression for the pressure distribution in 

terms of the function f. In order to completely determine the pressure distribution, 

you can use that for a large value of y, the potential flow pressure should be 

recovered. 

We recall the y-momentum equation (3b), and after simplifying it turns into, 

𝜌  𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
 = −

𝜕𝑝

𝜕𝑦
+ 𝜇∇2𝑣 ,    

Considering that, 

𝑢 = 2𝑈𝑥𝑓 ′ 𝑦 = 2𝑈𝑥𝑓 ′  , 

𝑣 = −2𝑈𝑓 𝑦 = −2𝑈𝑓 , 

𝜌  (2𝑈𝑥𝑓 ′)
𝜕

𝜕𝑥
(−2𝑈𝑓) + (−2𝑈𝑓)

𝜕

𝜕𝑦
(−2𝑈𝑓) = −

𝜕𝑝

𝜕𝑦
+ 𝜇∇2 −2𝑈𝑓 , 

After working with the equation we get to, 

𝜕𝑝

𝜕𝑦
= −4𝑈2𝜌𝑓𝑓 ′ − 2𝜌𝑈𝜈𝑓 ′′ , 

And integrating respect to 𝑦 we obtain, 

𝑝 𝑥,𝑦 = −2𝑈2𝜌 𝑓 ′ 2 − 2𝜌𝑈𝜈𝑓 ′ + 𝑔 𝑥  , 

But as it is stated in the problem we know that, 

𝑖𝑓 𝑦 → ∞   𝑓 𝑦 = 𝑦 𝑎𝑛𝑑𝑓 ′ 𝑦 = 1    𝑠𝑜 𝑎𝑡 𝑡𝑒 𝑓𝑎𝑟 𝑓𝑖𝑒𝑙𝑑 

𝑝 𝑥,𝑦 = −2𝑈2𝜌𝑦2 − 2𝜌𝑈𝜈 + 𝑔 𝑥  , 

At this point we recover the expression of the pressure distribution for a potential flow 

obtained previously and in order to know g(x) we equal both expressions 

𝑝 𝑥,𝑦 = −2𝜌𝑈2 𝑥2 + 𝑦2 = −2𝑈2𝜌𝑦2 − 2𝜌𝑈𝜈𝑦 + 𝑔 𝑥 , 

and, 

𝑔 𝑥 = 𝑝0 − 2𝜌𝑈2𝑥2 + 2𝜌𝑈𝜈 , 

The pressure distribution once the potential flow solutions has been modified reads, 

𝑝 𝑥,𝑦 = 𝑝0 − 2𝜌𝑈2 𝑓2 + 𝑥2 + 2𝜌𝑈𝜈 1 − 𝑓 ′ . 
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(e) Using the x-momentum equation and the pressure distribution obtained in the 

previous point, obtain a differential equation for the function f. Show that the problem 

can be solved using the boundary conditions stated in point c). 

 

Now we recall the expression of the x-momentum balance (3a) as well as, the expression for 

the pressure distribution obtained in c) so, 

−
𝜕𝑝

𝜕𝑥
= −

𝜕

𝜕𝑥
 𝑝0 − 2𝜌𝑈2 𝑓2 + 𝑥2 + 2𝜌𝑈𝜈 1 − 𝑓 ′  = 4𝜌𝑈2𝑥2 , 

𝜇∇2𝑢 =
𝜕2

𝜕𝑦2
 2𝑈𝑥𝑓 ′ = 2𝑈𝜈𝑥𝑓 ′′′ , 

And after operating with the u and v modified velocity fields for the viscous problem we get to, 

𝜈

2𝑈
𝑓 ′′′ + 𝑓𝑓 ′′ −  𝑓 ′ 2 + 1 = 0 . 

At this point we recall the boundary conditions stated previously (5-7). But it would be more 

appropriate to solve a problem which didn’t take into consideration a particular viscosity but, 

instead of this that would be valid for every kinematic viscosity we wanted, independently of 

the fluid considered. In order to accomplish this it is necessary to do a change of variable, 

which reads, 

𝜑 𝛿 =  
2𝑈

𝜈
𝑓 𝑦 ,     𝑎𝑛𝑑     𝛿 =  

2𝑈

𝜈
𝑦 

So now the problem can be solved in terms of𝜑 𝛿 , satisfying the following O.D.E. and its 

boundary conditions, 

𝜑′′′ + 𝜑𝜑′′ −  𝜑′ 2 + 1 = 0, (8) 

𝜑 0 = 𝜑′(0) = 0, 

𝜑′ 𝛿 = 1    𝑤𝑒𝑛    𝛿 → ∞ , 

Now we have a third order non-linear O.D.E. with three boundary conditions so we solve can 

solve it. 

To do so, first we apply the following change of variables in equation (8) in order to obtain a 

system of first order O.D.E’s: 

𝜑1 = 𝜑;   𝜑2 = 𝜑1
′  ;  𝜑3 = 𝜑2′ 

Obtaining the system 

 

𝜑3
′ = −𝜑1𝜑3 + 𝜑2𝜑2 + 1

𝜑2
′ = 𝜑3                                

𝜑1
′ = 𝜑2                                
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Finally we can solve the boundary value problem stated above as a initial value problem, using 

the shooting method with trapezoidal method, guessing the value of 𝜑3 0 = 𝐿 such that 

𝜑2 ∞ = 1. 

 

 
Figure 2.  Solution for the equivalent system of ODE’s 

 
 

 

 

 

 

 

Exercise 2·Use the Kárman-Pohlhausen approximation to compute the boundary layer solution 

for an uniform flow over a flat plate. Assume a quadratic form for the velocity profile: 

𝑢

𝑈
= 𝑎 + 𝑏

𝑦

𝛿
+ 𝑐  

𝑦

𝛿
 

2

 

And use the following boundary conditions: 

𝑢 = 0 𝑎𝑡 𝑦 = 0 

𝑢 = 𝑈,
𝜕𝑢

𝜕𝑦
= 0 𝑎𝑡 𝑦 = 𝛿  

Compare the results with the exact Blausius solution and with the ones obtained assuming a 

cubic velocity profile. 

 

Defining a similarity variable 𝜂 as 𝜂 = 𝑦/𝛿, the velocity profile is transformed into: 

𝑢

𝑈
= 𝑎 + 𝑏𝜂 + 𝑐𝜂2 

And the boundary conditions into: 
𝑢

𝑈
= 0 𝑎𝑡 𝜂 = 0 

𝑢

𝑈
= 1,

𝜕 𝑢/𝑈

𝜕𝜂
= 0 𝑎𝑡 𝜂 = 1  
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Applying the boundary conditions we can solve for the 3 coefficients a, b, and c as follows 

 
0 = 𝑎 + 𝑏 · 0 + 𝑐 · 02

1 = 𝑎 + 𝑏 · 1 + 𝑐 · 12

0 = 𝑏 + 𝑐𝜂

 
𝑠𝑜𝑙𝑣𝑖𝑛𝑔
       

𝑎 = 0
𝑏 = 2
𝑐 = −1

  

Finally the profile is of the form: 

𝑢

𝑈
= 2𝜂 − 𝜂2 (9) 

Over a flat plate 𝑈
𝑑𝑈

𝑑𝑥
= 0, and therefore the Kármán momentum integral equation reduces to 

𝑑

𝑑𝑥
 𝑈2𝜃 =

𝜏0

𝜌
 

Where 𝑈2𝜃 is the momentum thickness computed as  

𝑈2𝜃 =  𝑢 𝑈 − 𝑢 𝑑𝑦
𝛿

0

 

Moving 𝑈2 to the r.h.s, and transforming the integral into terms of the similarity variable ( 

𝑑𝑦 = 𝛿𝑑𝜂, 𝑎𝑛𝑑 𝑦 = 𝛿 −> 𝜂 = 1) 

𝜃 =  
𝑢

𝑈
 1 −

𝑢

𝑈
 𝛿𝑑𝜂

1

0

 

Computing using (9)  

𝜃 =   2𝜂 − 𝜂2  1 − 2𝜂 + 𝜂2 𝛿𝑑𝜂
1

0

=
2

15
𝛿 

In the reduced Kármán momentum integral equation the r.h.s. is computed as: 

𝜏0

𝜌
= 𝜈  

𝜕𝑢

𝜕𝑦
 
𝑦=0

 →
𝜏0

𝜌
 = 𝑈𝜈

𝜕𝑢/𝑈

𝛿𝜕𝜂 
 
𝜂=0

=
2𝑈𝜈

𝛿
 

Reaching the final expression 

𝑑

𝑑𝑥
 𝑈2

2

15
𝛿 =

2𝑈𝜈

𝛿
 

𝛿 𝑑𝛿 =
 2𝑈𝜈

𝑈2 2

15

𝑑𝑥 

Which integrating gives: 

𝛿2

2
=

 2𝑈𝜈

𝑈2 2

15

𝑥 + 𝐶 
𝛿 0 =0
     𝐶 = 0 

𝛿 =  
30𝜈𝑥

𝑈
=

5.48

 𝑅𝑒𝑥
𝑥 

With 𝑅𝑒𝑥 = 𝑈𝑥/𝜈 
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Finally computing 𝜃/𝑥   

𝜃

𝑥
=

2𝛿

15𝑥
=

2
5.48

 𝑅𝑒𝑥
𝑥

15𝑥
=

0.73

 𝑅𝑒𝑥
 

From the results available in the lecture notes we can compare the results of the Kármán-

Pohlhausen approximation for a quadratic profile, with the ones assuming a cubic profile and 

the exact Blausius solution. 

 𝛿/𝑥 𝜃/𝑥 

Kármán-Pohlhausen with quadratic profile 
5.48

 𝑅𝑒𝑥
 

0.73

 𝑅𝑒𝑥
 

Kármán-Pohlhausen with cubic profile 
4.64

 𝑅𝑒𝑥
 

0.646

 𝑅𝑒𝑥
 

Exact Blausius solution 
5

 𝑅𝑒𝑥
 

0.664

 𝑅𝑒𝑥
 

 

From the table above we can see that using Kármán-Pohlhausen approximation and assuming 

a cubic profile gives better results than assuming a quadratic profile.  We can also see that 

with respect to the exact Blausius solution the cubic profile has a far more accurate solution 

for the momentum thickness, whereas for the displacement thickness both profiles differ 

more or less in the same magnitude. 
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Annex· Matlab files for the shooting method (Modified from [1] ) 

File solvesys.m: 

g1=0; g2=2; 

 while((g2-g1)>10e-6) 

    L=(g1+g2)/2; 

    [delta,phi] = ode45('ode',[0 6],[0 0 L]) 

     if max(phi(:,2))>1 

         g2=L; 

     else 

         g1=L; 

     end 

 end 

 

plot(delta,phi(:,3),'r',delta,phi(:,2),'b',delta,phi(:,1),'g') 

axis equal 

axis([0 4 0 2]) 

title('Solution to the system of ODE''s', 'FontSize', 14) 

xlabel('\delta', 'FontSize', 12) % x-axis label 

ylabel('\phi(\delta)  \phi''\delta)  \phi''''(\delta)', 'FontSize', 

12) % y-axis label 

legend('\phi''''','\phi''','\phi') 

grid on 

 

File ode.m: 

function df = ode(~,phi) 

    df = zeros(size(phi)); 

    df(1) = phi(2); 

    df(2) = phi(3); 

    df(3) = -phi(1)*phi(3) + phi(2)*phi(2) -1; 

end 

 

 

 

 

 

 

[1]  http://www.mathworks.com/matlabcentral/answers/52075-solving-a-third-order-non-
linear-ode-using-ode45 
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